
Yes, No, Maybe, I Don’t Know
A Journey into Automated Reasoning

Romain Pascual

MICS, CentraleSupélec, Université Paris-Saclay

April, 17, 2025

1 / 109

Yes, No, Maybe, I Don’t Know

2 / 109

Yes, No, Maybe, I Don’t Know

2 / 109

Introduction

3 / 109

Syllogisms: First Steps in Reasoning

Every man is mortal (H). Socrates is a man (H). Therefore,
Socrates is mortal (C).

Everything that is rare is expensive (H). A cheap horse is rare (H).
Therefore, a cheap horse is expensive (C).

4 / 109

5 / 109

5 / 109

5 / 109

Formal Methods?

A solution to improve the
overall quality of software and
systems

6 / 109

Testing

- ”How do you know if a system is working?”

- ”Let’s test it!”

- ”How many inputs exists? What about the inputs you did not
test?”

Testing shows the presence of errors, in general not their absence!

Not tests

7 / 109

Testing

- ”How do you know if a system is working?”

- ”Let’s test it!”

- ”How many inputs exists? What about the inputs you did not
test?”

Testing shows the presence of errors, in general not their absence!

Not tests

7 / 109

Testing

- ”How do you know if a system is working?”

- ”Let’s test it!”

- ”How many inputs exists? What about the inputs you did not
test?”

Testing shows the presence of errors, in general not their absence!

Not tests

7 / 109

Testing

- ”How do you know if a system is working?”

- ”Let’s test it!”

- ”How many inputs exists? What about the inputs you did not
test?”

Testing shows the presence of errors, in general not their absence!

Not tests

7 / 109

Specifying a system helps us understand
it.

It’s a good idea to understand a system
before building it, so it’s a good idea to
write a specification of a system before
implementing it.
– Lamport 2002

8 / 109

Specifying a system helps us understand
it.

It’s a good idea to understand a system
before building it, so it’s a good idea to
write a specification of a system before
implementing it.
– Lamport 2002

8 / 109

What are formal methods?

Mathematically founded techniques and tools for the specification,
design, realisation or verification of systems.

Two aspects:

▶ System specification

▶ System implementation

Explicit formal statements for both and use tools to mechanically
prove that formal implementation satisfies formal specification

9 / 109

What are formal methods?

Mathematically founded techniques and tools for the specification,
design, realisation or verification of systems.

Two aspects:

▶ System specification

▶ System implementation

Explicit formal statements for both and use tools to mechanically
prove that formal implementation satisfies formal specification

9 / 109

Properties that can be checked

▶ Simple properties
▶ Safety properties - Something bad will never happen

eg: mutual exclusion, no buffer overflow
▶ Liveness properties - Something good will happen eventually

▶ General properties of concurrent/distributed systems
▶ deadlock-free, no starvation, fairness

▶ Security properties
▶ non-interference, information flow
▶ access control
▶ availability

▶ Non-functional properties
▶ Runtime, memory, usability

10 / 109

Automating Reasoning

Why Automate?

Instead of proving results manually, we can leverage algorithmic
techniques to automate the process.

What Are Decision Procedures?

▶ Algorithms designed to automatically reason about logical
formulae.

▶ Given a formula, they:
▶ Prove its validity, or
▶ Find a counterexample.

11 / 109

Automating Reasoning

Why Automate?

Instead of proving results manually, we can leverage algorithmic
techniques to automate the process.

What Are Decision Procedures?

▶ Algorithms designed to automatically reason about logical
formulae.

▶ Given a formula, they:
▶ Prove its validity, or
▶ Find a counterexample.

11 / 109

Propositional Logic and SAT Solvers

Starting Simple

We begin with the simplest logic: propositional logic.

SAT Solvers
▶ Decision procedures for propositional logic are called SAT

solvers.
▶ They exploit the relationship between:

▶ Validity: Is the formula always true?
▶ Satisfiability: Can the formula be true under some

interpretation?

▶ SAT solvers directly solve the satisfiability problem.

12 / 109

Propositional Logic and SAT Solvers

Starting Simple

We begin with the simplest logic: propositional logic.

SAT Solvers
▶ Decision procedures for propositional logic are called SAT

solvers.
▶ They exploit the relationship between:

▶ Validity: Is the formula always true?
▶ Satisfiability: Can the formula be true under some

interpretation?

▶ SAT solvers directly solve the satisfiability problem.

12 / 109

Applications of SAT Solving

Hardware verification and design

▶ Major hardware companies (Intel, . . .) use SAT to verify chip
designs

▶ Computer Aided Design of electronic circuits

13 / 109

Applications of SAT Solving

Software verification

▶ SAT-based SMT solvers are used to verify Microsoft software
products
(also great interest at Amazon – AWS software in particular)

▶ Embedded software in cars, airplanes, refrigerators, . . .

▶ Unix utilities

13 / 109

Applications of SAT Solving

Automated planning and scheduling in Artificial Intelligence

▶ Job shop scheduling, train scheduling, multi-agent path
finding

Number theoretic problems (Pythagorean triples, grid coloring)

Solving other difficult problems (coloring, clique, . . .)

13 / 109

SAT Solving in the News

14 / 109

Disclaimer

I reused contents from several lectures:

▶ “Logic” by Pascale Le Gall Pascale Le Gall and Marc
Aiguier at CentraleSupélec.

▶ “Practical SAT Solving” by Markus Iser, Dominik
Schreiber, and Tomas Balyo at KIT.

▶ “Bug Catching: Automated Program Verification” by Ruben
Martins at Carnegie Mellon University.

15 / 109

Outline

Logic

Recap on Propositional Logic

Complexity

SAT Solvers

Conjunctive Normal Form

Conversion to CNF

Hands-On Exercise

16 / 109

Logic

17 / 109

Logic

18 / 109

Philo-
sophy

Logic

18 / 109

Philo-
sophy

Mathe-
matics

Logic

18 / 109

Computer
science

Philo-
sophy

Mathe-
matics

Logic

18 / 109

Structure of Logics

A logic is a formal system for reasoning about truth content.

▶ Syntax
Symbols and constructions
to assemble the symbols
into sentences

▶ Semantics
Meaning of the symbols
and connectives to assert
the meaning of a sentence

▶ Calculus
A set of inference rules to
reason about the “truth
content” of a sentence by
syntactic modifications

c Mattias Ulbrich

19 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

1. What is a propositional formula?

2. What is a satisfiable formula?

20 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

1. What is a propositional formula?

2. What is a satisfiable formula?

20 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

1. What is a propositional formula?

2. What is a satisfiable formula?

20 / 109

Recap on Propositional Logic

21 / 109

Is this Argument Convincing?

▶ If the autonomous car caused the accident, then the accident
occurred due to a sensor malfunction, or the driver overrode
the autonomous driving.

▶ If the accident occurred due to a sensor malfunction, then, if
the driver overrode the autonomous driving, less significant
damage would have resulted.

▶ However, the damage was significant.

▶ Therefore, the autonomous car did not cause the accident.

Syntax

How to represent the sentences in a formal way?

22 / 109

Statements

▶ (Sentence 1) If the autonomous car caused the accident, then
the accident occurred due to a sensor malfunction, or the
driver overrode the autonomous driving.

▶ (Sentence 2) If the accident occurred due to a sensor
malfunction, then, if the driver overrode the autonomous
driving, less significant damage would have resulted.

▶ (Sentence 3) However, the damage was significant.

▶ (Sentence 4) Therefore, the autonomous car did not cause the
accident.

More elementary statements:

(a) The autonomous car caused the accident

(s) The accident occurred due to a sensor malfunction

(o) The driver overrode the autonomous driving

(d) The damage was significant

23 / 109

Statements

▶ (Sentence 1) If a, then the accident occurred due to a sensor
malfunction, or the driver overrode the autonomous driving.

▶ (Sentence 2) If the accident occurred due to a sensor
malfunction, then, if the driver overrode the autonomous
driving, less significant damage would have resulted.

▶ (Sentence 3) However, the damage was significant.

▶ (Sentence 4) Therefore, not a.

More elementary statements:

(a) The autonomous car caused the accident

(s) The accident occurred due to a sensor malfunction

(o) The driver overrode the autonomous driving

(d) The damage was significant

23 / 109

Statements

▶ (Sentence 1) If a, then s, or the driver overrode the
autonomous driving.

▶ (Sentence 2) If s, then, if the driver overrode the autonomous
driving, less significant damage would have resulted.

▶ (Sentence 3) However, the damage was significant.

▶ (Sentence 4) Therefore, not a.

More elementary statements:

(a) The autonomous car caused the accident

(s) The accident occurred due to a sensor malfunction

(o) The driver overrode the autonomous driving

(d) The damage was significant

23 / 109

Statements

▶ (Sentence 1) If a, then s, or o.

▶ (Sentence 2) If s, then, if o, less significant damage would
have resulted.

▶ (Sentence 3) However, the damage was significant.

▶ (Sentence 4) Therefore, not a.

More elementary statements:

(a) The autonomous car caused the accident

(s) The accident occurred due to a sensor malfunction

(o) The driver overrode the autonomous driving

(d) The damage was significant

23 / 109

Statements

▶ (Sentence 1) If a, then s, or o.

▶ (Sentence 2) If s, then, if o, not d.

▶ (Sentence 3) However, d.

▶ (Sentence 4) Therefore, not a.

More elementary statements:

(a) The autonomous car caused the accident

(s) The accident occurred due to a sensor malfunction

(o) The driver overrode the autonomous driving

(d) The damage was significant

23 / 109

Propositional Variables

(a) The autonomous car caused the accident

(s) The accident occurred due to a sensor malfunction

(o) The driver overrode the autonomous driving

(d) The damage was significant

Propositional signature P: set of atomic statements called
propositional variables

Example: P = {a, s, o, d}

We speak of variables because they take two possible truth values:
True (T , 1) or False (F , 0)

24 / 109

Propositional Variables

(a) The autonomous car caused the accident

(s) The accident occurred due to a sensor malfunction

(o) The driver overrode the autonomous driving

(d) The damage was significant

Propositional signature P: set of atomic statements called
propositional variables

Example: P = {a, s, o, d}

We speak of variables because they take two possible truth values:
True (T , 1) or False (F , 0)

24 / 109

Formulae

We connect the variables to obtain formulae.

A formula over a signature P is a sequence of symbols from
P ∪ {⇒,¬,∧,∨} such that

1. Propositional variables are formulae

2. If φ and ψ are formulae, so are φ ∧ ψ, φ ∨ ψ, φ⇒ ψ and ¬φ

We write Fml(P) for the set of formulae over P

Example:

▶ (Sentence 1) If a, then s, or o a⇒ (s ∨ o)

▶ (Sentence 2) If s, then, if o, not d s⇒ (o⇒ ¬d)
▶ (Sentence 3) However, d d

▶ (Sentence 4) Therefore, not a ¬a

25 / 109

Propositional Logic Puzzle – Exercise

A group of friends is trying to decide who ate the last slice of
pizza. Here’s what they claim:

▶ Alice: ”If Bob didn’t eat it, then I did.”

▶ Bob: ”If I ate it, then Charlie didn’t.”

▶ Charlie: ”I didn’t eat it, but either Alice or Bob did.”

Write their claim in propositional logic with the following variables:

(A) Alice ate the pizza.

(B) Bob ate the pizza.

(C) Charlie ate the pizza.

26 / 109

Propositional Logic Puzzle – Solution

▶ Alice: ”If Bob didn’t eat it, then I did.”

¬B⇒ A

▶ Bob: ”If I ate it, then Charlie didn’t.”

B⇒ ¬C

▶ Charlie: ”I didn’t eat it, but either Alice or Bob did.”

¬C ∧ (A ∨ B)

▶ Someone took the last slice.
A ∨ B ∨ C

▶ Only one of them took it.
¬(A ∧ B) ∧ ¬(A ∧ C) ∧ ¬(B ∧ C)

27 / 109

Propositional Logic Puzzle – Solution

▶ Alice: ”If Bob didn’t eat it, then I did.”
¬B⇒ A

▶ Bob: ”If I ate it, then Charlie didn’t.”
B⇒ ¬C

▶ Charlie: ”I didn’t eat it, but either Alice or Bob did.”
¬C ∧ (A ∨ B)

▶ Someone took the last slice.
A ∨ B ∨ C

▶ Only one of them took it.
¬(A ∧ B) ∧ ¬(A ∧ C) ∧ ¬(B ∧ C)

27 / 109

Propositional Logic Puzzle – Solution

▶ Alice: ”If Bob didn’t eat it, then I did.”
¬B⇒ A

▶ Bob: ”If I ate it, then Charlie didn’t.”
B⇒ ¬C

▶ Charlie: ”I didn’t eat it, but either Alice or Bob did.”
¬C ∧ (A ∨ B)

▶ Someone took the last slice.
A ∨ B ∨ C

▶ Only one of them took it.
¬(A ∧ B) ∧ ¬(A ∧ C) ∧ ¬(B ∧ C)

27 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

1. What is a propositional formula? ✓

2. What is a satisfiable formula?

28 / 109

Is this Argument Convincing?

▶ If the autonomous car caused the accident, then the accident
occurred due to a sensor malfunction, or the driver overrode
the autonomous driving.

▶ If the accident occurred due to a sensor malfunction, then, if
the driver overrode the autonomous driving, less significant
damage would have resulted.

▶ However, the damage was significant.

▶ Therefore, the autonomous car did not cause the accident.

Semantics
How to study the truth content of the argument?

29 / 109

Truth Values

An interpretation over a signature P is a mapping
I : P → B = {T ,F}

For an interpretation I , a valuation over P is defined by
I ∗ : Fml(P)→ B extending I with the following truth tables

I ∗(φ) I ∗(ψ) I ∗(φ ∧ ψ) I ∗(φ ∨ ψ) I ∗(φ⇒ ψ) I ∗(¬φ)
T T T T T F

T F F T F F

F T F T T T

F F F F T T

30 / 109

Truth Values

An interpretation over a signature P is a mapping
I : P → B = {T ,F}

For an interpretation I , a valuation over P is defined by
I ∗ : Fml(P)→ B extending I with the following truth tables

I ∗(φ) I ∗(ψ) I ∗(φ ∧ ψ) I ∗(φ ∨ ψ) I ∗(φ⇒ ψ) I ∗(¬φ)
T T T T T F

T F F T F F

F T F T T T

F F F F T T

30 / 109

Truth Table: Exercise

Evaluate the truth table for the expression: ¬C ∧ (A ∨ B)

Help:

φ ψ φ ∧ ψ φ ∨ ψ φ⇒ ψ ¬φ
T T T T T F

T F F T F F

F T F T T T

F F F F T T

31 / 109

Truth Table: Solution

Evaluate the truth table for the expression: ¬C ∧ (A ∨ B)

A B C A ∨ B ¬C ¬C ∧ (A ∨ B)

T T T T F F

T T F T T T

T F T T F F

T F F T T T

F T T T F F

F T F T T T

F F T F F F

F F F F T F

32 / 109

Truth Table: Solution

Evaluate the truth table for the expression: ¬C ∧ (A ∨ B)

A B C A ∨ B ¬C ¬C ∧ (A ∨ B)

T T T

T F F

T T F T T T

T F T T F F

T F F T T T

F T T T F F

F T F T T T

F F T F F F

F F F F T F

32 / 109

Truth Table: Solution

Evaluate the truth table for the expression: ¬C ∧ (A ∨ B)

A B C A ∨ B ¬C ¬C ∧ (A ∨ B)

T T T T

F F

T T F T T T

T F T T F F

T F F T T T

F T T T F F

F T F T T T

F F T F F F

F F F F T F

32 / 109

Truth Table: Solution

Evaluate the truth table for the expression: ¬C ∧ (A ∨ B)

A B C A ∨ B ¬C ¬C ∧ (A ∨ B)

T T T T F

F

T T F T T T

T F T T F F

T F F T T T

F T T T F F

F T F T T T

F F T F F F

F F F F T F

32 / 109

Truth Table: Solution

Evaluate the truth table for the expression: ¬C ∧ (A ∨ B)

A B C A ∨ B ¬C ¬C ∧ (A ∨ B)

T T T T F F

T T F T T T

T F T T F F

T F F T T T

F T T T F F

F T F T T T

F F T F F F

F F F F T F

32 / 109

Truth Table: Solution

Evaluate the truth table for the expression: ¬C ∧ (A ∨ B)

A B C A ∨ B ¬C ¬C ∧ (A ∨ B)

T T T T F F

T T F T T T

T F T T F F

T F F T T T

F T T T F F

F T F T T T

F F T F F F

F F F F T F

32 / 109

Logical Equivalences

Two propositional formulae φ and ψ are logically equivalent,
written φ ≡ ψ, if they have the same truth tables.

Examples:

De Morgan’s Laws:
▶ ¬(P ∧ Q) ≡ (¬P ∨ ¬Q)
▶ ¬(P ∨ Q) ≡ (¬P ∧ ¬Q)

Double Negation: ¬(¬P) ≡ P

Implication: P ⇒ Q ≡ ¬P ∨ Q

Distributivity: (P ∨ (Q ∧ R)) ≡ (P ∨ Q) ∧ (P ∨ R)

33 / 109

Exercise: Logical Equivalence

Verify that ¬(P ∧ Q) ≡ ¬P ∨ ¬Q using a truth table.

P Q P ∧ Q ¬(P ∧ Q) ¬P ¬Q ¬P ∨ ¬Q
T T

T F F

T F

F F T

F T

F T F

F F

F T T

The columns for ¬(P ∧Q) and ¬P ∨ ¬Q are identical, proving the
equivalence.

34 / 109

Exercise: Logical Equivalence

Verify that ¬(P ∧ Q) ≡ ¬P ∨ ¬Q using a truth table.

P Q P ∧ Q ¬(P ∧ Q) ¬P ¬Q ¬P ∨ ¬Q
T T T

F F

T F F

F T

F T F

T F

F F F

T T

The columns for ¬(P ∧Q) and ¬P ∨ ¬Q are identical, proving the
equivalence.

34 / 109

Exercise: Logical Equivalence

Verify that ¬(P ∧ Q) ≡ ¬P ∨ ¬Q using a truth table.

P Q P ∧ Q ¬(P ∧ Q) ¬P ¬Q ¬P ∨ ¬Q
T T T F

F F

T F F T

F T

F T F T

T F

F F F T

T T

The columns for ¬(P ∧Q) and ¬P ∨ ¬Q are identical, proving the
equivalence.

34 / 109

Exercise: Logical Equivalence

Verify that ¬(P ∧ Q) ≡ ¬P ∨ ¬Q using a truth table.

P Q P ∧ Q ¬(P ∧ Q) ¬P ¬Q ¬P ∨ ¬Q
T T T F F

F

T F F T F

T

F T F T T

F

F F F T T

T

The columns for ¬(P ∧Q) and ¬P ∨ ¬Q are identical, proving the
equivalence.

34 / 109

Exercise: Logical Equivalence

Verify that ¬(P ∧ Q) ≡ ¬P ∨ ¬Q using a truth table.

P Q P ∧ Q ¬(P ∧ Q) ¬P ¬Q ¬P ∨ ¬Q
T T T F F F

T F F T F T

F T F T T F

F F F T T T

The columns for ¬(P ∧Q) and ¬P ∨ ¬Q are identical, proving the
equivalence.

34 / 109

Exercise: Logical Equivalence

Verify that ¬(P ∧ Q) ≡ ¬P ∨ ¬Q using a truth table.

P Q P ∧ Q ¬(P ∧ Q) ¬P ¬Q ¬P ∨ ¬Q
T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

The columns for ¬(P ∧Q) and ¬P ∨ ¬Q are identical, proving the
equivalence.

34 / 109

Exercise: Logical Equivalence

Verify that ¬(P ∧ Q) ≡ ¬P ∨ ¬Q using a truth table.

P Q P ∧ Q ¬(P ∧ Q) ¬P ¬Q ¬P ∨ ¬Q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

The columns for ¬(P ∧Q) and ¬P ∨ ¬Q are identical, proving the
equivalence.

34 / 109

Redifining Connectives

Logical equivalences can also be used as definition.

Consider formulae defined using only ∨ (disjunction) and ¬
(negation). We can define the other connectives as ”syntactic
sugar”:

▶ ∧ (conjunction): P ∧ Q := ¬(¬P ∨ ¬Q)

▶ ⇒ (implication): P ⇒ Q := ¬P ∨ Q

Similarly, we can define

▶ ⊤ (the formula that is always true): ⊤ := P ∨ ¬P
▶ ⊥ (the formula that is always false): ⊥ := ¬⊤

35 / 109

Redifining Connectives

Logical equivalences can also be used as definition.

Consider formulae defined using only ∨ (disjunction) and ¬
(negation). We can define the other connectives as ”syntactic
sugar”:

▶ ∧ (conjunction): P ∧ Q := ¬(¬P ∨ ¬Q)

▶ ⇒ (implication): P ⇒ Q := ¬P ∨ Q

Similarly, we can define

▶ ⊤ (the formula that is always true): ⊤ := P ∨ ¬P
▶ ⊥ (the formula that is always false): ⊥ := ¬⊤

35 / 109

Models

Given a formula φ

▶ A model of φ is an interpretation I over P that make φ true:
I ∗(φ) = T

▶ The formula φ is satisfiable if it admits a model

▶ The formula φ is valid (or a tautology) if every interpretation
I over P is a model of φ

Notation: we write I |= φ if I is a model of φ.

36 / 109

Models

Given a formula φ

▶ A model of φ is an interpretation I over P that make φ true:
I ∗(φ) = T

▶ The formula φ is satisfiable if it admits a model

▶ The formula φ is valid (or a tautology) if every interpretation
I over P is a model of φ

Notation: we write I |= φ if I is a model of φ.

36 / 109

Models

Given a formula φ

▶ A model of φ is an interpretation I over P that make φ true:
I ∗(φ) = T

▶ The formula φ is satisfiable if it admits a model

▶ The formula φ is valid (or a tautology) if every interpretation
I over P is a model of φ

Notation: we write I |= φ if I is a model of φ.

36 / 109

Models

Given a formula φ

▶ A model of φ is an interpretation I over P that make φ true:
I ∗(φ) = T

▶ The formula φ is satisfiable if it admits a model

▶ The formula φ is valid (or a tautology) if every interpretation
I over P is a model of φ

Notation: we write I |= φ if I is a model of φ.

36 / 109

Inductive Definition of Models

Based on the truth tables, we can define a model inductively:

▶ I |= p, with p a propositional variable if and only if I (p) = T

▶ I |= ¬φ if and only if I ̸|= φ

▶ I |= φ ∧ ψ if and only if I |= φ and I |= ψ

▶ I |= φ ∨ ψ if and only if I |= φ or I |= ψ

When looking for a model of a formula, we can decompose the
formula into smaller parts and check each part separately!

37 / 109

Inductive Definition of Models

Based on the truth tables, we can define a model inductively:

▶ I |= p, with p a propositional variable if and only if I (p) = T

▶ I |= ¬φ if and only if I ̸|= φ

▶ I |= φ ∧ ψ if and only if I |= φ and I |= ψ

▶ I |= φ ∨ ψ if and only if I |= φ or I |= ψ

When looking for a model of a formula, we can decompose the
formula into smaller parts and check each part separately!

37 / 109

Inductive Definition of Models

Based on the truth tables, we can define a model inductively:

▶ I |= p, with p a propositional variable if and only if I (p) = T

▶ I |= ¬φ if and only if I ̸|= φ

▶ I |= φ ∧ ψ if and only if I |= φ and I |= ψ

▶ I |= φ ∨ ψ if and only if I |= φ or I |= ψ

When looking for a model of a formula, we can decompose the
formula into smaller parts and check each part separately!

37 / 109

Inductive Definition of Models

Based on the truth tables, we can define a model inductively:

▶ I |= p, with p a propositional variable if and only if I (p) = T

▶ I |= ¬φ if and only if I ̸|= φ

▶ I |= φ ∧ ψ if and only if I |= φ and I |= ψ

▶ I |= φ ∨ ψ if and only if I |= φ or I |= ψ

When looking for a model of a formula, we can decompose the
formula into smaller parts and check each part separately!

37 / 109

Inductive Definition of Models

Based on the truth tables, we can define a model inductively:

▶ I |= p, with p a propositional variable if and only if I (p) = T

▶ I |= ¬φ if and only if I ̸|= φ

▶ I |= φ ∧ ψ if and only if I |= φ and I |= ψ

▶ I |= φ ∨ ψ if and only if I |= φ or I |= ψ

When looking for a model of a formula, we can decompose the
formula into smaller parts and check each part separately!

37 / 109

Decidability

Theorem
The three notions – tautology, model, and satisfiability – are
decidable, i.e., there exists a decision algorithm that answers yes
or no for each of these notions.

It suffices to check the truth table of the formula.

38 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

1. What is a propositional formula? ✓

2. What is a satisfiable formula? ✓

39 / 109

Is this Argument Convincing?

▶ If the autonomous car caused the accident, then the accident
occurred due to a sensor malfunction, or the driver overrode
the autonomous driving.

▶ If the accident occurred due to a sensor malfunction, then, if
the driver overrode the autonomous driving, less significant
damage would have resulted.

▶ However, the damage was significant.

▶ Therefore, the autonomous car did not cause the accident.

φ := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

40 / 109

Is this Argument Convincing?

φ := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

Truth table for the formula:

a s o d (a⇒ (s ∨ o)) (s⇒ (o⇒ ¬d)) φ

T T T T T F F

T T T F T F F

T T F T T F F

T T F F T F F

T F T T F F F

T F T F F F F

T F F T F F F

T F F F F F F

F T T T T T T

Thus, the argumentation is plausible!

41 / 109

Is this Argument Convincing?

φ := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

Truth table for the formula:

a s o d (a⇒ (s ∨ o)) (s⇒ (o⇒ ¬d)) φ

T T T T

T F F

T T T F T F F

T T F T T F F

T T F F T F F

T F T T F F F

T F T F F F F

T F F T F F F

T F F F F F F

F T T T T T T

Thus, the argumentation is plausible!

41 / 109

Is this Argument Convincing?

φ := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

Truth table for the formula:

a s o d (a⇒ (s ∨ o)) (s⇒ (o⇒ ¬d)) φ

T T T T T

F F

T T T F T F F

T T F T T F F

T T F F T F F

T F T T F F F

T F T F F F F

T F F T F F F

T F F F F F F

F T T T T T T

Thus, the argumentation is plausible!

41 / 109

Is this Argument Convincing?

φ := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

Truth table for the formula:

a s o d (a⇒ (s ∨ o)) (s⇒ (o⇒ ¬d)) φ

T T T T T F

F

T T T F T F F

T T F T T F F

T T F F T F F

T F T T F F F

T F T F F F F

T F F T F F F

T F F F F F F

F T T T T T T

Thus, the argumentation is plausible!

41 / 109

Is this Argument Convincing?

φ := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

Truth table for the formula:

a s o d (a⇒ (s ∨ o)) (s⇒ (o⇒ ¬d)) φ

T T T T T F F

T T T F T F F

T T F T T F F

T T F F T F F

T F T T F F F

T F T F F F F

T F F T F F F

T F F F F F F

F T T T T T T

Thus, the argumentation is plausible!

41 / 109

Is this Argument Convincing?

φ := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

Truth table for the formula:

a s o d (a⇒ (s ∨ o)) (s⇒ (o⇒ ¬d)) φ

T T T T T F F

T T T F T F F

T T F T T F F

T T F F T F F

T F T T F F F

T F T F F F F

T F F T F F F

T F F F F F F

F T T T T T T

Thus, the argumentation is plausible!

41 / 109

Is this Argument Convincing?

φ := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

Truth table for the formula:

a s o d (a⇒ (s ∨ o)) (s⇒ (o⇒ ¬d)) φ

T T T T T F F

T T T F T F F

T T F T T F F

T T F F T F F

T F T T F F F

T F T F F F F

T F F T F F F

T F F F F F F

F T T T T T T

Thus, the argumentation is plausible!

41 / 109

Is this Argument Convincing?

φ := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

Truth table for the formula:

a s o d (a⇒ (s ∨ o)) (s⇒ (o⇒ ¬d)) φ

T T T T T F F

T T T F T F F

T T F T T F F

T T F F T F F

T F T T F F F

T F T F F F F

T F F T F F F

T F F F F F F

F T T T T T T

Thus, the argumentation is plausible!

41 / 109

SAT in practice

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

Example (Hardness)

Try it yourself: http://www.cs.utexas.edu/~marijn/game/

42 / 109

http://www.cs.utexas.edu/~marijn/game/

Complexity

43 / 109

Complexity of SAT

Naive Algorithm

1. Enumerate all possible interpretation (entries in the truth
table).

2. For each interpretation, compute the truth value (fill the entry
in the table).

3. Stop as soon as a model is found.

4. If no model is found, the formula is unsatisfiable.

 The truth table of a formula with n variables has 2n entries,
i.e., exponential in the number of propositional variables.

How complex is SAT?

44 / 109

Complexity of SAT

Naive Algorithm

1. Enumerate all possible interpretation (entries in the truth
table).

2. For each interpretation, compute the truth value (fill the entry
in the table).

3. Stop as soon as a model is found.

4. If no model is found, the formula is unsatisfiable.

 The truth table of a formula with n variables has 2n entries,
i.e., exponential in the number of propositional variables.

How complex is SAT?

44 / 109

What is the Complexity of a Problem?

The difficulty of solving it.

How do we measure that?

▶ Implement an algorithm and analyze its runtime.

▶ But are we analyzing the algorithm or the problem itself?

Key Question

Can we define complexity independently of a specific
algorithm/implementation?

45 / 109

What is the Complexity of a Problem?

The difficulty of solving it.

How do we measure that?

▶ Implement an algorithm and analyze its runtime.

▶ But are we analyzing the algorithm or the problem itself?

Key Question

Can we define complexity independently of a specific
algorithm/implementation?

45 / 109

What is the Complexity of a Problem?

The difficulty of solving it.

How do we measure that?

▶ Implement an algorithm and analyze its runtime.

▶ But are we analyzing the algorithm or the problem itself?

Key Question

Can we define complexity independently of a specific
algorithm/implementation?

45 / 109

What is the Complexity of a Problem?

The difficulty of solving it.

How do we measure that?

▶ Implement an algorithm and analyze its runtime.

▶ But are we analyzing the algorithm or the problem itself?

Key Question

Can we define complexity independently of a specific
algorithm/implementation?

45 / 109

A Formal Approach

. . . to compare problems objectively and understand the inherent
difficulties.

What do we need?

▶ A mathematical model of computation.

▶ A framework to classify problems.

46 / 109

A Formal Approach

. . . to compare problems objectively and understand the inherent
difficulties.

What do we need?
▶ A mathematical model of computation.

▶ A framework to classify problems.

46 / 109

Turing Machines

A Turing Machine

▶ is a mathematical model of
computation (like an
abstract computer),

▶ can simulate any algorithm,

▶ provides a definition of what
it means for a function to be
computable.

cb Rocky Acosta

Example (An Abstract Computer)

Try it yourself:
https://turingmachine.io/

47 / 109

https://turingmachine.io/

Turing Machines

A Turing Machine

▶ is a mathematical model of
computation (like an
abstract computer),

▶ can simulate any algorithm,

▶ provides a definition of what
it means for a function to be
computable.

cb Rocky Acosta

Example (An Abstract Computer)

Try it yourself:
https://turingmachine.io/

47 / 109

https://turingmachine.io/

P, NP, and NP-Complete Problems

P: Polynomial Time
Problems in P can be solved by a deterministic Turing Machine in
polynomial time.
Example: Sorting a list of numbers.

NP: Nondeterministic Polynomial Time
Problems in NP can be verified by a deterministic Turing Machine
in polynomial time or solved by a nondeterministic Turing Machine
in polynomial time.
Example: Solving a Sudoku.

NP-Complete
A problem is NP-complete if it is in NP and every problem in NP
can be reduced to it in polynomial time.
Example: The SAT problem.

48 / 109

SAT is NP-complete (Cook-Levin Theorem)

▶ SAT is in NP
Proof: solution can be checked in polynomial time

▶ Every problem in NP can be reduced to SAT in polynomial
time
Proof: encode the run of a non-deterministic Turing machine
as a formula

49 / 109

Consequences of NP-completeness of SAT

Relationship Between P, NP, and NP-Complete

▶ P is a subset of NP.

▶ NP-complete problems are a subset of NP.

▶ It is unknown whether P = NP.

We do not have a polynomial algorithm for SAT

If P ̸= NP, we will never have a polynomial algorithm for SAT

All known NP-complete algorithms have exponential runtime

50 / 109

Consequences of NP-completeness of SAT

Relationship Between P, NP, and NP-Complete

▶ P is a subset of NP.

▶ NP-complete problems are a subset of NP.

▶ It is unknown whether P = NP.

We do not have a polynomial algorithm for SAT

If P ̸= NP, we will never have a polynomial algorithm for SAT

All known NP-complete algorithms have exponential runtime

50 / 109

Consequences of NP-completeness of SAT

Relationship Between P, NP, and NP-Complete

▶ P is a subset of NP.

▶ NP-complete problems are a subset of NP.

▶ It is unknown whether P = NP.

We do not have a polynomial algorithm for SAT

If P ̸= NP, we will never have a polynomial algorithm for SAT

All known NP-complete algorithms have exponential runtime

50 / 109

Consequences of NP-completeness of SAT

Relationship Between P, NP, and NP-Complete

▶ P is a subset of NP.

▶ NP-complete problems are a subset of NP.

▶ It is unknown whether P = NP.

We do not have a polynomial algorithm for SAT

If P ̸= NP, we will never have a polynomial algorithm for SAT

All known NP-complete algorithms have exponential runtime

50 / 109

SAT Solvers

51 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

1. How can we practically solve the SAT problem for a given
formula?

52 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

1. How can we practically solve the SAT problem for a given
formula?

52 / 109

Historic Landmarks

▶ 1960: DP Algorithm (first SAT solving algorithm)

▶ 1962: DPLL Algorithm (improving upon DP algorithm)

▶ 1971: SAT is NP-Complete

▶ 1992: The First International SAT Competition (followed by
1993, 1996, since 2002 every year)

▶ 1996: The First International SAT Conference (followed by
1998, since 2000 every year)

▶ Nowadays, SAT solvers based on deep learning

53 / 109

http://doi.acm.org/10.1145/321033.321034
https://doi.acm.org/10.1145/368273.368557
https://dl.acm.org/doi/10.1145/800157.805047

Advances

From 1992: 100 variables and 200 clauses.
To 2024: 21,000,000 variables and 96,000,000 clauses.

SAT Conference 2024

54 / 109

SAT Solvers

SAT solvers are algorithms or software tools designed to efficiently
solve the SAT problem: sat, unsat (or timeout).

Efficiently?

General Principle

▶ Transforms the input formula into a formula in a standard
form (normal form)

▶ Explores the different candidate models

▶ Uses search and propagation techniques to reduce the search
space

55 / 109

SAT Solvers

SAT solvers are algorithms or software tools designed to efficiently
solve the SAT problem: sat, unsat (or timeout).

Efficiently? General Principle

▶ Transforms the input formula into a formula in a standard
form (normal form)

▶ Explores the different candidate models

▶ Uses search and propagation techniques to reduce the search
space

55 / 109

Conjunctive Normal Form

56 / 109

Conjunctive Normal Form (CNF)

▶ A CNF formula is a conjunction (∧) of clauses.
▶ A clause is a disjunction (∨) of literals.
▶ A literal is a variable x (positive literal) or its negation x

(negative literal). ∧
i

∨
j

ℓij

where ℓij is the j-th literal in the i-th clause

57 / 109

CNF Example

φ :=(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1)

variables(φ) ={x1, x2, x3}
litterals(φ) ={x1, x1, x2, x2, x3}
clauses(φ) ={{x1, x2}, {x1, x2, x3}, {x1}}

A CNF formula is given as a set of clauses, i.e., clauses(φ), it is
the standard input format for SAT solvers.

58 / 109

Satisfiability

A formula φ is satisfiable if there exists an interpretation of
variables(φ) that satisfies φ.

An interpretation I satisfies

▶ a CNF formula if it satisfies all of its clauses

▶ a clause if it satisfies at least one of its literals

▶ a positive literal x if I (x) = T

▶ a negative literal x if I (x) = F

59 / 109

Exercise: Satisfiable or Unsatisfiable?

φ1 := {{X}}

sat

φ2 := {{X}, {X}}

unsat

φ3 := {{X ,Y ,Z}}

sat

φ4 := {{X}, {Y }, {Y ,X}}

unsat

φ5 := {{X ,Y }, {X ,Y }, {X ,Y }, {X ,Y }}

unsat

φ6 := {{X ,Y }, {X ,Y ,Z}, {X}}

sat

60 / 109

Exercise: Satisfiable or Unsatisfiable?

φ1 := {{X}} sat

φ2 := {{X}, {X}}

unsat

φ3 := {{X ,Y ,Z}}

sat

φ4 := {{X}, {Y }, {Y ,X}}

unsat

φ5 := {{X ,Y }, {X ,Y }, {X ,Y }, {X ,Y }}

unsat

φ6 := {{X ,Y }, {X ,Y ,Z}, {X}}

sat

60 / 109

Exercise: Satisfiable or Unsatisfiable?

φ1 := {{X}} sat

φ2 := {{X}, {X}} unsat

φ3 := {{X ,Y ,Z}}

sat

φ4 := {{X}, {Y }, {Y ,X}}

unsat

φ5 := {{X ,Y }, {X ,Y }, {X ,Y }, {X ,Y }}

unsat

φ6 := {{X ,Y }, {X ,Y ,Z}, {X}}

sat

60 / 109

Exercise: Satisfiable or Unsatisfiable?

φ1 := {{X}} sat

φ2 := {{X}, {X}} unsat

φ3 := {{X ,Y ,Z}} sat

φ4 := {{X}, {Y }, {Y ,X}}

unsat

φ5 := {{X ,Y }, {X ,Y }, {X ,Y }, {X ,Y }}

unsat

φ6 := {{X ,Y }, {X ,Y ,Z}, {X}}

sat

60 / 109

Exercise: Satisfiable or Unsatisfiable?

φ1 := {{X}} sat

φ2 := {{X}, {X}} unsat

φ3 := {{X ,Y ,Z}} sat

φ4 := {{X}, {Y }, {Y ,X}} unsat

φ5 := {{X ,Y }, {X ,Y }, {X ,Y }, {X ,Y }}

unsat

φ6 := {{X ,Y }, {X ,Y ,Z}, {X}}

sat

60 / 109

Exercise: Satisfiable or Unsatisfiable?

φ1 := {{X}} sat

φ2 := {{X}, {X}} unsat

φ3 := {{X ,Y ,Z}} sat

φ4 := {{X}, {Y }, {Y ,X}} unsat

φ5 := {{X ,Y }, {X ,Y }, {X ,Y }, {X ,Y }} unsat

φ6 := {{X ,Y }, {X ,Y ,Z}, {X}}

sat

60 / 109

Exercise: Satisfiable or Unsatisfiable?

φ1 := {{X}} sat

φ2 := {{X}, {X}} unsat

φ3 := {{X ,Y ,Z}} sat

φ4 := {{X}, {Y }, {Y ,X}} unsat

φ5 := {{X ,Y }, {X ,Y }, {X ,Y }, {X ,Y }} unsat

φ6 := {{X ,Y }, {X ,Y ,Z}, {X}} sat

60 / 109

Conversion to CNF

61 / 109

Conversion to CNF

Use the logical equivalences to rewrite the formula:

1. Eliminate implications.
P ⇒ Q ≡ ¬P ∨ Q

2. Move negations inward using De Morgan’s laws. (At this
point, the formula is in negation normal form (NNF))
¬(P ∧ Q) ≡ ¬P ∨ ¬Q
¬(P ∨ Q) ≡ ¬P ∧ ¬Q

3. Distribute disjunctions over conjunctions to achieve CNF.
(P ∨ (Q ∧ R)) ≡ (P ∨ Q) ∧ (P ∨ R)

62 / 109

Conversion to CNF

Use the logical equivalences to rewrite the formula:

1. Eliminate implications.
P ⇒ Q ≡ ¬P ∨ Q

2. Move negations inward using De Morgan’s laws. (At this
point, the formula is in negation normal form (NNF))
¬(P ∧ Q) ≡ ¬P ∨ ¬Q
¬(P ∨ Q) ≡ ¬P ∧ ¬Q

3. Distribute disjunctions over conjunctions to achieve CNF.
(P ∨ (Q ∧ R)) ≡ (P ∨ Q) ∧ (P ∨ R)

62 / 109

Conversion to CNF

Use the logical equivalences to rewrite the formula:

1. Eliminate implications.
P ⇒ Q ≡ ¬P ∨ Q

2. Move negations inward using De Morgan’s laws. (At this
point, the formula is in negation normal form (NNF))
¬(P ∧ Q) ≡ ¬P ∨ ¬Q
¬(P ∨ Q) ≡ ¬P ∧ ¬Q

3. Distribute disjunctions over conjunctions to achieve CNF.
(P ∨ (Q ∧ R)) ≡ (P ∨ Q) ∧ (P ∨ R)

62 / 109

Convert to CNF – Exercise

Convert the following formulae into CNF:

1. (A ∨ B)⇒ C

2. ¬(P ∧ (Q ∨ R))

3. ¬(X ⇒ Y) ∨ ¬(Y ⇒ Z)

Hints:

▶ Start by eliminating implications.

▶ Use De Morgan’s laws to move negations inward.

▶ Distribute disjunctions over conjunctions to achieve CNF.

63 / 109

Convert to CNF – Solution 1

Convert ψ1 := (A ∨ B)⇒ C into CNF.

ψ1 ≡ ¬(A ∨ B) ∨ C

≡ (¬A ∧ ¬B) ∨ C

≡ (¬A ∨ C) ∧ (¬B ∨ C)

=CNF {{A,C}, {B,C}}

sat

64 / 109

Convert to CNF – Solution 1

Convert ψ1 := (A ∨ B)⇒ C into CNF.

ψ1 ≡ ¬(A ∨ B) ∨ C

≡ (¬A ∧ ¬B) ∨ C

≡ (¬A ∨ C) ∧ (¬B ∨ C)

=CNF {{A,C}, {B,C}}

sat

64 / 109

Convert to CNF – Solution 1

Convert ψ1 := (A ∨ B)⇒ C into CNF.

ψ1 ≡ ¬(A ∨ B) ∨ C

≡ (¬A ∧ ¬B) ∨ C

≡ (¬A ∨ C) ∧ (¬B ∨ C)

=CNF {{A,C}, {B,C}} sat

64 / 109

Convert to CNF – Solution 2

Convert ψ2 := ¬(P ∧ (Q ∨ R)) into CNF.

ψ2 ≡ ¬P ∨ ¬(Q ∨ R)

≡ ¬P ∨ (¬Q ∧ ¬R)
≡ (¬P ∨ ¬Q) ∧ (¬P ∨ ¬R)
=CNF {{P,Q}, {P,R}}

sat

65 / 109

Convert to CNF – Solution 2

Convert ψ2 := ¬(P ∧ (Q ∨ R)) into CNF.

ψ2 ≡ ¬P ∨ ¬(Q ∨ R)

≡ ¬P ∨ (¬Q ∧ ¬R)
≡ (¬P ∨ ¬Q) ∧ (¬P ∨ ¬R)
=CNF {{P,Q}, {P,R}}

sat

65 / 109

Convert to CNF – Solution 2

Convert ψ2 := ¬(P ∧ (Q ∨ R)) into CNF.

ψ2 ≡ ¬P ∨ ¬(Q ∨ R)

≡ ¬P ∨ (¬Q ∧ ¬R)
≡ (¬P ∨ ¬Q) ∧ (¬P ∨ ¬R)
=CNF {{P,Q}, {P,R}} sat

65 / 109

Convert to CNF – Solution 3

Convert ψ3 := ¬(X ⇒ Y) ∨ ¬(Y ⇒ Z) into CNF.

ψ3 ≡ ¬(X ∨ ¬Y) ∨ ¬(Y ∨ ¬Z)
≡ (X ∧ ¬Y) ∨ (Y ∧ ¬Z)
≡ (X ∨ Y) ∧ (X ∨ ¬Z) ∧ (¬Y ∨ Y) ∧ (¬Y ∨ ¬Z)
≡ (X ∨ Y) ∧ (X ∨ ¬Z) ∧ (¬Y ∨ ¬Z)
=CNF {{X ,Y }, {X ,Z}, {Y ,Z}}

sat

66 / 109

Convert to CNF – Solution 3

Convert ψ3 := ¬(X ⇒ Y) ∨ ¬(Y ⇒ Z) into CNF.

ψ3 ≡ ¬(X ∨ ¬Y) ∨ ¬(Y ∨ ¬Z)
≡ (X ∧ ¬Y) ∨ (Y ∧ ¬Z)
≡ (X ∨ Y) ∧ (X ∨ ¬Z) ∧ (¬Y ∨ Y) ∧ (¬Y ∨ ¬Z)
≡ (X ∨ Y) ∧ (X ∨ ¬Z) ∧ (¬Y ∨ ¬Z)
=CNF {{X ,Y }, {X ,Z}, {Y ,Z}}

sat

66 / 109

Convert to CNF – Solution 3

Convert ψ3 := ¬(X ⇒ Y) ∨ ¬(Y ⇒ Z) into CNF.

ψ3 ≡ ¬(X ∨ ¬Y) ∨ ¬(Y ∨ ¬Z)
≡ (X ∧ ¬Y) ∨ (Y ∧ ¬Z)
≡ (X ∨ Y) ∧ (X ∨ ¬Z) ∧ (¬Y ∨ Y) ∧ (¬Y ∨ ¬Z)
≡ (X ∨ Y) ∧ (X ∨ ¬Z) ∧ (¬Y ∨ ¬Z)
=CNF {{X ,Y }, {X ,Z}, {Y ,Z}} sat

66 / 109

SAT solvers are algorithms or software tools designed to efficiently
solve the SAT problem: sat, unsat (or timeout).

Efficiently? General Principle

▶ Transforms the input formula into a formula in a standard
form (normal form) ✓

▶ Explores the different candidate models

▶ Uses search and propagation techniques to reduce the search
space

67 / 109

Hands-On Exercise

68 / 109

DIMACS Format for CNF

▶ DIMACS is a standard format for representing CNF formulae.
▶ Structure:

▶ Each clause is a line of integers.
▶ Positive integers represent variables.
▶ Negative integers represent negated variables.
▶ Each clause ends with a ‘0‘.

▶ Example:
▶ Formula: (A ∨ ¬B) ∧ (B ∨ C)
▶ DIMACS:

p cnf 3 2

1 -2 0

2 3 0

69 / 109

Tools

Install MiniSat:
sudo apt install minisat

Alternatively, you can use a brower-based SAT solver:
https://www.msoos.org/cryptominisat/

Try it out with the following formula:

p cnf 3 2

1 -2 0

2 3 0

70 / 109

https://www.msoos.org/cryptominisat/

Hands-On: Solve a SAT Problem

Check the various examples we have seen so far:

▶ φ1 := {{X}}
▶ φ2 := {{X}, {X}}
▶ φ3 := {{X ,Y ,Z}}
▶ φ4 := {{X}, {Y }, {Y ,X}}
▶ φ5 := {{X ,Y }, {X ,Y }, {X ,Y }, {X ,Y }}
▶ φ6 := {{X ,Y }, {X ,Y ,Z}, {X}}
▶ ψ1 := {{A,C}, {B,C}}
▶ ψ2 := {{P,Q}, {P,R}}
▶ ψ3 := {{X ,Y }, {X ,Z}, {Y ,Z}}

71 / 109

Hands-On: Solve a SAT Problem (2)

Check the car argumentation:

φcar := a⇒ (s ∨ o) ∧ s⇒ (o⇒ ¬d) ∧ d ∧ ¬a

Check the pizza example:

φpizza := ¬B⇒ A

∧ B⇒ ¬C
∧ ¬C ∧ (A ∨ B)

∧ A ∨ B ∨ C

∧ ¬(A ∧ B) ∧ ¬(A ∧ C) ∧ ¬(B ∧ C)

Hint, you need to convert the formulae into CNF first.

72 / 109

Outline

Recap

SAT Solving Algorithms

Tseitin’s Transformation

Encodings

Some examples

Conclusion

73 / 109

Recap

74 / 109

What We Have Learned So Far

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

Satisfiability means that there exists an interpretation of the
variables that makes the formula true.

Logical equivalences can be used to transform formulae into a
standard form (for instance CNF).

Conjunctive Normal Form (CNF): a conjunction of clauses, where
each clause is a disjunction of literals. This is the standard input
format for SAT solvers.

75 / 109

SAT Solving Algorithms

76 / 109

Any idea?

Construct a valuation step by step, considering partial valuations
[p\b] (or [p ← b]) with b ∈ B = {F ,T}, completed step by step
until the satisfiability of the initial formula (or a contradiction) is
determined.

77 / 109

Any idea?

Construct a valuation step by step, considering partial valuations
[p\b] (or [p ← b]) with b ∈ B = {F ,T}, completed step by step
until the satisfiability of the initial formula (or a contradiction) is
determined.

77 / 109

Partial Valuations

Let C be a clause {l1, . . . , ln} with li as literals, let p be a
propositional variable, and b ∈ B a Boolean value.

C [p\b] is the propositional formula:

▶ ⊤ if p ∈ C and b = 1,

▶ ⊤ if ¬p ∈ C and b = 0,

▶ C\¬p if ¬p ∈ C and b = 1,

▶ C\p if p ∈ C and b = 0,

▶ C if p ̸∈ C and ¬p ̸∈ C .

78 / 109

Example and Exercise

Let φ be the formula (x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

With the partial valuation [x\1] and [x\0], we obtain
φ[x\1] = (x ∨ y ∨ z)[x\1] ∧ (x ∨ ¬y ∨ ¬z)[x\1] = ⊤ ∧⊤ ≡ ⊤
φ[x\0] = (y ∨ z) ∧ (¬y ∨ ¬z)

Exercise: what are the partial valuations of φ with [y\1] and [y\0]?

φ[y\1] = (x ∨ y ∨ z)[y\1] ∧ (x ∨ ¬y ∨ ¬z)[y\1] = (x ∨ ¬z)
φ[y\0] = (x ∨ z)

79 / 109

Example and Exercise

Let φ be the formula (x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

With the partial valuation [x\1] and [x\0], we obtain
φ[x\1] = (x ∨ y ∨ z)[x\1] ∧ (x ∨ ¬y ∨ ¬z)[x\1] = ⊤ ∧⊤ ≡ ⊤
φ[x\0] = (y ∨ z) ∧ (¬y ∨ ¬z)

Exercise: what are the partial valuations of φ with [y\1] and [y\0]?

φ[y\1] = (x ∨ y ∨ z)[y\1] ∧ (x ∨ ¬y ∨ ¬z)[y\1] = (x ∨ ¬z)
φ[y\0] = (x ∨ z)

79 / 109

Example and Exercise

Let φ be the formula (x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

With the partial valuation [x\1] and [x\0], we obtain
φ[x\1] = (x ∨ y ∨ z)[x\1] ∧ (x ∨ ¬y ∨ ¬z)[x\1] = ⊤ ∧⊤ ≡ ⊤
φ[x\0] = (y ∨ z) ∧ (¬y ∨ ¬z)

Exercise: what are the partial valuations of φ with [y\1] and [y\0]?

φ[y\1] = (x ∨ y ∨ z)[y\1] ∧ (x ∨ ¬y ∨ ¬z)[y\1] = (x ∨ ¬z)
φ[y\0] = (x ∨ z)

79 / 109

Traversal with backtrack

φ

φ[p\0]

φ[p\0][q\0]

X

φ[p\0][q\1]

X

[p\0]

φ[p\1]

φ[p\1][q\0]

Ok

φ[p\1][q\1]

[p\1]

80 / 109

φ in CNF

φ = C1 ∧ . . . ∧ Ck

What is the value of φ[p\1]?

If p ∈ Ci , then Ci is satisfied, and we can remove it from φ.
If ¬p ∈ Ci , then Ci is simplified to Ci\¬p.

It suffices to

▶ remove all clauses Ci containing p,

▶ remove ¬p from all clauses Ci containing ¬p.

(Symmetrical situation for φ[p\0])

81 / 109

φ in CNF

φ = C1 ∧ . . . ∧ Ck

What is the value of φ[p\1]?

If p ∈ Ci , then Ci is satisfied, and we can remove it from φ.
If ¬p ∈ Ci , then Ci is simplified to Ci\¬p.

It suffices to

▶ remove all clauses Ci containing p,

▶ remove ¬p from all clauses Ci containing ¬p.

(Symmetrical situation for φ[p\0])

81 / 109

φ in CNF

φ = C1 ∧ . . . ∧ Ck

What is the value of φ[p\1]?

If p ∈ Ci , then Ci is satisfied, and we can remove it from φ.
If ¬p ∈ Ci , then Ci is simplified to Ci\¬p.

It suffices to

▶ remove all clauses Ci containing p,

▶ remove ¬p from all clauses Ci containing ¬p.

(Symmetrical situation for φ[p\0])

81 / 109

Pseudocode for backtracking

backtrack(φ):
if φ = ∅ : return sat

if ∅ ∈ φ : return unsat

p = pickVariable(φ)
return backtrack(φ[p\0]) or backtrack(φ[p\1])

Heuristics for picking a variable:

▶ Pick the variable that occurs most frequently in the clauses.

▶ Pick the variable that occurs in the most clauses.

▶ Pick the variable that occurs in the fewest clauses.

82 / 109

An observation

Consider the following CNF formula:

φ :=(p1 ∨ ¬p3 ∨ ¬p5) ∧ (¬p1 ∨ p2) ∧ (¬p1 ∨ ¬p3 ∨ p4)

∧ (¬p1 ∨ ¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)

Suppose that we start by choosing to assign T to p1. This leaves
us with:

φ′ := (p2) ∧ (¬p3 ∨ p4) ∧ (¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)

83 / 109

An observation

φ′ := (p2) ∧ (¬p3 ∨ p4) ∧ (¬p2 ∨ p3) ∧ (¬p4 ∨ ¬p2)

The clause ¬p1 ∨ p2 is now simply p2.

Any satisfying interpretation must assign T to p2: there is no
choice to make given this formula. We say that p2 is a unit
clause: there is no other literal in the clause.

We set p2 to T , and simplify the formula further:

φ′′ := (¬p3 ∨ p4) ∧ (p3) ∧ (¬p4)

83 / 109

An observation

φ′′ := (¬p3 ∨ p4) ∧ (p3) ∧ (¬p4)

We have two unit literals p3 and ¬p4. We can continue, pick p3,
assigning it T , and simplify:

φ′′′ := (p4) ∧ (¬p4)

Now all clauses are unit, and there is no solution to obtain a model
for φ′′′.

83 / 109

An observation

If we assign p1 to T then the resulting formula is not satisfiable.

Once we assigned p1 to T , we were able to determine that the
resulting formula was unsatisfiable without making any further
decisions.

All of the resulting simplifications were a logical consequence of
this original choice.

The process of carrying this to its conclusion is called unit
propagation.

83 / 109

Unit Propagation

A unit clause is a clause with only one unassigned literal.

Unit Propagation:

▶ If a unit clause is found, the solver assigns the value that
satisfies the clause and simplifies the formula accordingly.

▶ This process continues until a fixpoint: no more unit clauses
can be found or a contradiction is reached.

84 / 109

Pure Literal

If x occurs only positively (or only negatively), then it is a pure
litteral. It can be fixed to the respective value.

Why?

If there is a model that where the x is assigned the opposite value,
then flipping the assignment of x still yields a model.

85 / 109

Pure Literal

If x occurs only positively (or only negatively), then it is a pure
litteral. It can be fixed to the respective value.

Why?

If there is a model that where the x is assigned the opposite value,
then flipping the assignment of x still yields a model.

85 / 109

Example

φ := (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (¬z ∨ ¬w)

x is a positive pure litteral
φ[x\1] = (y ∨ ¬z) ∧ (¬z ∨ ¬w)

y is a positive pure litteral
φ[x\1][y\1] = (¬z ∨ ¬w)

z is a negative pure litteral
φ[x\1][y\1][z\0] = ⊤

86 / 109

Example

φ := (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (¬z ∨ ¬w)

x is a positive pure litteral
φ[x\1] = (y ∨ ¬z) ∧ (¬z ∨ ¬w)

y is a positive pure litteral
φ[x\1][y\1] = (¬z ∨ ¬w)

z is a negative pure litteral
φ[x\1][y\1][z\0] = ⊤

86 / 109

Example

φ := (x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (¬z ∨ ¬w)

x is a positive pure litteral
φ[x\1] = (y ∨ ¬z) ∧ (¬z ∨ ¬w)

y is a positive pure litteral
φ[x\1][y\1] = (¬z ∨ ¬w)

z is a negative pure litteral
φ[x\1][y\1][z\0] = ⊤

86 / 109

Davis Putnam Logemann Loveland (DPLL) Algorithm
(Davis et al., 1962)

dpll(φ):
if φ = ∅ : return sat

if ∅ ∈ φ : return unsat

if {l} ∈ φ : return dpll(φ[l\1])
if pure − literal(p, b, φ) : return dpll(φ[p\b])
p = pickVariable(φ)
return dpll(φ[p\0]) or dpll(φ[p\1])

87 / 109

http://doi.acm.org/10.1145/368273.368557

DPLL Algorithm

Properties

▶ DPLL always terminates
▶ Each recursion eliminates one variable

▶ Worst case: binary tree search of depth |V |

▶ DPLL is sound and complete
▶ If clause set S is sat, we eventually find a satisfying valuation.

▶ If clause set S is unsat, the entire space of (partial) variable
assignments is searched (but variable selection still matters!)

▶ Space complexity: linear!

88 / 109

Tseitin’s Transformation

89 / 109

A Naive CNF Conversion Algorithm

1. Convert to Negation Normal Form (NNF)

2. Apply distributive laws to get CNF

 Applying the distributive laws may result in an exponential
blow-up.

For example, the formula

(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ . . . ∨ (xn ∧ yn)

gets converted to

(x1 ∨ x2 ∨ . . . ∨ xn) ∧ (y1 ∨ x2 ∨ . . . ∨ xn) ∧ . . . ∧ (y1 ∨ y2 ∨ . . . ∨ yn)

which contains 2n clauses.

90 / 109

Equisatisfiability

Two formulas φ and ψ are equisatisfiable, if φ is satisfiable if and
only if ψ is.

Example: p and p ∧ q are equisatisfiable, but they are not
equivalent.

 The models of two equisatisfiable formulas do not necessarily
share the same models.

91 / 109

Tseitin’s Transformation

Idea: Introduce new propositional variables, which act as names for
subformulae of the original formula.

Equisatisfiability

▶ T (φ) are φ equisatisfiable

▶ T (φ) is a CNF formula

▶ T (φ) has size linear in the size of φ

If the solver finds a satisfying assignment for T (φ), it can be used
to find a satisfying assignment for φ by deleting the label variables.

92 / 109

Example Tseitin’s Transformation

φ := (x ∧ ¬y) ∨ z ∨ (x ∧ ¬w)
(Negation Normal Form)

SAT
=(c ↔ x ∧ ¬w) ∧ · · · ∧ (f ↔ a ∨ b) ∧ f

(Tseitin’s Encoding)

▶ Define new variables:
da ↔ x ∧ y , dφ ↔ a ∨ b, . . .

▶ Encode definitions in CNF:
(dφ ∨ da ∨ db) ∧ (dφ ∨ da) ∧ (dφ ∨
db) ∧ . . .

▶ One additional clause dφ to assert
that φ must be true

93 / 109

Tseitin’s Transformation

The Tseitin’s Transformation T (φ) of a propositional formula φ
over connectives {∧,∨,¬} is specified as follows.

T (φ) = dφ ∧ T ∗(φ) (Root Formula)

T ∗(φ) =

Tdef(φ) ∧ T ∗(ψ) ∧ T ∗(θ), if φ = ψ@θ and @ ∈ {∧,∨}
Tdef(φ) ∧ T ∗(ψ), if φ = ¬ψ
T , if φ ∈ V

(Recursion)

Tdef(φ) =

(dφ ∨ dψ) ∧ (dφ ∨ dθ) ∧ (dφ ∨ dψ ∨ dθ), if φ = ψ ∧ θ
(dφ ∨ dψ ∨ dθ) ∨ (dφ ∨ dψ) ∧ (dφ ∨ dθ), if φ = ψ ∨ θ
(dφ ∨ dψ) ∧ (dφ ∨ dψ), if φ = ¬ψ

(Definitions)

94 / 109

Encodings

95 / 109

At-Most-One Constraints
Notation: AtMostOne(x1, . . . , xn) or ≤1 (x1, . . . , xn) or

∑n
i xi ≤ 1

Not more than one literal from x1, . . . , xn is set to T .

Pairwise Encoding:
E
[
≤1 (x1, . . . , xn)

]
=

{
{xi , xj} | 1 ≤ i < j ≤ n

}
Size:

(n
2

)
= n·(n−1)

2 clauses

96 / 109

Cardinality Constraints
Notation: ≤k (x1, . . . , xn) or

∑n
i xi ≤ k

Not more than k literals from x1, . . . , xn are set to T .

Direct Encoding:
E
[
≤k (x1, . . . , xn)

]
=

{
{xi1 , . . . , xik+1

} | 1 ≤ i1 < · · · < ik+1 ≤ n
}

Size:
(n
k+1

)
clauses1

1≈ 2n/
√
n by Stirling’s Approx. for the worst case k = ⌈n/2⌉

97 / 109

Finite-Domain Variables

Common in combinatorial problems. Discrete, finite value domains:
x ∈ {v1, . . . , vn}
Relationships between them expressed as equality-formulas, e.g.:
x = v3 ⇒ y ̸= v2.

One-hot encoding:

▶ Boolean variables xv : “x takes value v”

▶ Must encode that each variable takes exactly one value from
its domain
(by using at-least-one/at-most-one constraints)

98 / 109

Tradeoffs in Encodings

These encodings were simple and straightforward.

More complex encodings exist, which often rely on introducing
auxiliary variables.

The use of auxiliary variables helps reduce the number of clauses,
making the encoding more efficient for SAT solvers.

99 / 109

Some examples

100 / 109

Pythagorean Triples

Problem Definition
Is it possible to assign to each integer 1, 2, . . . , n one of two colors
such that if a2 + b2 = c2 then a, b and c do not all have the same
color.

▶ Solution: Nope

▶ for n = 7825 it is not possible

▶ proof obtained by a SAT solver has 200 Terabytes – back then
the largest Math proof yet

How to encode this?
▶ for each integer i we have a Boolean variable xi , xi = 1 if

color of i is 1, xi = 0 otherwise.

▶ for each a, b, c such that a2 + b2 = c2 we have two clauses:
(xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc)

101 / 109

Pythagorean Triples

Problem Definition
Is it possible to assign to each integer 1, 2, . . . , n one of two colors
such that if a2 + b2 = c2 then a, b and c do not all have the same
color.

▶ Solution: Nope

▶ for n = 7825 it is not possible

▶ proof obtained by a SAT solver has 200 Terabytes – back then
the largest Math proof yet

How to encode this?
▶ for each integer i we have a Boolean variable xi , xi = 1 if

color of i is 1, xi = 0 otherwise.

▶ for each a, b, c such that a2 + b2 = c2 we have two clauses:
(xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc)

101 / 109

Graph Coloring

Example (McGregor Graph, 110 nodes, planar)

Claim: Cannot be colored with less than 5 colors. (Scientific
American, 1975, Martin Gardner’s column “Mathematical Games”)

102 / 109

Graph Coloring

Example (McGregor Graph, 110 nodes, planar)

Claim: Cannot be colored with less than 5 colors. (Scientific
American, 1975, Martin Gardner’s column “Mathematical Games”)

102 / 109

Graph Coloring: SAT Encoding
A k-coloring of a graph assigns one of k colors to each node, such
that all adjacent nodes have a different color.

Graph Coloring Problem (GCP):

Input: An undirected graph G = (V ,E) and a number k .

Question: Is there a k-coloring for G?

SAT Encoding

▶ Variables:

▶ use k · |V | Boolean variables vj for v ∈ V , where vj is true, if
node v gets color j (1 ≤ j ≤ k).

▶ Clauses:

▶ Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

▶ Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

▶ Suppress multiple colors for a node: At-most-one constraints

103 / 109

Graph Coloring: SAT Encoding
A k-coloring of a graph assigns one of k colors to each node, such
that all adjacent nodes have a different color.

Graph Coloring Problem (GCP):

Input: An undirected graph G = (V ,E) and a number k .

Question: Is there a k-coloring for G?

SAT Encoding
▶ Variables:

▶ use k · |V | Boolean variables vj for v ∈ V , where vj is true, if
node v gets color j (1 ≤ j ≤ k).

▶ Clauses:

▶ Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

▶ Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

▶ Suppress multiple colors for a node: At-most-one constraints

103 / 109

Graph Coloring: SAT Encoding
A k-coloring of a graph assigns one of k colors to each node, such
that all adjacent nodes have a different color.

Graph Coloring Problem (GCP):

Input: An undirected graph G = (V ,E) and a number k .

Question: Is there a k-coloring for G?

SAT Encoding
▶ Variables:

▶ use k · |V | Boolean variables vj for v ∈ V , where vj is true, if
node v gets color j (1 ≤ j ≤ k).

▶ Clauses:

▶ Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

▶ Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

▶ Suppress multiple colors for a node: At-most-one constraints

103 / 109

Graph Coloring: SAT Encoding
A k-coloring of a graph assigns one of k colors to each node, such
that all adjacent nodes have a different color.

Graph Coloring Problem (GCP):

Input: An undirected graph G = (V ,E) and a number k .

Question: Is there a k-coloring for G?

SAT Encoding
▶ Variables:

▶ use k · |V | Boolean variables vj for v ∈ V , where vj is true, if
node v gets color j (1 ≤ j ≤ k).

▶ Clauses:
▶ Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

▶ Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

▶ Suppress multiple colors for a node: At-most-one constraints

103 / 109

Graph Coloring: SAT Encoding
A k-coloring of a graph assigns one of k colors to each node, such
that all adjacent nodes have a different color.

Graph Coloring Problem (GCP):

Input: An undirected graph G = (V ,E) and a number k .

Question: Is there a k-coloring for G?

SAT Encoding
▶ Variables:

▶ use k · |V | Boolean variables vj for v ∈ V , where vj is true, if
node v gets color j (1 ≤ j ≤ k).

▶ Clauses:
▶ Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

▶ Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

▶ Suppress multiple colors for a node: At-most-one constraints

103 / 109

Graph Coloring: SAT Encoding
A k-coloring of a graph assigns one of k colors to each node, such
that all adjacent nodes have a different color.

Graph Coloring Problem (GCP):

Input: An undirected graph G = (V ,E) and a number k .

Question: Is there a k-coloring for G?

SAT Encoding
▶ Variables:

▶ use k · |V | Boolean variables vj for v ∈ V , where vj is true, if
node v gets color j (1 ≤ j ≤ k).

▶ Clauses:
▶ Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

▶ Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

▶ Suppress multiple colors for a node: At-most-one constraints

103 / 109

Graph Coloring: SAT Encoding
A k-coloring of a graph assigns one of k colors to each node, such
that all adjacent nodes have a different color.

Graph Coloring Problem (GCP):

Input: An undirected graph G = (V ,E) and a number k .

Question: Is there a k-coloring for G?

SAT Encoding
▶ Variables:

▶ use k · |V | Boolean variables vj for v ∈ V , where vj is true, if
node v gets color j (1 ≤ j ≤ k).

▶ Clauses:
▶ Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

▶ Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

▶ Suppress multiple colors for a node: At-most-one constraints

103 / 109

Graph Coloring: SAT Encoding
A k-coloring of a graph assigns one of k colors to each node, such
that all adjacent nodes have a different color.

Graph Coloring Problem (GCP):

Input: An undirected graph G = (V ,E) and a number k .

Question: Is there a k-coloring for G?

SAT Encoding
▶ Variables:

▶ use k · |V | Boolean variables vj for v ∈ V , where vj is true, if
node v gets color j (1 ≤ j ≤ k).

▶ Clauses:
▶ Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

▶ Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

▶ Suppress multiple colors for a node: At-most-one constraints

103 / 109

Graph Coloring: Example

▶ V = {u, v ,w , x , y}
▶ Colors: red (=1), green (=2), blue

(=3)

▶ Clauses:
“every node gets a color”
(u1 ∨ u2 ∨ u3)
...

(y1 ∨ y2 ∨ y3)

“adjacent nodes have different
colors” (u1 ∨ v1) ∧ · · · ∧ (u3 ∨ v3)

...
(x1 ∨ y1) ∧ · · · ∧ (x3 ∨ y3)

u

v w

y x

104 / 109

Graph Coloring: Example

▶ V = {u, v ,w , x , y}
▶ Colors: red (=1), green (=2), blue

(=3)

▶ Clauses:
“every node gets a color”
(u1 ∨ u2 ∨ u3)
...

(y1 ∨ y2 ∨ y3)

“adjacent nodes have different
colors” (u1 ∨ v1) ∧ · · · ∧ (u3 ∨ v3)

...
(x1 ∨ y1) ∧ · · · ∧ (x3 ∨ y3)

u

v w

y x

104 / 109

Conclusion

105 / 109

Conclusion

▶ SAT solving is a fundamental problem in computer science
with applications in AI, verification, cryptography, and more.

▶ Despite being NP-complete, modern SAT solvers can handle
large and complex instances efficiently.

▶ Techniques like CNF conversion, Tseitin’s transformation, and
advanced algorithms (e.g., DPLL, CDCL) make SAT solving
practical.

▶ Encoding real-world problems into SAT is a powerful approach
to tackle combinatorial challenges.

106 / 109

Takeaways

▶ SAT solvers are versatile tools for automated reasoning.

▶ Understanding the underlying algorithms and encodings is key
to leveraging their power.

▶ The field continues to evolve, with ongoing research into
optimization and new applications.

107 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

Outputs:

▶ sat

▶ unsat

▶

▶

108 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

Outputs:

▶ sat

▶ unsat

▶

▶ timeout

108 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

Outputs:

▶ sat

▶ unsat

▶ Seg fault (core dumped)

▶ timeout

108 / 109

SAT Problem:

Input: A propositional formula φ.

Question: Is φ satisfiable?

Outputs:

▶ Yes

▶ No

▶ Maybe

▶ I don’t know

108 / 109

Hands-on

See https://romainpascual.fr/teaching/sat/.

109 / 109

https://romainpascual.fr/teaching/sat/

	Introduction
	Logic and Satisfiability
	Logic
	Recap on Propositional Logic
	Complexity
	SAT Solvers
	Conjunctive Normal Form
	Conversion to CNF
	Hands-On Exercise

	Understanding SAT Solvers
	Recap
	SAT Solving Algorithms
	Tseitin's Transformation
	Encodings
	Some examples
	Conclusion

