AT

Karlsruhe Institute of Technology

Formale Systeme Il: Theorie

(Co)algebraic Data Types

Summer Semester 2024

Prof. Dr. Bernard Beckert - Dr. Romain Pascual - Dr. Mattias Ulbrich

KIT — The Research University in the Helmholtz Association www.kit.edu

http://www.kit.edu

Algebraic data types

R. Pascual — Formale Systeme Il: Theorie 2/61

Induction

R. Pascual — Formale Systeme Il: Theorie 3/61

“An algebraic data type is defined by structural induction.”

R. Pascual — Formale Systeme Il: Theorie 4/61

I Induction on N

Principle of induction

Let P(n) be a proposition depending on n € N. If:

= Base case: P(0) is true,

® Inductive step: For all k € N, if P(k) is true, then P(k + 1)
is true,

then P(n) is true for all n € N.

R. Pascual — Formale Systeme Il: Theorie 5/61

I Induction on N AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Principle of induction

Let P(n) be a proposition depending on n € N. If:
= Base case: P(0) is true,

® Inductive step: For all k € N, if P(k) is true, then P(k + 1)
is true,

then P(n) is true for all n € N.

VP([0e PAVkeN (ke P=(k+1)eP)] < NCP)

R. Pascual — Formale Systeme Il: Theorie 5/61

I Induction on N AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Principle of induction

Let P(n) be a proposition depending on n € N. If:
= Base case: P(0) is true,

® Inductive step: For all k € N, if P(k) is true, then P(k + 1)
is true,

then P(n) is true for all n € N.

VP([0e PAVkeN (ke P=(k+1)eP)] < NCP)

VP ([P(0) AVk (P(k) = P(k+1))] < Vn P(n))

R. Pascual — Formale Systeme Il: Theorie 5/61

I Induction on N AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Principle of induction

Let P(n) be a proposition depending on n € N. If:
= Base case: P(0) is true,

® Inductive step: For all k € N, if P(k) is true, then P(k + 1)
is true,

then P(n) is true for all n € N.

VP([0e PAVkeN (ke P=(k+1)€P)] — NCP)
VP ([P(0) AVk (P(k) = P(k+1))] < Vn P(n))

How can this proof method be generalized to other sets/structures?

R. Pascual — Formale Systeme Il: Theorie 5/61

I Well-founded set AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

A set S equipped with a binary relation <C S? is well-founded if
every non-empty subset X of S has a minimal element for <.

VXCS(X#@=3Ime X,Vse X(s £ m))

Example: N with <y

Counter-example: R with <p

R. Pascual — Formale Systeme Il: Theorie 6/61

I Mathematical induction AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A poset (S, <) admits the principle of mathematical induction
if for all propositions P on the elements of S, the two following are
equivalent

waVseS P(s)
aVseS(Vs'eS, s <s= P(s") = P(s)

Theorem

(S, =) admits the principle of mathematical induction if and only if
it is well-founded.

By Zorn's lemma (~ AC), R admits the principle of mathematical
induction.

R. Pascual — Formale Systeme Il: Theorie 7/61

I Inductive definition

Definition

An inductive definition of a subset S of X is given by :
a the base elements B that belong to the set,

a the construction rules F;: X" — X that generate new
elements from those already in the set.

S is then the smallest set such that B C S and for all F; and all
(S1,...,5n) € S™, Fi(s1,...,5n,) € S.

In programming, these sets correspond to algebraic data types.

R. Pascual — Formale Systeme Il: Theorie 8/61

Natural numbers
a 0 is a natural number,

w if nis a natural number, then Succ(n) is a natural number.

R. Pascual — Formale Systeme Il: Theorie 9/61

Lists of type 7
m Nil is a list of type T,

w if tis a list of type 7 and h is of type 7, then Cons(t, h) is a
list of type 7.

R. Pascual — Formale Systeme Il: Theorie 10/61

(Binary) trees of type 7
m Leaf is a tree of type T,

m if / and r are trees of type 7 and n is of type 7, then
Branch(n,/, r) is a tree of type 7.

R. Pascual — Formale Systeme Il: Theorie 11/61

I Structural induction A\‘(IT

Structural induction allows to prove properties about algebraic
data types.

To prove a property P about an algebraic data type S, it suffices
to show:

= Base case: P(b) holds for all b € B.

® Inductive steps: For each construction rule F;, if P(s1), ...,
P(sp;) hold, then P(Fi(s1,...,sn)) holds.

Structural induction is deduced from mathematical induction by
considering the order < on terms such that

t=xt = t'=F(..,t...)
for some construction rule F;.

R. Pascual — Formale Systeme Il: Theorie 12/61

Algebra on data types

R. Pascual — Formale Systeme Il: Theorie 13/61

“An algebraic data type is obtained by putting together other
types via algebraic manipulations.”

R. Pascual — Formale Systeme Il: Theorie 14/61

I Everything is an algebraic data type AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

data Bool = True | False;

R. Pascual — Formale Systeme |l: Theorie 15/61

I Everything is an algebraic data type A[{]]

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;

R. Pascual — Formale Systeme Il: Theorie 15/61

I Everything is an algebraic data type

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
data Nat = Zero | Succ Nat;

R. Pascual — Formale Systeme Il: Theorie 15/61

I Everything is an algebraic data type

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
data Nat = Zero | Succ Nat;
data LinExp =
| Nat
| Add LinExp LinExp
| Mul LinExp LinExp;

R. Pascual — Formale Systeme Il: Theorie 15/61

I Everything is an algebraic data type

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
data Nat = Zero | Succ Nat;
data LinExp =
| Nat
| Add LinExp LinExp
| Mul LinExp LinExp;
data List a = Nil | Cons a (List a);

R. Pascual — Formale Systeme Il: Theorie 15/61

I Everything is an algebraic data type

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
data Nat = Zero | Succ Nat;
data LinExp =

| Nat

| Add LinExp LinExp

| Mul LinExp LinExp;
data List a = Nil | Cons a (List a);
data Tree a =

| Leaf

| Branch a (Tree a) (Tree a);

R. Pascual — Formale Systeme Il: Theorie 15/61

I Everything is an algebraic data type

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
data Nat = Zero | Succ Nat;
data LinExp =

| Nat

| Add LinExp LinExp

| Mul LinExp LinExp;
data List a = Nil | Cons a (List a);
data Tree a =

| Leaf

| Branch a (Tree a) (Tree a);
data Maybe a = Nothing | Just a;

R. Pascual — Formale Systeme Il: Theorie 15/61

I Everything is an algebraic data type

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
data Nat = Zero | Succ Nat;
data LinExp =

| Nat

| Add LinExp LinExp

| Mul LinExp LinExp;
data List a = Nil | Cons a (List a);
data Tree a =

| Leaf

| Branch a (Tree a) (Tree a);
data Maybe a = Nothing | Just a;
data Pair a b = Pair a b;

R. Pascual — Formale Systeme Il: Theorie 15/61

I Everything is an algebraic data type

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
data Nat = Zero | Succ Nat;
data LinExp =

| Nat

| Add LinExp LinExp

| Mul LinExp LinExp;
data List a = Nil | Cons a (List a);
data Tree a =

| Leaf

| Branch a (Tree a) (Tree a);
data Maybe a = Nothing | Just a;
data Pair a b = Pair a b;
data Either a b = Left a | Right b;

R. Pascual — Formale Systeme Il: Theorie 15/61

I Everything is an algebraic data type

data Bool = True | False;
data Season = Winter | Spring | Summer | Fall;
data Nat = Zero | Succ Nat;
data LinExp =

| Nat

| Add LinExp LinExp

| Mul LinExp LinExp;
data List a = Nil | Cons a (List a);
data Tree a =

| Leaf

| Branch a (Tree a) (Tree a);
data Maybe a = Nothing | Just a;
data Pair a b = Pair a b;
data Either a b = Left a | Right b;

R. Pascual — Formale Systeme Il: Theorie 15/61

I Algebraic manipulations AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Algebra deals with multiplications and additions.

R. Pascual — Formale Systeme Il: Theorie 16/61

I Algebraic manipulations AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Algebra deals with multiplications and additions.

a Product type 7 = 7, X 7g: Pair, product in the category of
types and functions, ~ Cartesian product of sets.
For a type Pair a b we assume functions

m Fst : Pair a b -> a giving the first element
m Snd : Pair a b -> b giving the second element

R. Pascual — Formale Systeme Il: Theorie 16/61

I Algebraic manipulations A\‘("'

Algebra deals with multiplications and additions.

a Product type 7 = 7, X 7g: Pair, product in the category of
types and functions, ~ Cartesian product of sets.
For a type Pair a b we assume functions

m Fst : Pair a b -> a giving the first element
m Snd : Pair a b -> b giving the second element

m Sum type 7 = 7, + 7g: Either, coproduct in the category of
types and functions, ~ disjoint union of sets.

R. Pascual — Formale Systeme Il: Theorie 16/61

I Algebraic manipulations A\‘("'

Algebra deals with multiplications and additions.

a Product type 7 = 7, X 7g: Pair, product in the category of
types and functions, ~ Cartesian product of sets.
For a type Pair a b we assume functions

m Fst : Pair a b -> a giving the first element
m Snd : Pair a b -> b giving the second element

m Sum type 7 = 7, + 7g: Either, coproduct in the category of
types and functions, ~ disjoint union of sets.

u Unit type unit: Unit, terminal object in the category of types
and functions, ~ singleton set.

R. Pascual — Formale Systeme Il: Theorie 16/61

I Algebraic manipulations A\‘("'

Algebra deals with multiplications and additions.

a Product type 7 = 7, X 7g: Pair, product in the category of
types and functions, ~ Cartesian product of sets.
For a type Pair a b we assume functions

m Fst : Pair a b -> a giving the first element
m Snd : Pair a b -> b giving the second element

m Sum type 7 = 7, + 7g: Either, coproduct in the category of
types and functions, ~ disjoint union of sets.

u Unit type unit: Unit, terminal object in the category of types
and functions, ~ singleton set.

m Zero type void: Void, initial object in the category of types
and functions, ~ empty set.

R. Pascual — Formale Systeme Il: Theorie 16/61

I Commutativity A“(IT

For two types 7, 7/,

TxT =7 x717

T+ =7 +77

R. Pascual — Formale Systeme Il: Theorie 17/61

I Commutativity ST

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

For two types 7, 7/,

X7t =7"xT1?7X

T+ =7"+77X

R. Pascual — Formale Systeme Il: Theorie 17/61

I Commutativity A“(IT

For two types 7, 7/,
X7t =7"xT1?7X

TXxT ~7'xT1?

T+ =7+77X

I S R

R. Pascual — Formale Systeme Il: Theorie 17/61

I Commutativity

For two types 7, 7/,

R. Pascual — Formale Systeme |I: Theorie

X7t =7"xT1?7X

TXT ~1T'xT?/

T+ =7+77X

T+~ 1? S

17/61

I Commutativity: isomorphisms AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

For 7 x 7/ ~ 7/ x 7, the isomorphism is given by

fun swap : (Pair a b —> Pair b a) =
p —> Pair (Snd p) (Fst p)

For 7 + 7/ ~ 7/ + 7, the isomorphism is given by

fun flip : (Either a b —> Either b a) =
e —> match e with
| Left a —> Right a
| Right b —> Left b

R. Pascual — Formale Systeme Il: Theorie 18/61

I Other properties

For any types 7, 71, 7, and 73

Neutral elements
a7 Xunit~7~unit x 7

@ 7+ void ~ 7 ~void + T

Associativity
o7 X (T2 x13) (11 X T2) XT3
e+ (m+n)2(nn+n)+7
Distributivity
w7 X (124 713) >~ (11 X 12) 4+ (11 X 73)

Absorption

a 7 X void ~ void ~ void x T

R. Pascual — Formale Systeme Il: Theorie 19/61

I Questions AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

1. What is the algebraic structure associated with the types?

R. Pascual — Formale Systeme Il: Theorie 20/61

I Questions AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

1. What is the algebraic structure associated with the types?
A (commutative) semiring.

R. Pascual — Formale Systeme |l: Theorie 20/61

I Questions

1. What is the algebraic structure associated with the types?
A (commutative) semiring.

2. What is the type 27

R. Pascual — Formale Systeme |l: Theorie 20/61

I Questions AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

1. What is the algebraic structure associated with the types?
A (commutative) semiring.

2. What is the type 27
2=1+1, so unit + unit ~ Bool.

R. Pascual — Formale Systeme |l: Theorie 20/61

I Questions AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

1. What is the algebraic structure associated with the types?
A (commutative) semiring.

2. What is the type 27
2=1+1, so unit + unit ~ Bool.

3. What is the type associated with
data Season = Winter | Spring | Summer | Fall;

R. Pascual — Formale Systeme |l: Theorie 20/61

I Questions AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

1. What is the algebraic structure associated with the types?
A (commutative) semiring.

2. What is the type 27
2=1+1, so unit + unit ~ Bool.

3. What is the type associated with
data Season = Winter | Spring | Summer | Fall;
4.

R. Pascual — Formale Systeme |l: Theorie 20/61

I Questions AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

1. What is the algebraic structure associated with the types?
A (commutative) semiring.

2. What is the type 27
2=1+1, so unit + unit ~ Bool.

3. What is the type associated with
data Season = Winter | Spring | Summer | Fall;

4.

4. What is the type 1 4 a?

R. Pascual — Formale Systeme |l: Theorie 20/61

I Questions AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

1. What is the algebraic structure associated with the types?
A (commutative) semiring.

2. What is the type 27
2=1+1, so unit + unit ~ Bool.

3. What is the type associated with
data Season = Winter | Spring | Summer | Fall;
4.

4. What is the type 1 4 a?
data Maybe a = Nothing | Just a;.

R. Pascual — Formale Systeme |l: Theorie 20/61

I Algebra is about solving equations AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Let / be a function such that /(a) =1+ a x /(a).

R. Pascual — Formale Systeme Il: Theorie 21/61

I Algebra is about solving equations AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Let / be a function such that /(a) =1+ a x /(a).

What is the associated type?

R. Pascual — Formale Systeme Il: Theorie 21/61

I Algebra is about solving equations A\K"'

Let / be a function such that /(a) =1+ a x /(a).
What is the associated type?

Let us forget about types for now and do some simple math:

I(a) =1+ ax I(a)

R. Pascual — Formale Systeme |l: Theorie 21/61

I Algebra is about solving equations

Let / be a function such that /(a) =1+ a x /(a).
What is the associated type?

Let us forget about types for now and do some simple math:

I(a) =1+ ax I(a)
I(a)—axl(a) =1

R. Pascual — Formale Systeme |l: Theorie 21/61

I Algebra is about solving equations

Let / be a function such that /(a) =1+ a x /(a).
What is the associated type?

Let us forget about types for now and do some simple math:

I(a) =1+ ax I(a)
I(a)—axl(a) =1
I(a) x (1—a) =1

R. Pascual — Formale Systeme |l: Theorie 21/61

I Algebra is about solving equations A\K"'

Let / be a function such that /(a) =1+ a x /(a).
What is the associated type?

Let us forget about types for now and do some simple math:

(a)—l—i—axl()

I(a)—a x I(a) =
I(a) x (1-a) =
I(a) = %

R. Pascual — Formale Systeme Il: Theorie 21/61

I Algebra is about solving equations

Let / be a function such that /(a) =1+ a x /(a).
What is the associated type?

Let us forget about types for now and do some simple math:

(a)—l—i—axl()

I(a)—a x I(a) =
I(a) x (1-a) =
I(a) = %

But, we do not have subtraction or division!

R. Pascual — Formale Systeme Il: Theorie 21/61

I Algebra is about solving equations

Let / be a function such that /(a) =1+ a x /(a).
What is the associated type?

Let us forget about types for now and do some simple math:

(a)—l—i—axl()

I(a)—a x I(a) =
I(a) x (1-a) =
I(a) = %

But, we do not have subtraction or division! /(a) = > a"

n—=

R. Pascual — Formale Systeme |l: Theorie 21/61

I Solving equations (continued) AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

How can we interpret /(a) = > 72, a"?

R. Pascual — Formale Systeme Il: Theorie 22/61

I Solving equations (continued) A\K"'

How can we interpret /(a) = > 72, a"?

Generating functions and formal power series

R. Pascual — Formale Systeme Il: Theorie 22/61

I Solving equations (continued) A\K"'

How can we interpret /(a) = > 72, a"?

Generating functions and formal power series

I(a) =14 axI(a)

R. Pascual — Formale Systeme Il: Theorie 22/61

I Solving equations (continued) A\K"'

How can we interpret /(a) = > 72, a"?

Generating functions and formal power series

I(a) =14 axI(a)
=14+ax(14+axl(a))

R. Pascual — Formale Systeme Il: Theorie 22/61

I Solving equations (continued) A\K"'

How can we interpret /(a) = > 72, a"?

Generating functions and formal power series
I(a) =14 axI(a)

=14+ax(14+axl(a))
=1l+a+axaxl(a)

R. Pascual — Formale Systeme Il: Theorie 22/61

I Solving equations (continued) A\K"'

How can we interpret /(a) = > 72, a"?

Generating functions and formal power series
I(a) =14 axI(a)
=14+ax(14+axl(a))

=1l+a+axaxl(a)
=l+at+axax(l+axl(a))

R. Pascual — Formale Systeme Il: Theorie 22/61

I Solving equations (continued) A\K"'

How can we interpret /(a) = > 72, a"?

Generating functions and formal power series

I(a) =14 axI(a)
=14+ax(14+axl(a))
=1l+a+axaxl(a)
=l+at+axax(l+axl(a))
=1+a+a°+axI(a)

R. Pascual — Formale Systeme Il: Theorie 22/61

I Solving equations (continued) A\K"'

How can we interpret /(a) = > 72, a"?

Generating functions and formal power series

I(a) =14 axI(a)
=14+ax(14+axl(a))
=1l+a+axaxl(a)
=l+at+axax(l+axl(a))
=1+a+a°+axI(a)
=l+a+a+a+a"+...

R. Pascual — Formale Systeme Il: Theorie 22/61

I Solving equations (continued) AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

How can we interpret /(a) = > 72, a"?

Generating functions and formal power series

I(a) =14 axI(a)
=14+ax(14+axl(a))
=1l+a+axaxl(a)
=l+at+axax(l+axl(a))
=1+a+a°+axI(a)
=l+a+a+a+a"+...

data List a = Nil | Coms a (List a)

R. Pascual — Formale Systeme Il: Theorie 22/61

(Initial) Algebras

R. Pascual — Formale Systeme II: Theorie

“An algebraic data type is described by a functor.”

R. Pascual — Formale Systeme Il: Theorie 24/61

I Algebra

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Algebras are sets with operations.

Example: (N,0,Succ), with 0 € N and Succ: N — N.

Equivalently,
1+ N

[Zero,Succ]i

N
where 1 = {@} and Zero(@) = 0.

R. Pascual — Formale Systeme Il: Theorie 25/61

| Lists SIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

(List(A),[], Cons), with
w [] € List(A),
® Cons : A x List(A) — List(A).

1+ A x List(A)

[Nil,Cons]l

List(A)

where 1 = {@} and Nil(@) = [].

R. Pascual — Formale Systeme Il: Theorie 26/61

I Trees AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

(Tree(A), [], Branch), with
u [] € Tree(A),
® Branch: A X Tree(A) x Tree(A) — Tree(A).
1+ A x Tree(A) x Tree(A)
[Leaf,Branch]l
Tree(A)

where 1 = {@} and Leaf (@) = [].

R. Pascual — Formale Systeme Il: Theorie 27/61

I Algebras, categorically AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

For a functor F: C — C, an F-algebra is a pair (X,) with
F(X)

|

X
We call F the type and « the structure map of (X, «).

The structure map « tells us how the elements of X are
constructed from other elements in X.

R. Pascual — Formale Systeme Il: Theorie 28/61

I Examples

m F:Set — Set; X — 1+ X gives N
m F:Set — Set; X +— 1+ A X X gives List(A)

a f:Set — Set; X — 1+ Ax X x X gives Tree(A)

R. Pascual — Formale Systeme Il: Theorie 29/61

I Algebra momorphisms

T

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

A morphism of F-algebras is an arrow f: (X,a) — (Y, /) such

that

Think functoriality!

R. Pascual — Formale Systeme II: Theorie

30/61

I Initial algebra A\‘(IT

The natural numbers are an initial algebra.

a Inductive definitions are based on the existence of h: N — A.

m Inductive proofs are based on the uniqueness of h: N — A.

R. Pascual — Formale Systeme Il: Theorie 31/61

Coalgebraic Data Types

R. Pascual — Formale Systeme Il: Theorie 32/61

Motivation

R. Pascual — Formale Systeme Il: Theorie 33/61

I Induction and coinduction AT

Induction corresponds to
m initiality of an algebra

m |east fixed point of a monotone function

R. Pascual — Formale Systeme Il: Theorie 34/61

I Induction and coinduction A\‘("'

Induction corresponds to
m initiality of an algebra

m |east fixed point of a monotone function

Coinduction corresponds to
= terminality (also called finality) of an algebra

m greatest fixed point of a monotone function

R. Pascual — Formale Systeme Il: Theorie 34/61

I Constructing lists

data List a = Nil | Cons a (List a)

Abstracted into L=1+ A X L

Constructors
m Nil ~ Unit

m Cons : Pair a (List a) -> List a

R. Pascual — Formale Systeme |l: Theorie 35/61

I Constructing lists

data List a = Nil | Cons a (List a)

Abstracted into L=1+ A X L

Constructors
m Nil ~ Unit, equivalent to Nil:1 — L

m Cons : Pair a (List a) -> List a,
equivalent to Cons : Ax L — L

Rather than equality, we have 1 + Ax L — L

R. Pascual — Formale Systeme |l: Theorie 35/61

I Observing the list AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

What if we want to observe what is in the list?
Then we need to deconstruct the list!

Destructors
m Head : List a -> a

m Tail : List a -> List a

R. Pascual — Formale Systeme Il: Theorie 36/61

I Observing the list AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

What if we want to observe what is in the list?
Then we need to deconstruct the list!

Destructors

m Head : List a -> a, equivalenttoHead: L — A
m Tail : List a -> List a,
equivalent to Tail: L — L

Rather than equality, we have L - 1+ A X L

R. Pascual — Formale Systeme Il: Theorie 36/61

I Safe head and safe tail AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

What about L — 17

R. Pascual — Formale Systeme Il: Theorie 37/61

I Safe head and safe tail AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

What about L — 17

data Maybe a = Nothing | Just a;

R. Pascual — Formale Systeme Il: Theorie 37/61

I Safe head and safe tail AT
What about L — 17
data Maybe a = Nothing | Just a;

The function L — 1+ A x L, corresponds to

Maybe (Pair Head Tail)

The product A x L means that the head and tail of a sequence are
related: they are selected or observed together

R. Pascual — Formale Systeme Il: Theorie 37/61

I Construction and destruction AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

L=14+AxL

R. Pascual — Formale Systeme Il: Theorie 38/61

I Construction and destruction AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

L—-1+AXL

a Construction 1 + Ax L — L

R. Pascual — Formale Systeme Il: Theorie 38/61

I Construction and destruction AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

L+ 1+AXL

a Construction 1 + Ax L — L
@ Destruction L -1 +A X L

R. Pascual — Formale Systeme Il: Theorie 38/61

I Construction and destruction AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

L=14+AxL

a Construction 1 + Ax L — L
@ Destruction L -1 +A X L

Coalgebras come from algebras by duality

R. Pascual — Formale Systeme Il: Theorie 38/61

I Colgebras, categorically A\‘("'

For a functor F: C — C, an F-coalgebra is a pair (X,) with

X

|o

F(X)
We call F the type and « the structure map of (X, a).

The structure map « tells us how the elements of X are observed
by deconstruction.

R. Pascual — Formale Systeme Il: Theorie 39/61

I Data stream AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

(Stream(A),Head, Tail), with
w Head: Stream(A) — A,
w Tail : Stream(A) — Stream(A).

Stream(A)
J/(Head,Tail)
A X Stream(A)

F: Set — Set; A x X — X gives Stream(A)

R. Pascual — Formale Systeme Il: Theorie 40/61

I Further reading T

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= Bart Jacobs and Jan Rutten. “A Tutorial on (Co)Algebras
and (Co)Induction”. In: EATCS Bulletin (1997)

m Jan Rutten. “Universal coalgebra: a theory of systems”. In:
Theoretical Computer Science (2000)

a Jan Rutten. The Method of Coalgebra: exercises in
coinduction. 2019

R. Pascual — Formale Systeme Il: Theorie 41/61

“[Coalgebra] aims to be the mathematics of
computational dynamics” — Bart Jacobs

R. Pascual — Formale Systeme Il: Theorie 42/61

I Coalgebras as state machines AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Stream(A) generates values of type A

R. Pascual — Formale Systeme Il: Theorie 43/61

I Coalgebras as state machines AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Stream(A) generates values of type A

(Head, Tail) corresponds to a function X — A x X

For s,s1 € X, and a € A, we write

s 2 s iff Head(s) = aand Tail(s) = s;

R. Pascual — Formale Systeme Il: Theorie 43/61

I Coalgebras as state machines A\‘("'

Stream(A) generates values of type A

(Head, Tail) corresponds to a function X — A x X

For s,s1 € X, and a € A, we write

s 2 s iff Head(s) = aand Tail(s) = s;
In the state s, we can observe a and move to the state s;

R. Pascual — Formale Systeme Il: Theorie 43/61

We observe s:

We observe s:

We observe si:

R. Pascual — Formale Systeme II: Theorie

44/61

We observe s:

We observe si:

We observe s»:

R. Pascual — Formale Systeme Il: Theorie 44/61

We observe s:
We observe si:
We observe s»:

And so on
a ar ar as as
S— S —>»S —>83 —>S4 — ...

R. Pascual — Formale Systeme II: Theorie

44/61

We observe s:

OO

R. Pascual — Formale Systeme Il: Theorie 45/61

We observe s:

We observe s1:

R. Pascual — Formale Systeme II: Theorie

45/61

We observe s:

We observe s1:

We observe sp:

R. Pascual — Formale Systeme II: Theorie

45/61

We observe s:

OO
OO0
OO On0

We observe s1:

We observe sp:

()
O OnOROR O

R. Pascual — Formale Systeme II: Theorie

45/61

I Automata? A“(IT

We can consider

w the sequence (a, a1, a2, a3, aa, .. .) as the trace of s
e {s,5,%,53,5,...} as states

. a ey .
m i Ax X — X;(a,s)— s iff s = & as a transition function
R. Pascual — Formale Systeme |I: Theorie

46/61

I Automata? A“(IT

We can consider

w the sequence (a, a1, a2, a3, aa, .. .) as the trace of s
e {s,5,%,53,5,...} as states

w5 Ax X — X;(a,s)— s iff s 2 s’ as a transition function

X

|

XA

Deterministic

R. Pascual — Formale Systeme Il: Theorie 46/61

I Automata? AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

We can consider
w the sequence (a, a1, a2, a3, aa, .. .) as the trace of s
e {s,5,%,53,5,...} as states
w5 Ax X — X;(a,s)— s iff s 2 s’ as a transition function

X X
XA 2(X)°
Deterministic Nondeterministic

R. Pascual — Formale Systeme |l: Theorie 46/61

I Automata? AT

We can consider

w the sequence (a, a1, a2, a3, aa, .. .) as the trace of s
e {s,5,%,53,5,...} as states

w5 Ax X — X;(a,s)— s iff s 2 s’ as a transition function

X X X
| | |
XA P(X)A Pe(X)A

Deterministic Nondeterministic NDF

R. Pascual — Formale Systeme |I: Theorie

46/61

Coinductive functions

R. Pascual — Formale Systeme Il: Theorie 47/61

I Coalgebra momorphisms

A morphism of F-coalgebras is an arrow f: (X,a) — (Y,) such
that

Think functoriality!

Morphism are maps on the carrier that preserve the dynamics

Bof=F(f)oa

R. Pascual — Formale Systeme Il: Theorie 48/61

I Stream(A) as a terminal coalgebra A[{]]

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Stream(A) is a terminal coalgebra for T(X) = A x X.

For an arbitrary T-coalgebra U, the unique morphism f:
U — Stream(A) is given by

f(u)(n) = Heady (Tail()(u))

for all u e U, ne N.

It satisfies
a Heady = HeadStream(A) of
ma foTaily = TailStrea.m(A) of

Uniqueness by induction

R. Pascual — Formale Systeme Il: Theorie 49/61

I Stream(A) as a terminal coalgebra A[{]]

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Stream(A) is a terminal coalgebra for T(X) = A x X.

a Coinductive definitions are based on the existence of h:
X — Stream(A).

a Coinductive proofs are based on the uniqueness of h:
X — Stream(A).

R. Pascual — Formale Systeme Il: Theorie 49/61

I Functions on algebraic data types AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

An inductive definition definition of a function f defines values
for all constructors

fun Len : (List a —> Nat) =
1 —> match 1 with
| Nil —> Zero
| Cons(a, 1') —> Succ (Len 1)

R. Pascual — Formale Systeme Il: Theorie 50/61

I Functions on coalgebraic data types A\‘("'

A coinductive definition definition of a function f defines
equations for all destructors.

R. Pascual — Formale Systeme |l: Theorie 51/61

I Functions on coalgebraic data types A\‘("'

A coinductive definition definition of a function f defines
equations for all destructors.

Let us define a function 0dd : Stream(A) — Stream(A) that only
keeps the elements at odd indices:

R. Pascual — Formale Systeme |l: Theorie 51/61

I Functions on coalgebraic data types A\‘("'

A coinductive definition definition of a function f defines
equations for all destructors.

Let us define a function 0dd : Stream(A) — Stream(A) that only
keeps the elements at odd indices:

Head(0dd(s)) = Head(s)
Tail(0dd(s)) = 0dd(Tail(Tail(s)))

R. Pascual — Formale Systeme |l: Theorie 51/61

I Functions on coalgebraic data types A\K"'

A coinductive definition definition of a function f defines
equations for all destructors.

Let us define a function 0dd : Stream(A) — Stream(A) that only
keeps the elements at odd indices:

Head(0dd(s)) = Head(s)
Tail(0dd(s)) = 0dd(Tail(Tail(s)))

0dd defines a morphism of T-coalgebras (with T(X) = A x X)

R. Pascual — Formale Systeme Il: Theorie 51/61

I Even and merge T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Questions How can we define Even?

R. Pascual — Formale Systeme |l: Theorie 52/61

I Even and merge T

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Questions How can we define Even?
Even = 0ddoTail.

R. Pascual — Formale Systeme |l: Theorie 52/61

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

I Even and merge T

Questions How can we define Even?
Even = 0ddoTail.

Merge : Stream(A) x Stream(A) — Stream(A) alternate the
elements of the two streams:

R. Pascual — Formale Systeme |l: Theorie 52/61

I Even and merge ST

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Questions How can we define Even?
Even = 0dd o Tail.

Merge : Stream(A) x Stream(A) — Stream(A) alternate the

elements of the two streams:

Head(Merge(s, s’)) = Head(s)
Tail(Merge(s,s’)) = Merge(s’, (Tails))

R. Pascual — Formale Systeme |l: Theorie 52/61

I Even and merge ST

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Questions How can we define Even?
Even = 0dd o Tail.

Merge : Stream(A) x Stream(A) — Stream(A) alternate the
elements of the two streams:

Head(Merge(s, s’)) = Head(s)
Tail(Merge(s,s’)) = Merge(s’, (Tails))

How do we prove that Merge(0dd s Evens) = s for any stream s?

R. Pascual — Formale Systeme |l: Theorie 52/61

I Fixpoints T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Theorem

The operation of an initial (resp. a terminal) algebra is an
isomorphism.

If (A, «) is an initial F-algebra, then a: F(A) — A has an inverse
a”l: A— F(A).

If (A,) is a terminal F-algebra, then a.: A — F(A) has an inverse
a~l: F(A) = A.

R. Pascual — Formale Systeme Il: Theorie 53/61

I Proof (case of the initial algebra) ST

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

R. Pascual — Formale Systeme |l: Theorie 54/61

I Proof (case of the initial algebra) ST

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

1. (F(A), F(«)) is an F-algebra

R. Pascual — Formale Systeme |l: Theorie 54/61

I Proof (case of the initial algebra) ST

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

1. (F(A), F(«)) is an F-algebra

. But (A,) is initiall

R. Pascual — Formale Systeme Il: Theorie 54/61

I Proof (case of the initial algebra) A\K"'

2. By initiality of (A, «), there is a function a: A — F(A) such
that the following diagram commutes

R. Pascual — Formale Systeme Il: Theorie 54/61

I Proof (case of the initial algebra)

2. By initiality of (A, «), there is a function a: A — F(A) such
that the following diagram commutes

F(A) — F(F(A))
ai lF
—— F(A)

. But we can compose « and a!

R. Pascual — Formale Systeme Il: Theorie 54/61

I Proof (case of the initial algebra) A\K"'

3. By composition, a o a corresponds to a F-algebra morphism,
and the following diagram commutes

F(a) F(a)

F(A) — F(F(A) — F(A)

a lF(a) l

A—— F(A) ——— A

Q

R. Pascual — Formale Systeme |l: Theorie 54/61

I Proof (case of the initial algebra) A\K"'

3. By composition, a o a corresponds to a F-algebra morphism,
and the following diagram commutes

F(a) F(a)

F(A) — F(F(A) — F(A)

a lF(a) l

A—— F(A) ——— A

Q

. But (A, a) is initial!

R. Pascual — Formale Systeme Il: Theorie 54/61

I Proof (case of the initial algebra) ST

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

4. By initiality, o a is ida, and the following diagram commutes

/ldF \

F(A) 9 F(F(a)) 29 Fa)
. [la
g \FldA;

R. Pascual — Formale Systeme Il: Theorie 54/61

I Proof (case of the initial algebra)

4. By initiality, o a is ida, and the following diagram commutes

/ldF \

F(A) 9 F(F(a)) 29 Fa)
. [la
g \FldA—:

Then aoa = F(a) ¢} F(a) = F(a o a) = F(idA) = idF(A),
i.e., a: F(A) — Ais an isomorphism with a as its inverse.

R. Pascual — Formale Systeme |I: Theorie

54/61

Nooooooo! You can't just
draw a picture and claim
it's a mathematical proof. You
need to rigorously prove the claim
instead!

A picture is a valid
34%
A picture is a valid

mathematical proof
mathematical proof

s 55 70

R. Pascual — Formale Systeme II: Theorie

55/61

I Equality? T

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

A coalgebra consists of a carrier set X and a function «:
X — F(X) out of X.

R. Pascual — Formale Systeme Il: Theorie 56/61

I Equality? T

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

A coalgebra consists of a carrier set X and a function «:
X — F(X) out of X.

We do not know how to form elements of X, we only know X
through observations, meaning that we have limited access to X.

R. Pascual — Formale Systeme Il: Theorie 56/61

I Equality? A\‘(IT

A coalgebra consists of a carrier set X and a function «:
X — F(X) out of X.

We do not know how to form elements of X, we only know X
through observations, meaning that we have limited access to X.

Two elements of Stream(A) might be different as elements of
Stream(A) while giving rise to the same sequence of elements of A.

R. Pascual — Formale Systeme Il: Theorie 56/61

| Equatity? ST

A coalgebra consists of a carrier set X and a function «:
X — F(X) out of X.

We do not know how to form elements of X, we only know X
through observations, meaning that we have limited access to X.

Two elements of Stream(A) might be different as elements of
Stream(A) while giving rise to the same sequence of elements of A.

They are observationally indistinguishable or bisimular.

R. Pascual — Formale Systeme Il: Theorie 56/61

I Bisimulation of automata AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

R. Pascual — Formale Systeme Il: Theorie 57/61

I Bisimulation of automata AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

R. Pascual — Formale Systeme Il: Theorie 57/61

I Bisimulation on Stream(A) T

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

A bisimulation on Stream(A) is a relation
R C Stream(A) x Stream(A) such that for all s, s’ € Stream(A),
R(s,s") implies

a Head(s) = Head(s')

a R(Tail(s),Tail(s))

R. Pascual — Formale Systeme Il: Theorie 58/61

| Bisimulation on strean(A) AT

A bisimulation on Stream(A) is a relation
R C Stream(A) x Stream(A) such that for all s, s’ € Stream(A),
R(s,s") implies

a Head(s) = Head(s')

a R(Tail(s),Tail(s))

Stream(A) follows the following coinductive proof principle: if
there is a bisimulation R such that for all s, s’ € Stream(A),
R(s,s’), then for all s,s’ € Stream(A), s =5’

R. Pascual — Formale Systeme Il: Theorie 58/61

I Merge(0dd(s),Even(s)) = s AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Consider R = {(Merge(0dd(s),Even(s)),s) | s € Stream(A)}

R. Pascual — Formale Systeme Il: Theorie 59/61

I Merge(0dd(s),Even(s)) = s AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Consider R = {(Merge(0dd(s),Even(s)),s) | s € Stream(A)}

Head(Merge(0dd(s), Even(s)))
= Head(0dd(s))
= Head(s)

R. Pascual — Formale Systeme Il: Theorie 59/61

I Merge(0dd(s),Even(s)) = s AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Consider R = {(Merge(0dd(s),Even(s)),s) | s € Stream(A)}

Head(Merge(0dd(s), Even(s)))
= Head(0dd(s))
= Head(s)

Tail(Merge(0dd(s), Even(s)))

= Merge(Even(s), Tail(0dd(s)))

= Merge(0dd(Tail(s)),0dd(Tail(Tail(s))))
= Merge(0dd(Tail(s)), Even(Tail(s)))

R. Pascual — Formale Systeme Il: Theorie 59/61

I Bisimulation, formally

Given a functor F: Set — Set, an F-bisimulation between two
F-coalgebras (S,as) (T,art) is an F-coalgebra (R, ag) such that
a RCSxT

a the projections m1: R — S and m: R — T yields F-coalgebra
morphisms

S+ ™ R 4T

o
F(S) (F(T)

F(m) F(R) F(m2)

R. Pascual — Formale Systeme Il: Theorie 60/61

Coinduction proof principle A\‘(".

If R is a bisimulation between a terminal coalgebra S and itself,
then R C {(s,s) | s € S}.

Equivalently, For all s,s" € S,

R(s,s') = s=5

To prove the equility of two states, if suffices to proove that they
are bisimular!

R. Pascual — Formale Systeme Il: Theorie 61/61

