Inference of graph transformation rules for the design of geometric modeling operations

Geometric modeling

▶ How to realize such a scene?

Geometric modeling

▶ How to realize such a scene?

Creation of the objects, displacement mapping, normal mapping, 3D fractal texture, rendering, ...

Geometric modeling

Creating objects

Creating objects

Diversity of tools: Blender, AutoCAD, Catia, Houdini, Maya, Rhino 3D, SketchUp, SolidWorks, ...

Designing modeling operations

Designing modeling operations

CGAL's sew operation

```
template < unsigned int i>
void sew(Dart_descriptor adart1, Dart_descriptor adart2)
 CGAL_assertion( i<=dimension );
 CGAL_assertion( (is_sewable <i>(adart1,adart2)) );
 size_type amark=get_new_mark();
 CGAL:: GMap_dart_iterator_basic_of_involution <Self, i>
   I1(*this, adart1, amark);
 CGAL::GMap_dart_iterator_basic_of_involution<Self, i>
   I2(*this, adart2, amark);
 for ( : I1.cont(); ++I1, ++I2 )
   Helper::template Foreach_enabled_attributes_except
      <CGAL::internal::GMap_group_attribute_functor<Self, i>, i>::
      run(*this, I1, I2);
 negate mark( amark );
 for ( I1.rewind(), I2.rewind(); I1.cont(); ++I1, ++I2 )
   basic_link_alpha <i>(I1, I2);
 3
 negate_mark( amark );
 CGAL assertion( is whole map unmarked(amark) );
 free mark(amark);
```

4/51

R. Pascual

5/51

5/51

Strengths and weaknesses of Jerboa's DSL

- Main characteristics:
 - Dedicated to Gmaps¹

- Syntax analyzer exploiting sufficient conditions²
- Successful applications:

¹Poudret et al. 2008. ²Belhaouari et al. 2014.

R. Pascual

Ph.D. defense

November 29, 2022 6 / 51

▶ Double-pushout (DPO) approach to graph transformations.¹

¹Rozenberg 1997; Ehrig et al. 2006; Heckel et al. 2020.

Running example: face triangulation

9/51

Generalized maps

▶ Geometric objects are represented with embedded generalized maps.

The category of graphs

- ► A graph G = (V, E, s, t):
 - a set of nodes V,
 - a set of arcs E,
 - a source function $s: E \to V$,
 - a target arrow $t: E \to V$,

The category of graphs

- A graph G = (V, E, s, t):
 - a set of nodes V,
 - a set of arcs E,
 - a source function $s: E \to V$,
 - a target arrow $t: E \to V$,

A morphism G → H:
 a node function V_G → V_H,
 an arc function E_G → E_H,

preserving structure.

► Graphs can be decorated with labels, types, and attributes.

${\sf Generalized}\ {\sf maps}^1$

¹Damiand et al. 2014.

Generalized maps¹

Gmaps built as graphs:

Color legend: 0, 1, 2.

¹Damiand et al. 2014.

R. Pascual

Ph.D. defense

Generalized maps¹

Gmaps built as graphs:

• topology: graph structure

Color legend: 0, 1, 2.

¹Damiand et al. 2014.

R. Pascual

Generalized maps¹

Gmaps built as graphs:

- topology: graph structure
- geometry: node attributes

Color legend: 0, 1, 2.

¹Damiand et al. 2014.

Orbits and topological cells

▶ Orbit (encode topological cell): Graph induced by a subset $\langle o \rangle \subseteq \llbracket 0, n \rrbracket$ of dimensions.

• positions on vertices (orbits $\langle 1, 2 \rangle$).

Color legend: 0, 1, 2.

Orbits and topological cells

▶ Orbit (encode topological cell): Graph induced by a subset $\langle o \rangle \subseteq \llbracket 0, n \rrbracket$ of dimensions.

- positions on vertices (orbits $\langle 1, 2 \rangle$).
- colors on faces (orbits $\langle 0, 1 \rangle$).

Color legend: 0, 1, 2.

Graph rewriting

▶ Operations on Gmaps are designed as graph rewriting rules.

Graph transformation rules¹

¹Rozenberg 1997; Ehrig et al. 2006; Heckel et al. 2020.

Ph.D. defense

Graph transformation rules¹

¹Rozenberg 1997; Ehrig et al. 2006; Heckel et al. 2020.

Topology and rule schemes

Orbit rewriting

Orbit rewriting

Orbit rewriting

Orbit rewriting <0, _> <_, 2> <1, 2> <0, 1> 1 0 **⊳**n0 ~n0 ~n1 ~n2 h a h e r d a

Orbit rewriting

Orbit rewriting

Orbit rewriting <0, _> <_, 2> <0, 1> <1, 2> 1 0 n0 n1 **⊳**n0 n2 h a h r a

Orbit rewriting <0, _> <_, 2> <0, 1> <1, 2> _ _ _ . 1 0 n0 -n1 **⊳**n0 n2 h a h r a

Orbit rewriting <0, _> <_, 2> <0, 1> <1, 2> _ _ _ . 1 n0 -n1 **⊳**n0 n2 h a h r a

Orbit rewriting

► A categorical construction of global relabeling

• $\iota(\Pi, P)$: instantiation.

► A categorical construction of global relabeling

$$\bigoplus_{a} \bigoplus_{b} \bigoplus_{c} \bigoplus_{a} P \xrightarrow{\mathbb{E}_{\Sigma}} \mathbb{E}_{\Sigma}(P)$$

- $\iota(\Pi, P)$: instantiation.
- \mathbb{E}_{Σ} : embedding functor.

¹inspired from Bauderon 1995.

► A categorical construction of global relabeling

- $\iota(\Pi, P)$: instantiation.
- \mathbb{E}_{Σ} : embedding functor.

¹inspired from Bauderon 1995.

► A categorical construction of global relabeling

- $\iota(\Pi, P)$: instantiation.
- \mathbb{E}_{Σ} : embedding functor.
- π_{Σ} : projecting functor.
- ¹inspired from Bauderon 1995.

¹Bellet et al. 2017.

Embedding expressions are extended with topological operators:

- Neighbor operator:
 - ▶ a@0@1@0.position = f.position = C
 - ▶ a@1@0.color = c.color = ●

¹Bellet et al. 2017.

Embedding expressions are extended with topological operators:

- Neighbor operator:
- Collect operator:
 - $position_{(0,1)}(a) = \{A, B, C, D\}$
 - $\blacktriangleright color_{\langle 0, \mathbf{1} \rangle}(a) = \{ \bullet \}$

¹Bellet et al. 2017.

Consistency preservation

► Modifications of a well-formed object should produce an equally well-formed object.

Requirement: Provide feedback to the rule designer.

Consistency preservation

► Modifications of a well-formed object should produce an equally well-formed object.

Requirement: Provide feedback to the rule designer.

Topological inconsistency

Geometric inconsistency

Constraint: 0202 paths should be cycles.

Constraint: 0202 paths should be cycles.

Constraint: 0202 paths should be cycles.

Concistency

Breaking the geometric consistency

Constraint: nodes in a $\langle 0, 1 \rangle$ -orbit should have the same color.

mix(a.color, b.color)

Breaking the geometric consistency

Constraint: nodes in a $\langle 0,1\rangle\text{-}orbit$ should have the same color.

mix(a.color, b.color)

Concistency

Breaking the geometric consistency

Constraint: nodes in a (0, 1)-orbit should have the same color.

mix(a.color, b.color)

- ▶ Expressing Jerboa's DSL¹ with categorical constructions:
 - Graph products (topology)
 - Rule completion (geometry)
- ▶ Weaker consistency conditions:
 - Necessary and sufficient conditions on DPO rules
 - Reduce false negatives in the analyzer (safeguard for inference)
- Unified framework to study generalized and oriented maps.

¹Poudret 2009; Bellet 2012.

- ▶ Expressing Jerboa's DSL¹ with categorical constructions:
 - Graph products (topology)
 - Rule completion (geometry)
- ▶ Weaker consistency conditions:
 - Necessary and sufficient conditions on DPO rules
 - Reduce false negatives in the analyzer (safeguard for inference)
- Unified framework to study generalized and oriented maps.

¹Poudret 2009; Bellet 2012.

- ▶ Expressing Jerboa's DSL¹ with categorical constructions:
 - Graph products (topology)
 - Rule completion (geometry)
- ▶ Weaker consistency conditions:
 - Necessary and sufficient conditions on DPO rules
 - Reduce false negatives in the analyzer (safeguard for inference)
- Unified framework to study generalized and oriented maps.

¹Poudret 2009; Bellet 2012.

Inferring geometric modeling operations

▶ Retrieving the operation described by an example.

Reversing the instantiation process

Reversing the instantiation process

Inference workflow

▶ Input: A graph G encoding the preservation relation between two partial Gmaps, an orbit type $\langle o \rangle$ and a dart a of G.

▶ Output: A graph S that encodes the Jerboa rule with the variable $\langle o \rangle$, given that the operation is applied to the dart *a*.

Color legend: 0, 1, 2, κ .

Color legend: 0, 1, 2, κ .

Besides the two Gmaps and the preservation links, we chose a dart in the initial Gmap and an orbit type.

► Graph traversal algorithm. Iteratively applying two foldings:

- Folding of a node.
- Folding of the arcs.

▶ Illustration on face triangulation with the orbit type (0, 1) and the dart a0.

Creation of the hook (orbit $\langle 0, 1 \rangle$).

Color legend: 0, 1, 2, *k*.

Folding of the arcs.

Color legend: 0, 1, 2, *k*.

Folding of a node.

Color legend: 0, 1, 2, *k*.

The algorithm terminates.

Color legend: 0, 1, 2, κ .

Color legend: 0, 1, 2, *k*.

Splitting the joint representation.

Results

► Correctness: The algorithm returns a topological folding of the rule if it exists and halts otherwise.

▶ What about cases where we cannot fold the rule? Example with the orbit (0, 1, 2).

Results

► Correctness: The algorithm returns a topological folding of the rule if it exists and halts otherwise.

▶ What about cases where we cannot fold the rule? Example with the orbit (0, 1, 2).

Results

► Correctness: The algorithm returns a topological folding of the rule if it exists and halts otherwise.

▶ What about cases where we cannot fold the rule? Example with the orbit (0, 1, 2).

Objective

The rule is missing its embedding expressions.

Hypothesis: The vertex positions of the target object C are obtained as affine combinations of vertex positions in the initial object O.

Method (inference of positions)

Hypothesis: The vertex positions of the target object C are obtained as affine combinations of vertex positions in the initial object O.

For each vertex in C, we want a position p expressed as:

$$p = \sum_{i=0}^{k} w_i p_i + t$$

where:

• *p* : target position (known)

Hypothesis: The vertex positions of the target object C are obtained as affine combinations of vertex positions in the initial object O.

For each vertex in C, we want a position p expressed as:

$$p = \sum_{i=0}^{k} w_i p_i + t$$

where:

p: target position (known) *p_i*: position of the initial vertex *i* (known)

Hypothesis: The vertex positions of the target object C are obtained as affine combinations of vertex positions in the initial object O.

For each vertex in C, we want a position p expressed as:

$$p = \sum_{i=0}^{k} w_i p_i + t$$

where:

p: target position (known) *p_i*: position of the initial vertex *i* (known) *w_i*: weight (unknown)

Hypothesis: The vertex positions of the target object C are obtained as affine combinations of vertex positions in the initial object O.

For each vertex in C, we want a position p expressed as:

$$p = \sum_{i=0}^{k} w_i p_i + t$$

where:

p: target position (known) *p_i*: position of the initial vertex *i* (known) *w_i*: weight (unknown) *t*: translation (unknown)

Need for abstraction on schemes

We want $(w_i)_{0 \le i \le k}$ such that: $p = \sum_{i=0}^{k} w_i p_i + t$

Need for abstraction on schemes

We want $(w_i)_{0 \le i \le k}$ such that: $p = \sum_{i=0}^{k} w_i p_i + t$

Issue: darts in the Gmap will share the same expression.

► Because rule schemes abstract topological cells.

Need for abstraction on schemes

We want $(w_i)_{0 \le i \le k}$ such that: $p = \sum_{i=0}^{k} w_i p_i + t$

Issue: darts in the Gmap will share the same expression.

► Because rule schemes abstract topological cells.

Solution: Exploit the topology.

► Use points of interest that share the same expression.

Points of interest

Points of interest

Points of interest

with

• p_v : vertex

 $p_v = middle(position_{(1,2,3)}(d))$

Points of interest

with

- p_v : vertex
- *p_e* : edge midpoint

 $p_e = middle(position_{(0,2,3)}(d))$

Points of interest

with

- p_v : vertex
- *p_e* : edge midpoint
- p_f : face barycenter

 $p_f = middle(position_{(0,1,3)}(d))$
Points of interest

with

- p_v : vertex
- *p_e* : edge midpoint
- p_f : face barycenter
- *p_s* : volume barycenter

 $p_s = middle(position_{\langle 0,1,2 \rangle}(d))$

Points of interest

with

- p_v : vertex
- *p_e* : edge midpoint
- p_f : face barycenter
- *p_s* : volume barycenter
- *p_{cc}* : CC barycenter

 $p_{cc} = middle(position_{(0,1,2,3)}(d))$

Points of interest

with

- p_v : vertex
- *p_e* : edge midpoint
- p_f : face barycenter
- *p_s* : volume barycenter
- *p_{cc}* : CC barycenter

Thanks to the points of interest, the system is rewritten as:

$$p = w_v p_v + w_e p_e + w_f p_f + w_s p_s + w_{cc} p_{cc} + t$$

Illustration

The position expression of n^2 only depends on n^0 .

 $n2.position = \underbrace{w_v n0.p_v}_{vertex} + \underbrace{w_e n0.p_e}_{edge} + \underbrace{w_f n0.p_f}_{face} + \underbrace{w_s n0.p_s}_{volume} + \underbrace{w_{cc} n0.p_{cc}}_{cc} + t$

The position expression of n^2 only depends on n^0 .

• One equation per dart (8 darts).

The position expression of n^2 only depends on n^0 .

- One equation per dart (8 darts).
- Split per coordinate (on x, y, z).

The position expression of n^2 only depends on n^0 .

- One equation per dart (8 darts).
- Split per coordinate (on x, y, z).
- 24 equations and 8 variables.

The position expression of n^2 only depends on n^0 .

- One equation per dart (8 darts).
- Split per coordinate (on x, y, z).
- 24 equations and 8 variables.

▶ Solved as a CSP. Solvers used: OR-Tools (Google), Z3 (Microsoft)

► Global equation:

 $n2.position = w_v n0.p_v + w_e n0.p_e + w_f n0.p_f + w_s n0.p_s + w_{cc} n0.p_{cc} + t$

Solving the barycentric triangulation

► Global equation:

 $n2.position = w_v n0.p_v + w_e n0.p_e + w_f n0.p_f + w_s n0.p_s + w_{cc} n0.p_{cc} + t$

Generated system (only on x and y)

Solving the barycentric triangulation

► Global equation:

 $n2.position = w_v n0.p_v + w_e n0.p_e + w_f n0.p_f + w_s n0.p_s + w_{cc} n0.p_{cc} + t$

▶ Generated system (only on *x* and *y*)

 $\begin{cases} (0.5; 0.5) = w_{v} * (0; 0) + w_{e} * (0.5; 0) + w_{f} * (0.5; 0.5) + w_{s} * (0.5; 0.5) + w_{cc} * (0.5; 0.5) + (tx; ty) \\ (0.5; 0.5) = w_{v} * (1; 0) + w_{e} * (0.5; 0) + w_{f} * (0.5; 0.5) + w_{s} * (0.5; 0.5) + w_{cc} * (0.5; 0.5) + (tx; ty) \\ (0.5; 0.5) = w_{v} * (1; 0) + w_{e} * (1; 0.5) + w_{f} * (0.5; 0.5) + w_{s} * (0.5; 0.5) + w_{cc} * (0.5; 0.5) + (tx; ty) \\ (0.5; 0.5) = w_{v} * (1; 1) + w_{e} * (1; 0.5) + w_{f} * (0.5; 0.5) + w_{s} * (0.5; 0.5) + w_{cc} * (0.5; 0.5) + (tx; ty) \\ \vdots \qquad \vdots$

- ► Solution found:
 - $w_v = 0.0$
 - $w_e = 0.0$
 - $w_f = 1.0$

w_s = 0.0
w_{cc} = 0.0

• t = (0.0, 0.0)

JerboaStudio and applications

▶ Implementation of the inference mechanism in Jerboa.

JerboaStudio: inferring the quad subdivision

Folding the quad subdivision

JerboaStudio - Viewer			- 🗆 ×
Ververa Editor			
File Edition Window Infen	ince		
Dart00rbit012*			
User name Romain	O Dart/Orbit012*		
Modeler's Name:		Undext	
JerboaModelerStudio Modeler's parkener	File Views		
fr.up.xlm.ip.jerboa.studio	🖼 - / 🗃 🖬 🛲 State of Computing Computational 🏊 🕅 📝 Dame (1971)	Cold alow METRIA	
Dimension: 3 🕏		-]	· •
Adv. param. Check all		•	
Embeddings(3): 🖓 🚯			
positor: <a1, a2,="" a3=""> -> fr.u</a1,>			~
Color: <a0, a1=""> -> fr.up.xim.i</a0,>	[4.1.2] () 1	(~1.2)) 1	
Corient: <> -> java.lang.Boolea			
rormal: <a0, a1=""> -> fr.up.sim</a0,>		()) - · · ·	
✓ debug: <a1, a2,="" a3=""> -> java.</a1,>		(position) > 3	
QuadSubdiv		(2	
Dart0Orbit*			
Dart0Orbit0*			
Dart0Orbit012*		position) > 3	
Dart0Orbit0123			
Dart0Orbit013*		9	
Dart0Orbit023*	bareasian (c)#position)		
Dart0Orbit03*	1 Point3 res = new Point3(0.0,0.0,0.0);		
Dart0Orbit12*	<pre>2 Point3 p2 = Point3::middle(<0, 1>_position(n0));</pre>		
Dart0Orbit123*	³ p2.scaleVect(1.0);		
Dart0Orbit3*	4 res.addVect(p2);		
color	⁵ return res;		
duplication	L 5 : C 11	Check	2 Q Q Preview translation
extrusion		Apply Refresh Delete	
< debiodie >	Details Tope Paran. Ebd. Param. Errors # n34position # n14position #		
niter: X	Informationer		
	En la calegaria da		

- 768 possible schemes
- 48 schemes tried (marking).
- 14 schemes built (removal of isomorphic rules).

R. Pascual

Example inspired from geology

Inference time: \sim 3 ms

Example inspired from geology

Before

Example inspired from geology

After

▶ We infer interpolations both for the positions and the colors.

Operation

Inference time: \sim 26 ms for the topology, \sim 549 ms for the embedding expressions

Before

After

Doo-Sabin subdivision¹

▶ Rule scheme used and inferred:

¹Doo et al. 1978.

R. Pascual

Subdivision schemes

Doo-Sabin subdivision¹

▶ Rule scheme used and inferred:

Doo-Sabin subdivision¹

▶ Rule scheme used and inferred:

¹Doo et al. 1978.

Menger $(2, 2, 2)^1$

¹Richaume et al. 2019.

Menger $(2, 2, 2)^1$

¹Richaume et al. 2019.

Subdivision schemes

Menger $(2, 2, 2)^1$

¹Richaume et al. 2019.

R. Pascual

Edge cases

▶ Von Koch's snowflake generated with L-systems

► Inferred:

Edge cases

▶ Von Koch's snowflake generated with L-systems

Inferred:

JerboaStudio's architecture

JerboaStudio's architecture

Conclusion

▶ Related works, main contributions, and future works.

Other lines of research on inference

- Inferring the generation of an object:
 - Inverse procedural modeling: retrieving parameters.¹
 - L-systems: retrieving formal rules.² Illustration from (Guo et al. 2020).
 - Constructive solid geometry: retrieving sequences of operations.³

¹Wu et al. 2014; Emilien et al. 2015. ²Santos et al. 2009; Št'ava et al. 2010. ³Sharma et al. 2018; Kana et al. 2020; Xu et al. 2021.

R. Pascual

Other lines of research on inference

- Inferring the generation of an object
- ▶ Pure geometry
 - Retrieve non-linear weights of a Loop-based subdivision scheme for mesh refinement. Illustration from (Liu et al. 2020).

Other lines of research on inference

- Inferring the generation of an object
- Pure geometry
- Graph transformations
 - Domain-based inference mechanism retrieving or exploiting graph transformations.¹ Illustration from (Dinella et al. 2020).

¹Alshanqiti et al. 2016; López-Fernández et al. 2019.

Ph.D. defense
Main contributions

Inference of modeling operations:

- Topological folding algorithm
- Values of interest and CSP

Graph transformations for geometric modeling:

- Graph products
- Rule completion
- ► Unified framework to study generalized and oriented maps.

Future works

Automatic mapping

• Cumbersome step in the inference workflow.

Future works

- Automatic mapping
- ▶ Other hypotheses for the geometric inference
 - Most subdivision schemes rely on other computations: the Catmull-Clark subdivision ¹

¹Catmull et al. 1978.

R. Pascual

Ph.D. defense

Future works

- Automatic mapping
- Other hypotheses for the geometric inference
- ► Inference in graph transformations
 - Formalize the inference mechanism with categorical constructions.

Related works

Thank you for listening

References I

- Alshanqiti, Abdullah, Reiko Heckel, and Timo Kehrer (Aug. 25, 2016).
 "Visual contract extractor: a tool for reverse engineering visual contracts using dynamic analysis". In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. ASE 2016. New York, NY, USA: Association for Computing Machinery, pp. 816–821. ISBN: 978-1-4503-3845-5. DOI: 10.1145/2970276.2970287.
- Bauderon, Michel (Jan. 1, 1995). "Parallel Rewriting of Graphs through the Pullback Approach". In: Electronic Notes in Theoretical Computer Science. SEGRAGRA 1995 2, pp. 19–26. ISSN: 1571-0661. DOI: 10.1016/S1571-0661(05)80176-8.

References II

Belhaouari, Hakim, Agnès Arnould, Pascale Le Gall, and Thomas Bellet (2014). "Jerboa: A Graph Transformation Library for Topology-Based Geometric Modeling". In: Graph Transformation. ICGT 2014. Ed. by Holger Giese and Barbara König. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 269–284. ISBN: 978-3-319-09108-2. DOI: 10.1007/978-3-319-09108-2_18.
 Bellet, Thomas (July 10, 2012). "Transformations de graphes pour la modélisation géométrique à base topologique". These de doctorat. Poitiers. URL: https://www.theses.fr/2012P0IT2261.

References III

- Bellet, Thomas, Agnès Arnould, Hakim Belhaouari, and Pascale Le Gall (2017). "Geometric Modeling: Consistency Preservation Using Two-Layered Variable Substitutions". In: Graph Transformation (ICGT 2017). Ed. by Juan de Lara and Detlef Plump. Vol. 10373. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 36–53. ISBN: 978-3-319-61470-0. DOI: 10.1007/978-3-319-61470-0_3.
- Catmull, E. and J. Clark (Nov. 1, 1978). "Recursively generated B-spline surfaces on arbitrary topological meshes". In: Computer-Aided Design 10.6, pp. 350–355. ISSN: 0010-4485. DOI: 10.1016/0010-4485(78)90110-0.
 - Damiand, Guillaume and Pascal Lienhardt (Sept. 19, 2014). Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing. CRC Press. 407 pp. ISBN: 978-1-4822-0652-4.

References IV

- Dinella, Elizabeth, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang (2020). "Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs". In: International Conference on Learning Representations (ICLR), p. 17.
- Doo, Daniel and Malcolm A. Sabin (Nov. 1, 1978). "Behaviour of recursive division surfaces near extraordinary points". In: Computer-Aided Design 10.6, pp. 356–360. ISSN: 0010-4485. DOI: 10.1016/0010-4485(78)90111-2.
- Ehrig, Hartmut, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer (2006). Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Berlin Heidelberg: Springer-Verlag. ISBN: 978-3-540-31187-4. DOI: 10.1007/3-540-31188-2.

References V

- Emilien, Arnaud, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich Benes (July 27, 2015). "WorldBrush: interactive example-based synthesis of procedural virtual worlds". In: ACM Transactions on Graphics 34.4, 106:1–106:11. ISSN: 0730-0301. DOI: 10.1145/2766975.
- Guo, Jianwei, Haiyong Jiang, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, Dani Lischinski, and Hui Huang (June 15, 2020). "Inverse Procedural Modeling of Branching Structures by Inferring L-Systems". In: ACM Transactions on Graphics 39.5, 155:1–155:13. ISSN: 0730-0301. DOI: 10.1145/3394105.
- Heckel, Reiko and Gabriele Taentzer (2020). Graph Transformation for Software Engineers: With Applications to Model-Based Development and Domain-Specific Language Engineering. Cham: Springer International Publishing. ISBN: 978-3-030-43915-6. DOI: 10.1007/978-3-030-43916-3.

References VI

- Kania, Kacper, Maciej Zięba, and Tomasz Kajdanowicz (Oct. 20, 2020). "UCSG-Net Unsupervised Discovering of Constructive Solid Geometry Tree". In: Advances in Neural Information Processing Systems 33 (NeurIPS 2020). DOI: 10.48550/arXiv.2006.09102.
 Liu, Hsueh-Ti Derek, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson (July 8, 2020). "Neural subdivision". In: ACM Transactions on Graphics 39.4, 124:124:1–124:124:16. ISSN: 0730-0301. DOI: 10.1145/3386569.3392418.
 López-Fernández, Jesús J., Antonio Garmendia, Esther Guerra, and
 - Juan de Lara (2019). "An example is worth a thousand words: Creating graphical modelling environments by example". In: Software & Systems Modeling 18.2. Publisher: Springer, pp. 961–993. DOI: 10.1007/s10270-017-0632-7.

References VII

- Poudret, Mathieu (Oct. 15, 2009). "Transformations de graphes pour les opérations topologiques en modélisation géométrique : application à l'étude de la dynamique de l'appareil de Golgi". PhD thesis. Evry-Val d'Essonne.
- Poudret, Mathieu, Agnès Arnould, Jean-Paul Comet, and Pascale Le Gall (2008). "Graph Transformation for Topology Modelling". In: Graph Transformations. ICGT 2008. Ed. by Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 147–161. DOI: 10.1007/978-3-540-87405-8_11.

References VIII

- Richaume, Lydie, Eric Andres, Gaëlle Largeteau-Skapin, and Rita Zrour (2019). "Unfolding Level 1 Menger Polycubes of Arbitrary Size With Help of Outer Faces". In: Discrete Geometry for Computer Imagery. Ed. by Michel Couprie, Jean Cousty, Yukiko Kenmochi, and Nabil Mustafa. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 457–468. ISBN: 978-3-030-14085-4. DOI: 10.1007/978-3-030-14085-4_36.
- Rozenberg, Grzegorz, ed. (Feb. 1, 1997). Handbook of Graph Grammars and Computing by Graph Transformation: Volume I.
 Foundations. Vol. Foundations. 1 vols. USA: World Scientific Publishing Co., Inc. 545 pp. ISBN: 978-981-02-2884-2.

References IX

- Santos, Edmar and Regina Celia Coelho (Nov. 2009). "Obtaining L-Systems Rules from Strings". In: 2009 3rd Southern Conference on Computational Modeling. 2009 3rd Southern Conference on Computational Modeling, pp. 143–149. DOI: 10.1109/MCSUL.2009.21.
- Sharma, Gopal, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji (Mar. 31, 2018). "CSGNet: Neural Shape Parser for Constructive Solid Geometry". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5515–5523. DOI: 10.48550/arXiv.1712.08290. arXiv: 1712.08290.
- Št'ava, Ondrej, Bedrich Beneš, Radomír Měch, Daniel Aliaga, and Peter Krištof (2010). "Inverse Procedural Modeling by Automatic Generation of L-systems". In: Computer Graphics Forum 29.2, pp. 665–674. ISSN: 1467-8659. DOI: 10.1111/j.1467-8659.2009.01636.x.

References X

- Wu, Fuzhang, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, and Peter Wonka (July 27, 2014). "Inverse procedural modeling of facade layouts". In: ACM Transactions on Graphics 33.4, 121:1–121:10. ISSN: 0730-0301. DOI: 10.1145/2601097.2601162.
- Xu, Xianghao, Wenzhe Peng, Chin-Yi Cheng, Karl D. D. Willis, and Daniel Ritchie (June 2021). "Inferring CAD Modeling Sequences Using Zone Graphs". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6062–6070. DOI: 10.48550/arXiv.2104.03900. arXiv: 2104.03900.