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Induction
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“An algebraic data type is defined by structural induction.”
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I Induction on N

Principle of induction

Let P(n) be a proposition depending on n € N. If:

= Base case: P(0) is true,

® Inductive step: For all k € N, if P(k) is true, then P(k + 1)
is true,

then P(n) is true for all n € N.
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Principle of induction

Let P(n) be a proposition depending on n € N. If:
= Base case: P(0) is true,

® Inductive step: For all k € N, if P(k) is true, then P(k + 1)
is true,

then P(n) is true for all n € N.

VP([0e PAVkeN (ke P=(k+1)€P)] — NCP)
VP ([P(0) AVk (P(k) = P(k+1))] < Vn P(n))

How can this proof method be generalized to other sets/structures?
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I Well-founded set AT
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A set S equipped with a binary relation <C S? is well-founded if
every non-empty subset X of S has a minimal element for <.

VXCS(X#@=3Ime X,Vse X(s £ m))

Example: N with <y

Counter-example: R with <p
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I Mathematical induction AT
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A poset (S, <) admits the principle of mathematical induction
if for all propositions P on the elements of S, the two following are
equivalent

waVseS P(s)
aVseS(Vs'eS, s <s= P(s") = P(s)

Theorem

(S, =) admits the principle of mathematical induction if and only if
it is well-founded.

By Zorn's lemma (~ AC), R admits the principle of mathematical
induction.
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I Inductive definition

Definition

An inductive definition of a subset S of X is given by :
a the base elements B that belong to the set,

a the construction rules F;: X" — X that generate new
elements from those already in the set.

S is then the smallest set such that B C S and for all F; and all
(S1,...,5n) € S™, Fi(s1,...,5n,) € S.

In programming, these sets correspond to algebraic data types.
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Natural numbers
a 0 is a natural number,

w if nis a natural number, then Succ(n) is a natural number.
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Lists of type 7
m Nil is a list of type T,

w if tis a list of type 7 and h is of type 7, then Cons(t, h) is a
list of type 7.
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(Binary) trees of type 7
m Leaf is a tree of type T,

m if / and r are trees of type 7 and n is of type 7, then
Branch(n,/, r) is a tree of type 7.
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I Structural induction A\‘(IT

Structural induction allows to prove properties about algebraic
data types.

To prove a property P about an algebraic data type S, it suffices
to show:

= Base case: P(b) holds for all b € B.

® Inductive steps: For each construction rule F;, if P(s1), ...,
P(sp;) hold, then P(Fi(s1,...,sn)) holds.

Structural induction is deduced from mathematical induction by
considering the order < on terms such that

t=xt = t'=F(..,t...)
for some construction rule F;.
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Algebra on data types
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“An algebraic data type is obtained by putting together other
types via algebraic manipulations.”
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I Everything is an algebraic data type AT
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data Bool = True | False;
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data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
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I Everything is an algebraic data type

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
data Nat = Zero | Succ Nat;
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I Algebraic manipulations AT
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Algebra deals with multiplications and additions.
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Algebra deals with multiplications and additions.

a Product type 7 = 7, X 7g: Pair, product in the category of
types and functions, ~ Cartesian product of sets.
For a type Pair a b we assume functions

m Fst : Pair a b -> a giving the first element
m Snd : Pair a b -> b giving the second element
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Algebra deals with multiplications and additions.

a Product type 7 = 7, X 7g: Pair, product in the category of
types and functions, ~ Cartesian product of sets.
For a type Pair a b we assume functions

m Fst : Pair a b -> a giving the first element
m Snd : Pair a b -> b giving the second element

m Sum type 7 = 7, + 7g: Either, coproduct in the category of
types and functions, ~ disjoint union of sets.

u Unit type unit: Unit, terminal object in the category of types
and functions, ~ singleton set.

m Zero type void: Void, initial object in the category of types
and functions, ~ empty set.
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I Commutativity A“(IT

For two types 7, 7/,

TxT =7 x717

T+ =7 +77
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I Commutativity A“(IT
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I Commutativity

For two types 7, 7/,
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I Commutativity: isomorphisms AT
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For 7 x 7/ ~ 7/ x 7, the isomorphism is given by

fun swap : (Pair a b —> Pair b a) =
p —> Pair (Snd p) (Fst p)

For 7 + 7/ ~ 7/ + 7, the isomorphism is given by

fun flip : (Either a b —> Either b a) =
e —> match e with
| Left a —> Right a
| Right b —> Left b
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I Other properties

For any types 7, 71, 7, and 73

Neutral elements
a7 Xunit~7~unit x 7

@ 7+ void ~ 7 ~void + T

Associativity
o7 X (T2 x13) (11 X T2) XT3
e+ (m+n)2(nn+n)+7
Distributivity
w7 X (124 713) >~ (11 X 12) 4+ (11 X 73)

Absorption

a 7 X void ~ void ~ void x T
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I Questions AT
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1. What is the algebraic structure associated with the types?
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1. What is the algebraic structure associated with the types?
A (commutative) semiring.

2. What is the type 27
2=1+1, so unit + unit ~ Bool.
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I Questions AT
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1. What is the algebraic structure associated with the types?
A (commutative) semiring.

2. What is the type 27
2=1+1, so unit + unit ~ Bool.

3. What is the type associated with
data Season = Winter | Spring | Summer | Fall;
4.

4. What is the type 1 4 a?
data Maybe a = Nothing | Just a;.
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I Algebra is about solving equations AT
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Let / be a function such that /(a) =1+ a x /(a).
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I Algebra is about solving equations A\K"'

Let / be a function such that /(a) =1+ a x /(a).
What is the associated type?

Let us forget about types for now and do some simple math:

I(a) =1+ ax I(a)
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I Algebra is about solving equations

Let / be a function such that /(a) =1+ a x /(a).
What is the associated type?

Let us forget about types for now and do some simple math:

(a)—l—i—axl()

I(a)—a x I(a) =
I(a) x (1-a) =
I(a) = %

But, we do not have subtraction or division! /(a) = > a"

n—=
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I Solving equations (continued) AT
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How can we interpret /(a) = > 72, a"?
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I Solving equations (continued) AT
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How can we interpret /(a) = > 72, a"?

Generating functions and formal power series

I(a) =14 axI(a)
=14+ax(14+axl(a))
=1l+a+axaxl(a)
=l+at+axax(l+axl(a))
=1+a+a°+axI(a)
=l+a+a+a+a"+...

data List a = Nil | Coms a (List a)
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(Initial) Algebras
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“An algebraic data type is described by a functor.”
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I Algebra
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Algebras are sets with operations.

Example: (N,0,Succ), with 0 € N and Succ: N — N.

Equivalently,
1+ N

[Zero,Succ]i

N
where 1 = {@} and Zero(@) = 0.
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| Lists SIT
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(List(A),[], Cons), with
w [] € List(A),
® Cons : A x List(A) — List(A).

1+ A x List(A)

[Nil,Cons]l

List(A)

where 1 = {@} and Nil(@) = [].
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I Trees AT
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(Tree(A), [], Branch), with
u [] € Tree(A),
® Branch: A X Tree(A) x Tree(A) — Tree(A).
1+ A x Tree(A) x Tree(A)
[Leaf,Branch]l
Tree(A)

where 1 = {@} and Leaf (@) = [].
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I Algebras, categorically AT
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For a functor F: C — C, an F-algebra is a pair (X, ) with
F(X)

|

X
We call F the type and « the structure map of (X, «).

The structure map « tells us how the elements of X are
constructed from other elements in X.
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I Examples

m F:Set — Set; X — 1+ X gives N
m F:Set — Set; X +— 1+ A X X gives List(A)

a f:Set — Set; X — 1+ Ax X x X gives Tree(A)
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I Algebra momorphisms

T
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A morphism of F-algebras is an arrow f: (X,a) — (Y, /) such

that

Think functoriality!
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I Initial algebra A\‘(IT

The natural numbers are an initial algebra.

a Inductive definitions are based on the existence of h: N — A.

m Inductive proofs are based on the uniqueness of h: N — A.
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Coalgebraic Data Types
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Motivation
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I Induction and coinduction AT

Induction corresponds to
m initiality of an algebra

m |east fixed point of a monotone function
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I Induction and coinduction A\‘("'

Induction corresponds to
m initiality of an algebra

m |east fixed point of a monotone function

Coinduction corresponds to
= terminality (also called finality) of an algebra

m greatest fixed point of a monotone function
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I Constructing lists

data List a = Nil | Cons a (List a)

Abstracted into L=1+ A X L

Constructors
m Nil ~ Unit

m Cons : Pair a (List a) -> List a
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I Constructing lists

data List a = Nil | Cons a (List a)

Abstracted into L=1+ A X L

Constructors
m Nil ~ Unit, equivalent to Nil:1 — L

m Cons : Pair a (List a) -> List a,
equivalent to Cons : Ax L — L

Rather than equality, we have 1 + Ax L — L
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I Observing the list AT
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What if we want to observe what is in the list?
Then we need to deconstruct the list!

Destructors
m Head : List a -> a

m Tail : List a -> List a
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I Observing the list AT
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What if we want to observe what is in the list?
Then we need to deconstruct the list!

Destructors

m Head : List a -> a, equivalenttoHead: L — A
m Tail : List a -> List a,
equivalent to Tail: L — L

Rather than equality, we have L - 1+ A X L
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I Safe head and safe tail AT
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What about L — 17
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I Safe head and safe tail AT
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What about L — 17

data Maybe a = Nothing | Just a;
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I Safe head and safe tail AT
What about L — 17
data Maybe a = Nothing | Just a;

The function L — 1+ A x L, corresponds to

Maybe (Pair Head Tail)

The product A x L means that the head and tail of a sequence are
related: they are selected or observed together
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I Construction and destruction AT
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L=14+AxL
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I Construction and destruction AT
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L—-1+AXL

a Construction 1 + Ax L — L
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I Construction and destruction AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

L+ 1+AXL

a Construction 1 + Ax L — L
@ Destruction L -1 +A X L
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I Construction and destruction AT
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L=14+AxL

a Construction 1 + Ax L — L
@ Destruction L -1 +A X L

Coalgebras come from algebras by duality
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I Colgebras, categorically A\‘("'

For a functor F: C — C, an F-coalgebra is a pair (X, ) with

X

|o

F(X)
We call F the type and « the structure map of (X, a).

The structure map « tells us how the elements of X are observed
by deconstruction.
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I Data stream AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

(Stream(A),Head, Tail), with
w Head: Stream(A) — A,
w Tail : Stream(A) — Stream(A).

Stream(A)
J/(Head,Tail)
A X Stream(A)

F: Set — Set; A x X — X gives Stream(A)
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I Further reading T
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= Bart Jacobs and Jan Rutten. “A Tutorial on (Co)Algebras
and (Co)Induction”. In: EATCS Bulletin (1997)

m Jan Rutten. “Universal coalgebra: a theory of systems”. In:
Theoretical Computer Science (2000)

a Jan Rutten. The Method of Coalgebra: exercises in
coinduction. 2019
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“[Coalgebra] aims to be the mathematics of
computational dynamics” — Bart Jacobs
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I Coalgebras as state machines AT
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Stream(A) generates values of type A
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I Coalgebras as state machines AT
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Stream(A) generates values of type A

(Head, Tail) corresponds to a function X — A x X

For s,s1 € X, and a € A, we write

s 2 s iff Head(s) = aand Tail(s) = s;
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I Coalgebras as state machines A\‘("'

Stream(A) generates values of type A

(Head, Tail) corresponds to a function X — A x X

For s,s1 € X, and a € A, we write

s 2 s iff Head(s) = aand Tail(s) = s;
In the state s, we can observe a and move to the state s;

R. Pascual — Formale Systeme Il: Theorie 43/61



We observe s:




We observe s:

We observe si:
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We observe s:

We observe si:

We observe s»:
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We observe s:
We observe si:
We observe s»:

And so on
a ar ar as as
S— S —>»S —>83 —>S4 — ...
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We observe s:

OO
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We observe s:

We observe s1:
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We observe s:

We observe s1:

We observe sp:
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We observe s:

OO
OO0
OO On0

We observe s1:

We observe sp:

()
O OnOROR O
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I Automata? A“(IT

We can consider

w the sequence (a, a1, a2, a3, aa, .. .) as the trace of s
e {s,5,%,53,5,...} as states

. a ey .
m i Ax X — X;(a,s)— s iff s = & as a transition function
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I Automata? A“(IT

We can consider

w the sequence (a, a1, a2, a3, aa, .. .) as the trace of s
e {s,5,%,53,5,...} as states

w5 Ax X — X;(a,s)— s iff s 2 s’ as a transition function

X

|

XA

Deterministic
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I Automata? AT
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We can consider
w the sequence (a, a1, a2, a3, aa, .. .) as the trace of s
e {s,5,%,53,5,...} as states
w5 Ax X — X;(a,s)— s iff s 2 s’ as a transition function

X X
XA 2(X)°
Deterministic Nondeterministic
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I Automata? AT

We can consider

w the sequence (a, a1, a2, a3, aa, .. .) as the trace of s
e {s,5,%,53,5,...} as states

w5 Ax X — X;(a,s)— s iff s 2 s’ as a transition function

X X X
| | |
XA P(X)A Pe(X)A

Deterministic Nondeterministic NDF
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Coinductive functions
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I Coalgebra momorphisms

A morphism of F-coalgebras is an arrow f: (X,a) — (Y, ) such
that

Think functoriality!

Morphism are maps on the carrier that preserve the dynamics

Bof=F(f)oa
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I Stream(A) as a terminal coalgebra A[{]]

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Stream(A) is a terminal coalgebra for T(X) = A x X.

For an arbitrary T-coalgebra U, the unique morphism f:
U — Stream(A) is given by

f(u)(n) = Heady (Tail()(u))

for all u e U, ne N.

It satisfies
a Heady = HeadStream(A) of
ma foTaily = TailStrea.m(A) of

Uniqueness by induction
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I Stream(A) as a terminal coalgebra A[{]]

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Stream(A) is a terminal coalgebra for T(X) = A x X.

a Coinductive definitions are based on the existence of h:
X — Stream(A).

a Coinductive proofs are based on the uniqueness of h:
X — Stream(A).
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I Functions on algebraic data types AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

An inductive definition definition of a function f defines values
for all constructors

fun Len : (List a —> Nat) =
1 —> match 1 with
| Nil —> Zero
| Cons(a, 1') —> Succ (Len 1)
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I Functions on coalgebraic data types A\‘("'

A coinductive definition definition of a function f defines
equations for all destructors.
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I Functions on coalgebraic data types A\‘("'

A coinductive definition definition of a function f defines
equations for all destructors.

Let us define a function 0dd : Stream(A) — Stream(A) that only
keeps the elements at odd indices:
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I Functions on coalgebraic data types A\‘("'

A coinductive definition definition of a function f defines
equations for all destructors.

Let us define a function 0dd : Stream(A) — Stream(A) that only
keeps the elements at odd indices:

Head(0dd(s)) = Head(s)
Tail(0dd(s)) = 0dd(Tail(Tail(s)))
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I Functions on coalgebraic data types A\K"'

A coinductive definition definition of a function f defines
equations for all destructors.

Let us define a function 0dd : Stream(A) — Stream(A) that only
keeps the elements at odd indices:

Head(0dd(s)) = Head(s)
Tail(0dd(s)) = 0dd(Tail(Tail(s)))

0dd defines a morphism of T-coalgebras (with T(X) = A x X)
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I Even and merge T
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Questions How can we define Even?
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I Even and merge T
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Questions How can we define Even?
Even = 0ddoTail.
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I Even and merge T

Questions How can we define Even?
Even = 0ddoTail.

Merge : Stream(A) x Stream(A) — Stream(A) alternate the
elements of the two streams:
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I Even and merge ST

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Questions How can we define Even?
Even = 0dd o Tail.

Merge : Stream(A) x Stream(A) — Stream(A) alternate the

elements of the two streams:

Head(Merge(s, s’)) = Head(s)
Tail(Merge(s,s’)) = Merge(s’, (Tails))

R. Pascual — Formale Systeme |l: Theorie 52/61



I Even and merge ST

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Questions How can we define Even?
Even = 0dd o Tail.

Merge : Stream(A) x Stream(A) — Stream(A) alternate the
elements of the two streams:

Head(Merge(s, s’)) = Head(s)
Tail(Merge(s,s’)) = Merge(s’, (Tails))

How do we prove that Merge(0dd s Evens) = s for any stream s?
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I Fixpoints T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Theorem

The operation of an initial (resp. a terminal) algebra is an
isomorphism.

If (A, «) is an initial F-algebra, then a: F(A) — A has an inverse
a”l: A— F(A).

If (A, ) is a terminal F-algebra, then a.: A — F(A) has an inverse
a~l: F(A) = A.
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I Proof (case of the initial algebra) ST

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
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I Proof (case of the initial algebra) ST
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1. (F(A), F(«)) is an F-algebra
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I Proof (case of the initial algebra) ST
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1. (F(A), F(«)) is an F-algebra

. But (A, ) is initiall
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I Proof (case of the initial algebra) A\K"'

2. By initiality of (A, «), there is a function a: A — F(A) such
that the following diagram commutes
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I Proof (case of the initial algebra)

2. By initiality of (A, «), there is a function a: A — F(A) such
that the following diagram commutes

F(A) — F(F(A))
ai lF
—— F(A)

. But we can compose « and a!
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I Proof (case of the initial algebra) A\K"'

3. By composition, a o a corresponds to a F-algebra morphism,
and the following diagram commutes

F(a) F(a)

F(A) — F(F(A) — F(A)

a lF(a) l

A—— F(A) ——— A

Q
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I Proof (case of the initial algebra) A\K"'

3. By composition, a o a corresponds to a F-algebra morphism,
and the following diagram commutes

F(a) F(a)

F(A) — F(F(A) — F(A)

a lF(a) l

A—— F(A) ——— A

Q

. But (A, a) is initial!
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I Proof (case of the initial algebra) ST
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4. By initiality, o a is ida, and the following diagram commutes

/ldF \

F(A) 9 F(F(a)) 29 Fa)
. [ la
g \FldA;
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I Proof (case of the initial algebra)

4. By initiality, o a is ida, and the following diagram commutes

/ldF \

F(A) 9 F(F(a)) 29 Fa)
. [ la
g \FldA—:

Then aoa = F(a) ¢} F(a) = F(a o a) = F(idA) = idF(A),
i.e., a: F(A) — Ais an isomorphism with a as its inverse.
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Nooooooo! You can't just
draw a picture and claim
it's a mathematical proof. You
need to rigorously prove the claim
instead!

A picture is a valid
34%
A picture is a valid

mathematical proof
mathematical proof

s 55 70
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I Equality? T

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

A coalgebra consists of a carrier set X and a function «:
X — F(X) out of X.
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I Equality? T
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A coalgebra consists of a carrier set X and a function «:
X — F(X) out of X.

We do not know how to form elements of X, we only know X
through observations, meaning that we have limited access to X.
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I Equality? A\‘(IT

A coalgebra consists of a carrier set X and a function «:
X — F(X) out of X.

We do not know how to form elements of X, we only know X
through observations, meaning that we have limited access to X.

Two elements of Stream(A) might be different as elements of
Stream(A) while giving rise to the same sequence of elements of A.
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| Equatity? ST

A coalgebra consists of a carrier set X and a function «:
X — F(X) out of X.

We do not know how to form elements of X, we only know X
through observations, meaning that we have limited access to X.

Two elements of Stream(A) might be different as elements of
Stream(A) while giving rise to the same sequence of elements of A.

They are observationally indistinguishable or bisimular.
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I Bisimulation of automata AT
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I Bisimulation of automata AT
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I Bisimulation on Stream(A) T
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A bisimulation on Stream(A) is a relation
R C Stream(A) x Stream(A) such that for all s, s’ € Stream(A),
R(s,s") implies

a Head(s) = Head(s')

a R(Tail(s),Tail(s))
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| Bisimulation on strean(A) AT

A bisimulation on Stream(A) is a relation
R C Stream(A) x Stream(A) such that for all s, s’ € Stream(A),
R(s,s") implies

a Head(s) = Head(s')

a R(Tail(s),Tail(s))

Stream(A) follows the following coinductive proof principle: if
there is a bisimulation R such that for all s, s’ € Stream(A),
R(s,s’), then for all s,s’ € Stream(A), s =5’
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I Merge(0dd(s),Even(s)) = s AT
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Consider R = {(Merge(0dd(s),Even(s)),s) | s € Stream(A)}
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I Merge(0dd(s),Even(s)) = s AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Consider R = {(Merge(0dd(s),Even(s)),s) | s € Stream(A)}

Head(Merge(0dd(s), Even(s)))
= Head(0dd(s))
= Head(s)
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I Merge(0dd(s),Even(s)) = s AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Consider R = {(Merge(0dd(s),Even(s)),s) | s € Stream(A)}

Head(Merge(0dd(s), Even(s)))
= Head(0dd(s))
= Head(s)

Tail(Merge(0dd(s), Even(s)))

= Merge(Even(s), Tail(0dd(s)))

= Merge(0dd(Tail(s)),0dd(Tail(Tail(s))))
= Merge(0dd(Tail(s)), Even(Tail(s)))

R. Pascual — Formale Systeme Il: Theorie 59/61



I Bisimulation, formally

Given a functor F: Set — Set, an F-bisimulation between two
F-coalgebras (S,as) (T,art) is an F-coalgebra (R, ag) such that
a RCSxT

a the projections m1: R — S and m: R — T yields F-coalgebra
morphisms

S+ ™ R 4T

o
F(S) ( F(T)

F(m) F(R) F(m2)
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Coinduction proof principle A\‘(".

If R is a bisimulation between a terminal coalgebra S and itself,
then R C {(s,s) | s € S}.

Equivalently, For all s,s" € S,

R(s,s') = s=5

To prove the equility of two states, if suffices to proove that they
are bisimular!
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