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Induction
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“An algebraic data type is defined by structural induction.”
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Induction on N

Principle of induction

Let P(n) be a proposition depending on n ∈ N. If:
Base case: P(0) is true,

Inductive step: For all k ∈ N, if P(k) is true, then P(k + 1)
is true,

then P(n) is true for all n ∈ N.

∀P
( [

0 ∈ P ∧ ∀k ∈ N
(
k ∈ P ⇒ (k + 1) ∈ P

)]
⇐⇒ N ⊆ P

)
∀P

( [
P(0) ∧ ∀k

(
P(k)⇒ P(k + 1)

)]
⇐⇒ ∀n P(n)

)
How can this proof method be generalized to other sets/structures?
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Well-founded set

Definition

A set S equipped with a binary relation ⪯⊆ S2 is well-founded if
every non-empty subset X of S has a minimal element for ⪯.

∀X ⊆ S (X ̸= ∅⇒ ∃m ∈ X , ∀s ∈ X (s ̸⪯ m))

Example: N with ≤N

Counter-example: R with ≤R
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Mathematical induction

A poset (S ,⪯) admits the principle of mathematical induction
if for all propositions P on the elements of S , the two following are
equivalent

∀s ∈ S P(s)

∀s ∈ S (∀s ′ ∈ S , s ′ ⪯ s ⇒ P(s ′))⇒ P(s)

Theorem

(S ,⪯) admits the principle of mathematical induction if and only if
it is well-founded.

By Zorn’s lemma (∼ AC), R admits the principle of mathematical
induction.
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Inductive definition

Definition

An inductive definition of a subset S of X is given by :

the base elements B that belong to the set,

the construction rules Fi : X
ni → X that generate new

elements from those already in the set.

S is then the smallest set such that B ⊆ S and for all Fi and all
(s1, . . . , sni ) ∈ Sni , Fi (s1, . . . , sni ) ∈ S .

In programming, these sets correspond to algebraic data types.
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Natural numbers

0 is a natural number,

if n is a natural number, then Succ(n) is a natural number.
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Lists of type τ

Nil is a list of type τ ,

if t is a list of type τ and h is of type τ , then Cons(t, h) is a
list of type τ .
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(Binary) trees of type τ

Leaf is a tree of type τ ,

if l and r are trees of type τ and n is of type τ , then
Branch(n, l , r) is a tree of type τ .
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Structural induction

Structural induction allows to prove properties about algebraic
data types.

To prove a property P about an algebraic data type S , it suffices
to show:

Base case: P(b) holds for all b ∈ B.

Inductive steps: For each construction rule Fi , if P(s1), . . . ,
P(sni ) hold, then P(Fi (s1, . . . , sni )) holds.

Structural induction is deduced from mathematical induction by
considering the order ⪯ on terms such that

t ⪯ t ′ ⇐⇒ t ′ = Fi (. . . , t, . . .)

for some construction rule Fi .
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Algebra on data types
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“An algebraic data type is obtained by putting together other
types via algebraic manipulations.”
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Everything is an algebraic data type

data Bool = True | False ;

data Season = Winter | Spring | Summer | Fall ;
data Nat = Zero | Succ Nat ;
data LinExp =

| Nat

| Add LinExp LinExp

| Mul LinExp LinExp ;
data List a = Nil | Cons a ( List a ) ;
data Tree a =

| Leaf

| Branch a ( Tree a ) ( Tree a ) ;
data Maybe a = Nothing | Just a ;
data Pair a b = Pair a b ;
data Either a b = Left a | Right b ;
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Algebraic manipulations

Algebra deals with multiplications and additions.

Product type τ = τL × τR : Pair, product in the category of
types and functions, ∼ Cartesian product of sets.

For a type Pair a b we assume functions

Fst : Pair a b -> a giving the first element
Snd : Pair a b -> b giving the second element

Sum type τ = τL + τR : Either, coproduct in the category of
types and functions, ∼ disjoint union of sets.

Unit type unit: Unit, terminal object in the category of types
and functions, ∼ singleton set.

Zero type void: Void, initial object in the category of types
and functions, ∼ empty set.
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Commutativity

For two types τ , τ ′,

τ × τ ′ = τ ′ × τ ?

✗

τ × τ ′ ≃ τ ′ × τ ?

✓

τ + τ ′ = τ ′ + τ ?

✗

τ + τ ′ ≃ τ ′ + τ ?

✓
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Commutativity: isomorphisms

For τ × τ ′ ≃ τ ′ × τ , the isomorphism is given by

fun swap : ( Pair a b −> Pair b a ) =
p −> Pair ( Snd p ) ( Fst p )

For τ + τ ′ ≃ τ ′ + τ , the isomorphism is given by

fun flip : ( Either a b −> Either b a ) =
e −> match e with

| Left a −> Right a

| Right b −> Left b
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Other properties

For any types τ , τ1, τ2, and τ3

Neutral elements

τ × unit ≃ τ ≃ unit× τ

τ + void ≃ τ ≃ void+ τ

Associativity

τ1 × (τ2 × τ3) ≃ (τ1 × τ2)× τ3

τ1 + (τ2 + τ3) ≃ (τ1 + τ2) + τ3

Distributivity

τ1 × (τ2 + τ3) ≃ (τ1 × τ2) + (τ1 × τ3)

Absorption

τ × void ≃ void ≃ void× τ
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Questions

1. What is the algebraic structure associated with the types?

A (commutative) semiring.

2. What is the type 2?
2 = 1 + 1, so unit+ unit ≃ Bool .

3. What is the type associated with
data Season = Winter | Spring | Summer | Fall ;
4.

4. What is the type 1 + a?
data Maybe a = Nothing | Just a ; .
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Algebra is about solving equations

Let l be a function such that l(a) = 1 + a× l(a).

What is the associated type?

Let us forget about types for now and do some simple math:

l(a) = 1 + a× l(a)

l(a)−a× l(a) = 1

l(a)× (1−a) = 1

l(a) =
1

1−a

But, we do not have subtraction or division! l(a) =
∑∞

n=0 a
n
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Solving equations (continued)

How can we interpret l(a) =
∑∞

n=0 a
n?

Generating functions and formal power series

l(a) = 1 + a× l(a)

= 1 + a× (1 + a× l(a))

= 1 + a+ a× a× l(a)

= 1 + a+ a× a× (1 + a× l(a))

= 1 + a+ a2 + a3 × l(a)

= 1 + a+ a2 + a3 + a4 + . . .

data List a = Nil | Cons a ( List a )
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(Initial) Algebras

R. Pascual – Formale Systeme II: Theorie 23/61



“An algebraic data type is described by a functor.”
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Algebra

Algebras are sets with operations.

Example: (N, 0, Succ), with 0 ∈ N and Succ : N→ N.

Equivalently,

1 + N

N

[Zero,Succ]

where 1 = {∅} and Zero(∅) = 0.
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Lists

(List(A), [], Cons), with

[] ∈ List(A),

Cons : A× List(A)→ List(A).

1 + A× List(A)

List(A)

[Nil,Cons]

where 1 = {∅} and Nil(∅) = [].

R. Pascual – Formale Systeme II: Theorie 26/61



Trees

(Tree(A), [], Branch), with

[] ∈ Tree(A),

Branch : A× Tree(A)× Tree(A)→ Tree(A).

1 + A× Tree(A)× Tree(A)

Tree(A)

[Leaf,Branch]

where 1 = {∅} and Leaf(∅) = [].
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Algebras, categorically

For a functor F : C → C, an F -algebra is a pair (X , α) with

F (X )

X

α

We call F the type and α the structure map of (X , α).

The structure map α tells us how the elements of X are
constructed from other elements in X .

R. Pascual – Formale Systeme II: Theorie 28/61



Examples

F : Set→ Set; X 7→ 1 + X gives N

F : Set→ Set; X 7→ 1 + A× X gives List(A)

F : Set→ Set; X 7→ 1 + A× X × X gives Tree(A)
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Algebra momorphisms

A morphism of F -algebras is an arrow f : (X , α)→ (Y , β) such
that

F (X ) F (Y )

X Y

F (f )

α β

f

Think functoriality!

R. Pascual – Formale Systeme II: Theorie 30/61



Initial algebra

The natural numbers are an initial algebra.

Inductive definitions are based on the existence of h : N→ A.

Inductive proofs are based on the uniqueness of h : N→ A.
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Coalgebraic Data Types
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Motivation
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Induction and coinduction

Induction corresponds to

initiality of an algebra

least fixed point of a monotone function

Coinduction corresponds to

terminality (also called finality) of an algebra

greatest fixed point of a monotone function
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Constructing lists

data List a = Nil | Cons a ( List a )

Abstracted into L = 1+ A× L

Constructors

Nil ≃ Unit

, equivalent to Nil : 1→ L

Cons : Pair a (List a) -> List a

,
equivalent to Cons : A× L→ L

Rather than equality, we have 1+ A× L→ L
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Observing the list

What if we want to observe what is in the list?

Then we need to deconstruct the list!

Destructors

Head : List a -> a

, equivalent to Head : L→ A

Tail : List a -> List a

,
equivalent to Tail : L→ L

Rather than equality, we have L→ 1+ A× L
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Safe head and safe tail

What about L→ 1?

data Maybe a = Nothing | Just a ;

The function L→ 1+ A× L, corresponds to

Maybe ( Pair Head Tail )

The product A× L means that the head and tail of a sequence are
related: they are selected or observed together
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Construction and destruction

L = 1+ A× L

Construction 1+ A× L→ L

Destruction L→ 1+ A× L

Coalgebras come from algebras by duality
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Colgebras, categorically

For a functor F : C → C, an F -coalgebra is a pair (X , α) with

X

F (X )

α

We call F the type and α the structure map of (X , α).

The structure map α tells us how the elements of X are observed
by deconstruction.
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Data stream

(Stream(A), Head, Tail), with

Head : Stream(A)→ A,

Tail : Stream(A)→ Stream(A).

Stream(A)

A× Stream(A)

(Head,Tail)

F : Set→ Set; A× X 7→ X gives Stream(A)
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Further reading

Bart Jacobs and Jan Rutten. “A Tutorial on (Co)Algebras
and (Co)Induction”. In: EATCS Bulletin (1997)

Jan Rutten. “Universal coalgebra: a theory of systems”. In:
Theoretical Computer Science (2000)

Jan Rutten. The Method of Coalgebra: exercises in
coinduction. 2019
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“[Coalgebra] aims to be the mathematics of
computational dynamics” – Bart Jacobs
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Coalgebras as state machines

Stream(A) generates values of type A

(Head, Tail) corresponds to a function X → A× X

For s, s1 ∈ X , and a ∈ A, we write

s
a−→ s1 iff Head(s) = a and Tail(s) = s1

In the state s, we can observe a and move to the state s1
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We observe s:
s

a−→ s1

We observe s1:
s

a−→ s1
a1−→ s2

We observe s2:
s

a−→ s1
a1−→ s2

a2−→ s3

And so on
s

a−→ s1
a1−→ s2

a2−→ s3
a3−→ s4

a4−→ . . .

R. Pascual – Formale Systeme II: Theorie 44/61



We observe s:
s

a−→ s1

We observe s1:
s

a−→ s1
a1−→ s2

We observe s2:
s

a−→ s1
a1−→ s2

a2−→ s3

And so on
s

a−→ s1
a1−→ s2

a2−→ s3
a3−→ s4

a4−→ . . .

R. Pascual – Formale Systeme II: Theorie 44/61



We observe s:
s

a−→ s1

We observe s1:
s

a−→ s1
a1−→ s2

We observe s2:
s

a−→ s1
a1−→ s2

a2−→ s3

And so on
s

a−→ s1
a1−→ s2

a2−→ s3
a3−→ s4

a4−→ . . .

R. Pascual – Formale Systeme II: Theorie 44/61



We observe s:
s

a−→ s1

We observe s1:
s

a−→ s1
a1−→ s2

We observe s2:
s

a−→ s1
a1−→ s2

a2−→ s3

And so on
s

a−→ s1
a1−→ s2

a2−→ s3
a3−→ s4

a4−→ . . .

R. Pascual – Formale Systeme II: Theorie 44/61



We observe s:

s s1
a

We observe s1:

s s1 s2
a a1

We observe s2:

s s1 s2 s3
a a1 a2

And so on

s s1 s2 s3 s4 . . .a a1 a2 a3 a4
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Automata?

We can consider

the sequence (a, a1, a2, a3, a4, . . .) as the trace of s

{s, s1, s2, s3, s4, . . .} as states
δ : A× X → X ; (a, s) 7→ s ′ iff s

a−→ s ′ as a transition function

X

XA

α

Deterministic

X

P(X )A

α

Nondeterministic

X

Pf (X )A

α

NDF
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Coinductive functions
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Coalgebra momorphisms

A morphism of F -coalgebras is an arrow f : (X , α)→ (Y , β) such
that

X Y

F (X ) F (Y )

f

α β

F (f )

Think functoriality!

Morphism are maps on the carrier that preserve the dynamics

β ◦ f = F(f ) ◦ α
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Stream(A) as a terminal coalgebra

Stream(A) is a terminal coalgebra for T (X ) = A× X .

For an arbitrary T -coalgebra U, the unique morphism f :
U → Stream(A) is given by

f (u)(n) = HeadU (TailnU(u))

for all u ∈ U, n ∈ N.

It satisfies

HeadU = HeadStream(A) ◦f
f ◦ TailU = TailStream(A) ◦f

Uniqueness by induction
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Stream(A) as a terminal coalgebra

Stream(A) is a terminal coalgebra for T (X ) = A× X .

Coinductive definitions are based on the existence of h :
X → Stream(A).

Coinductive proofs are based on the uniqueness of h :
X → Stream(A).
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Functions on algebraic data types

An inductive definition definition of a function f defines values
for all constructors.

fun Len : ( List a −> Nat ) =
l −> match l with

| Nil −> Zero

| Cons (a , l ’ ) −> Succ ( Len l ’ )
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Functions on coalgebraic data types

A coinductive definition definition of a function f defines
equations for all destructors.

Let us define a function Odd : Stream(A)→ Stream(A) that only
keeps the elements at odd indices:

{
Head(Odd(s)) = Head(s)

Tail(Odd(s)) = Odd(Tail(Tail(s)))

Odd defines a morphism of T -coalgebras (with T (X ) = A× X )
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Even and merge

Questions How can we define Even?

Even = Odd ◦ Tail.

Merge : Stream(A)× Stream(A)→ Stream(A) alternate the
elements of the two streams:

{
Head(Merge(s, s ′)) = Head(s)

Tail(Merge(s, s ′)) = Merge(s ′, (Tail s))

How do we prove that Merge(Odd s Even s) = s for any stream s?
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Fixpoints

Theorem

The operation of an initial (resp. a terminal) algebra is an
isomorphism.

If (A, α) is an initial F -algebra, then α : F (A)→ A has an inverse
α−1 : A→ F (A).

If (A, α) is a terminal F -algebra, then α : A→ F (A) has an inverse
α−1 : F (A)→ A.
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Proof (case of the initial algebra)

1. (F (A),F (α)) is an F -algebra

F (F (A))

F (A)

F (α)

... But (A, α) is initial!
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Proof (case of the initial algebra)

2. By initiality of (A, α), there is a function a : A→ F (A) such
that the following diagram commutes

F (A) F (F (A))

A F (A)

F (a)

α F (α)

a

... But we can compose α and a!
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Proof (case of the initial algebra)

3. By composition, α ◦ a corresponds to a F -algebra morphism,
and the following diagram commutes

F (A) F (F (A)) F (A)

A F (A) A

F (a)

α

F (α)

F (α) α

a α

... But (A, α) is initial!
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Proof (case of the initial algebra)

4. By initiality, α ◦ a is idA, and the following diagram commutes

F (A) F (F (A)) F (A)

A F (A) A

F (a)

idF (A)

α

F (α)

F (α) α

a

idA

α

Then a ◦ α = F (α) ◦ F (a) = F (α ◦ a) = F (idA) = idF (A),
i.e., α : F (A)→ A is an isomorphism with a as its inverse.
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Equality?

A coalgebra consists of a carrier set X and a function α :
X → F (X ) out of X .

We do not know how to form elements of X , we only know X
through observations, meaning that we have limited access to X .

Two elements of Stream(A) might be different as elements of
Stream(A) while giving rise to the same sequence of elements of A.

They are observationally indistinguishable or bisimular.
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Bisimulation of automata

q0

q1

q2

q3

q4

q5

. . .

b

a

b

a

b

a

q0

q1

b

a

R. Pascual – Formale Systeme II: Theorie 57/61



Bisimulation of automata

q0

q1

q2

q3

q4

q5

. . .

b

a

b

a

b

a q0

q1

b

a

R. Pascual – Formale Systeme II: Theorie 57/61



Bisimulation on Stream(A)

A bisimulation on Stream(A) is a relation
R ⊆ Stream(A)× Stream(A) such that for all s, s ′ ∈ Stream(A),
R(s, s ′) implies

Head(s) = Head(s ′)

R(Tail(s), Tail(s ′))

Stream(A) follows the following coinductive proof principle: if
there is a bisimulation R such that for all s, s ′ ∈ Stream(A),
R(s, s ′), then for all s, s ′ ∈ Stream(A), s = s ′.
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Merge(Odd(s), Even(s)) = s

Consider R = {(Merge(Odd(s), Even(s)), s) | s ∈ Stream(A)}

Head(Merge(Odd(s), Even(s)))

= Head(Odd(s))

= Head(s)

Tail(Merge(Odd(s), Even(s)))

= Merge(Even(s), Tail(Odd(s)))

= Merge(Odd(Tail(s)), Odd(Tail(Tail(s))))

= Merge(Odd(Tail(s)), Even(Tail(s)))
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Bisimulation, formally

Given a functor F : Set→ Set, an F -bisimulation between two
F -coalgebras (S , αS) (T , αT ) is an F -coalgebra (R, αR) such that

R ⊆ S × T

the projections π1 : R → S and π2 : R → T yields F -coalgebra
morphisms

S R T

F (S) F (R) F (T )

αS

π1 π2

αR αT

F (π1) F (π2)
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Coinduction proof principle

If R is a bisimulation between a terminal coalgebra S and itself,
then R ⊆ {(s, s) | s ∈ S}.

Equivalently, For all s, s ′ ∈ S ,

R(s, s ′) =⇒ s = s ′.

To prove the equility of two states, if suffices to proove that they
are bisimular!
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