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Why study category theory?

Category theory offers a unified language for mathematical
structures, generalizing concepts across various fields.
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(Some) Applications in computer science

Categories with certain structures provide models for type
theories.

Semantics of programming languages requires an
axiomatic theory of ‘composable stuff’, e.g., monads and
functors in Haskell are rooted in category theory.

Coalgebras generalize automata for reasoning on infinite data
types.

In software engineering, model transformations are described
by triple graph grammars and bidirectional transformations.

Quantum computing relies on monoidal categories and
string diagrams.
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Motivation

The underlying philosophy of category theory is to replace the
notions of sets and membership relation between sets (i.e., set
theory) with an abstract notion of sets and functions.

In set theory, a set is defined by its internal structure. In category
theory, objects are described by their relations with other objects of
the same mathematical environment.

Category theory is a relational way of doing mathematics.
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Eilenberg & Mac Lane

Category Theory, introduced by Samuel Eilenberg and Saunders
Mac Lane in 1942-1945, provides an abstract language for
expressing mathematical concepts and reasoning about them.
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A bit of history

Category Theory significantly changed how mathematicians look at
their subject, opening up new possibilities for important discoveries.

1940s

1950s

1960s

1970s

1945: Eilenberg and Mac Lane’s
”General theory of natural equivalences”

Algebraic topology and abstract algebra

Algebraic geometry (A. Grothendieck et al.)

Logic (F.W. Lawvere et al.)

Computer science, linguistics, philosophy, . . .

R. Pascual – Formale Systeme II: Theorie 8/63



Further reading

Saunders Mac Lane. Categories for the working
mathematician. 2nd ed. Vol. 5. Springer, 1998

Tom Leinster. Basic Category Theory. Dec. 29, 2016

Bartosz Milewski. Category Theory for Programmers. 2018

Benjamin C. Pierce. Basic category theory for computer
scientists. Cambridge, MA, USA: MIT Press, 1991

Michael Barr and Charles Wells. Category theory for
computing science. Vol. 49. New York: Prentice Hall, 1990

David Spivak. Category Theory for the Sciences. MIT
Press, 2014

Lectures by O. Caramello
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Categories
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What is a category?

Objects

A transitive reflexive relation
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Some categorical definitions and results

A monad is a monoid in the category of endofunctors of some fixed
category.

A monad is a wrapper around a function changing the return
value.

An elementary topos is a finitely complete Cartesian-closed
category with a subobject classifier.

A topos is a semantics for intuitionistic formal systems.

There is an algorithm to perform
topology-agnostic rewriting on
generalized maps.
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Set

∀z(z ∈ x ↔ z ∈ y) → x = y .

∃y(y ∈ x) → ∃y(y ∈ x ∧ ∀z¬(z ∈ x ∧ z ∈ y)).

∃y∀z(z ∈ y ↔ z ∈ x ∧ ϕ(z)).
for any formula ϕ not containing y .

∃y∀x(x ̸∈ y).

∃y∀x(x ∈ y ↔ x = z1 ∨ x = z2).

∃y∀z(z ∈ y ↔ ∀u(u ∈ z → u ∈ x)).

∃y∀z(z ∈ y ↔ ∃u(z ∈ u ∧ u ∈ x)).

∃w(∅ ∈ w ∧ ∀x(x ∈ w →
∃z(z ∈ w∧
∀u(u ∈ z ↔ u ∈ x ∨ u = x)))).

∀x , y , z(ψ(x , y) ∧ ψ(x , z) → y = z) →
∃u∀w1(w1 ∈ u ↔ ∃w2(w2 ∈ a ∧ ψ(w2,w1))).

∀x(x ∈ z → x ̸= ∅∧
∀y(y ∈ z → x ∩ y = ∅ ∨ x = y))
→
∃u∀x∃v(x ∈ z → u ∩ x = {v}).

Category theory tells us
that to understand sets,
we should not look at
the membership relation
∈ but at functions →.

We write f : A→ B for a
function from a set A to a
set B.

We can understand a set
by the functions from and
to it.
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Set (composition)

Let f : A→ B and g : B → C be two functions.

Then we have a function g ◦ f : A→ C such that for all a in A,

(g ◦ f )(a) = g(f (a))

This composition of functions is associative, i.e.

(h ◦ g) ◦ f = h ◦ (g ◦ f )

A B

C D

f

g◦f
g

h◦g

h
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Set (identities)

Let f : A→ B be a function.

Each set A has an identity function idA : A→ A such that for
all a in A,

idA(a) = a

Identities are ‘unit’ for the composition in the sense of
abstract algebra, i.e., the following diagram commutes

A A

B B

idA

f ◦idA
f

idB◦f

idB
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Category (definition)

A category C consists of

A collection of objects O(C),
For each pair of objects a, b, a collection of morphisms (also
called maps or arrows) HomC(a, b),

For each pair of morphisms f in HomC(a, b) and g in
HomC(b, c), an morphism g ◦C f called the composite or the
composition.
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Category (definition) – continued

Such that

Associativity law

for any morphisms f in HomC(a, b), g in HomC(b, c) and h in
HomC(c , d)

h ◦ (gC ◦C f ) = (h ◦C g) ◦C f

Unit laws

for any object a, there exist an identity morphism ida in
HomC(a, a) such that for all f in HomC(a, b) and g in
HomC(b, a)

f ◦C ida = f and ida ◦C g = g
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Alternative definition

An alternative definition (e.g., by A. Grothendieck) considers a
collection of morphisms such that each morphism f as a domain
(or source), written dom(f ), and a codomain (or target), written
cod(f ).

Then, the composition g ◦C f is well-defined if and only if

cod(f ) = dom(g)

This point of view adheres to the construction of categories from
graphs.
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Remarks

We write

a ∈ C or a ∈ O(C) to say that a is an object of C

a
f−→ b or f : a→ b to say that f is a morphism of HomC(a, b)

C(a, b) instead of HomC(a, b)

gf or g ◦ f instead of g ◦C f

The definition of categories ensures that for any sequence of
morphisms

A0
f1−→ A1

f2−→ · · · fn−→ An

there is a unique morphism

A0
fn···f2f1−−−−→ An
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Collection?

Mathematicians sometimes use the word collection to denote a
bunch of ‘things’ without prejudice as to whether those things
form a set, a proper class, or some other formal notion of
collection, such as a type.
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The size issue

A category is

Locally small if each collection of morphism is a set.

Small if it is locally small and the collection of objects is a set.

Large otherwise.

Remark: Most definitions will be given in the framework of small
categories
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Explicit examples of categories

One can define a category by explicitly providing its objects,
morphisms, identities, and compositions.

The empty category ∅ is the category without object or
morphism.

The trivial category ∗ (also written 1) contains a unique object ∗
and a unique morphism id∗, the identity on ∗.
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Diagrammatic examples of category

One can ‘draw’ categories (omitting the identities)

The trivial category ∗ can be drawn as

•

Assuming that composition is defined in the only possible way, we
can easily create more categories

•

• • • •
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Diagrammatic examples of category

One can ‘draw’ categories (omitting the identities)

The trivial category ∗ can be drawn as

∗
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b

a b a c
f

g

gf

g◦f
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First-order axiomatisation

Categories naturally admit a first-order axiomatization with a
signature having

two sorts O and M

two unary function symbols dom and cod with profile M→ O

a unary function symbol id

a ternary predicate symbol of sort M formalizing the
composition

Question: Why do we need a ternary predicate for composition
(and not a function)?

Because any pair of morphisms can not be
composed.
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Duality

The concept of a category is self-dual: the definition holds by
formally reserving all arrows while keeping the objects.

The dual or opposite category of C, written Cop is defined by

O(Cop) = O(C)
Homop

C (a, b) = HomC(b, a)

any f ∈ Homop
C (a, b), g ∈ Homop

C (b, c)

g ◦Cop f = f ◦C g

In particular, (Cop)op = C for any category C.
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Duality principle

Every statement expressed within category theory admits a dual
statement obtained by formally reversing the arrows.

A statement holds in a category C if and only if the dual
statement holds in the dual category.

A statement holds in all categories if and only if its dual also
does.

Statements lifted to categories, i.e., proven using only the
language of category theory, directly yield a dual statement
according to the duality principle.

In a given category, dual statements/constructions may result in
very different statements/constructions.
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Properties of morphisms

A morphism f : a→ b is

a monomorphism (mono, monic) if for all morphisms g , g ′ :
x → a, f ◦ g = f ◦ g ′ implies g = g ′,

an epimorphism (epi, epic) if for all morphisms g , g ′ : a→ x ,
g ◦ f = g ′ ◦ f implies g = g ′,

an isomorphism (iso) if there exists g : b → a such that
f ◦ g = idb and g ◦ f = ida. Then g is called the inverse of f
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Questions / Exercices

Summary

f mono: f ◦ g = f ◦ g ′ =⇒ g = g ′.

f epi: g ◦ f = g ′ ◦ f =⇒ g = g ′.

f iso: there exists g s.t. f ◦ g = idb and g ◦ f = ida.

1. What is the relation between monomorphisms and
epimorphisms?

Duality.

2. What is the relation between monomorphisms, epimorphisms,
and isomorphisms?

Iso implies both mono and epi, but the converse does not hold.

3. What are the monomorphisms, epimorphisms, and isomorphisms
in Set?

Injections, surjections, and bijections.

4. Show that the inverse of a morphism is unique (if it exists).
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Categories of mathematical objects

Set is the category of sets and functions

Fin is the category of finite sets and functions

Pos is the category of partially ordered sets and isotone maps

Top is the category of topological spaces and continuous maps

Mon is the category of monoids and monoid homomorphisms

Grp is the category of groups and group homomorphisms

Rng is the category of rings and ring homomorphisms

Alg(Σ) is the category of Σ-algebras and algebra
homomorphisms

Graph is the category of graphs and graphs morphisms

Given a first-order theory T, the category T-mod(Set) has
set-based models of T as objects and structure-preserving maps
between them.
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Rel

Let S , T and U be three sets, let r ⊆ S × T and r ′ ⊆ T × U be
two relations.

The composite r ′ ◦ r is defined as

r ′ ◦ r : ={(s, u) ∈ S × U | ∃t ∈ T , (s, t) ∈ r ∧ (t, u) ∈ r ′}

This notion of composition defines the category Rel of sets and
(binary) relations.

What are the identities?

The diagonal relations ∆S = {(s, s) ∈ S × S | s ∈ S}.
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Mathematical objects as categories

A set is a discrete category, i.e., a category with only
identities

A preorder is a category with at most one arrow between any
pair of objects

A monoid is a category with a unique object

A group is a category with a unique object where all arrows
are isomorphisms
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Functors
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Functors

Looking for a relational understanding of mathematics, one should
ask what the ‘meaningful’ relations between categories are.

Functors are structure-preserving maps between categories.
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Functor (definition)

A functor F : C → D from C to D consists of

A function F : O(C)→ O(D),
Functions F : HomC(a, b)→ HomD(F (a),F (b)) for all
a, b ∈ O(C)

such that

Preservation of identities

F (ida) = idF (a) for all objects a ∈ O(C)

Preservation of compositions

F (g ◦ f ) = (F (g) ◦ F (f )) for all f : a→ b and g : b → c

Exercice: Show that functors preserve isomorphisms.
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Examples

The identity functor idC on a category C maps the objects
and morphisms to themselves.

The functors between monoids regarded as one-object
categories are the monoid morphisms.

If C is a discrete category, then F : C → D is just a family
(F (c))c∈C .

The functors between preorders (or posets) regarded as
categories are the order-preserving maps.
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Group action

A group G is a non-empty set with an associative binary operation
with a neutral element e such that each element is invertible.

A (left) group action of G on a set S is a function α : G × S → S
s.t. for all g , h ∈ G and all s ∈ S ,

α(e, s) = s

α(g , α(h, s)) = α(g · h, s)

Exercice: Show that a functor F : G → Set where G is the group
G viewed as a one-object category is a (left) group action.
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Diagram

A diagram in a category C consists of some objects of C connected
by some morphisms of C.

A B

D C

f

h g

k

Formally, a diagram D of shape J in C is a functor D : J → C.

• •

• •

→ C
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Properties and examples of diagrams

Given a diagram D : J → C, J is called the index category or the
scheme of the diagram.

A diagram is said to be small or finite when the index is.

A diagram is said to to commute when the index is a finite poset.

Examples:

For any object c in C and any index category J , there is a
constant diagram δ(c) that maps all objects to c and all
morphisms to idc .

A diagram on • • • is called a span.

A diagram on • • • is called a cospan.
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Powerset functors

Given a set S , the powerset of S is the set P(S) of the subsets of
S .

The covariant powerset functor P∗ : Set→ Set sends a
function f : S → T to its image function f∗ :
P(S)→P(T );X 7→ f (X ).

The contravariant powerset functor P∗ : Setop → Set sends a
function f : S → T to its preimage function f ∗ :
P(T )→P(S);X 7→ {s ∈ S | f (s) ∈ X}.
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Forgetful functors

U : Mon→ Set forgets the monoid structure and maps
monoids to the underlying set and monoid homomorphisms to
the associated function.

Similarly from Pos, Top, or Grp to Set.

Rng→Mon forgets the additive structure and only
remembers the underlying multiplicative monoid
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Free monoid and the list monad

If S is a set, the free monoid on S is the set S∗ of all finite
sequences of elements of S .

There is a free functor F : Set→Mon that maps S to S∗ (the
binary operation is the concatenation).

‘Freedom’ is to be understood as not adding anything but what is
required by the axioms of the structure.

Applying the forgetful U : Mon→ Set, we obtain a functor U ◦ F :
Set→ Set that provides the lists (or strings) of elements of a set.
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Presheafs

Given a base category C, a presheaf on C is a functor Cop → Set.

Constant presheaf on a set S : assigns any object of C to S
and any morphism to idC .

The hom-functors of locally small categories C are
hx : =HomC(-, x) sends an object a to hx : =HomC(a, x) and
a morphism f : a→ b to the function that maps b → x to the

composite a
f−→ b → x .

Exercice: A graph is a presheaf C → Set. What is the base
category C?
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t
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Properties of functors

A functor F : C → D is faithful if for all objects a, b in A,

HomC(a, b) → HomC(F (a),F (b))
f 7→ F (f )

is injective.

The functor is full if the mapping is surjective for all objects.

The functor is (essentially) surjective if all objects in D are
(isomorphic to some) of the form F (c) for some object c in C.

A subcategory D of a category C is a category s.t. O(D) ⊆ O(D)
and HomD(a, b) ⊆ HomC for any objects a, b with composition
and identity induced from C. It is a full subcategory if the
inclusion functor i : D → C is full.
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Cat

Given two functors F : C → D and G : D → E between small
categories C, D, and E . . .

. . . the composition G ◦ F is defined component-wise on objects
and morphisms,

. . . it is associative.

The identity functors are units for the composition.

(Small) Categories and functors from a (large) category Cat.
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Natural transformations
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Natural transformations

Looking for a relational understanding of mathematics, one should
ask what the ‘meaningful’ relations between functors are.

Given two functors F ,G : C → D between two categories C and D,
how do we compare the values that the functors take at the
objects of the source category?
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Natural transformations (definition)

Let C and D be two categories, and F ,G : C → D be two functors.

A natural transformation α : F → G is a function assigning to
each object a ∈ O(C), an arrow αa : F (a)→ G (a) in D such that
for all morphisms f : a→ b in C, the following diagram commutes

F (a) G (a)

F (b) G (b)

αa

F (f ) G(f )

αb

We often write α(a) for αa, and C D
G

F

α to mean that α is a

natural transformation from F to G .
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Examples

If C is a discrete category and F ,G are functors : C → D,
then a natural transformation is a family of maps
(F (c)

αc−→ G (c))c∈C in D.
The morphisms of presheaves are natural transformations.

Functor category

Let C and D be two categories. The functor category [C,D] (also
written [C;D] or DC) is the category with

Functors C → D as objects

Natural transformations as arrows
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Universal properties
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Universal properties

How do I define the empty set, singleton sets, or the Cartesian
products of sets if I cannot talk about the elements of the set?

We have to rediscover everything in terms
of morphisms and compositions.
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Singleton sets

Any singleton set 1 with one element satisfies the following
property

For all sets S , there is a unique function S → 1.

One has to show that

there is at least one such function

there is at most one such function

Then 1 is unique up to (unique) isomorphisms.

A universal property is a definition of the form
“There is a unique X s.t. Y ”
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Initial and terminal objects

An object 1C in C is terminal if for all objects c in C, there exists a
unique morphism c → 1C .

By duality, an object ∅C (or 0C) in C is initial if for all objects c in
C, there exists a unique morphism ∅C → c .

If they exist, initial and terminal objects are unique up to unique
isomorphism.
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Questions / Exercices

1. What is the initial object in Set?

The empty set.

2. What is the initial object in Rng?

Z.

3. What are the initial and terminal objects in preorder (or posets)
viewed as categories?

The least and greatest elements.
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Products

The product of a and b in C is a span

A
pA←− P

pB−→ B

which is universal with this property, i.e., for any other span

A
fA←− X

fB−→ B, there exists a unique morphism f : X → P s.t. the
following diagram commutes

X

A P B

fA fB∃!f

pA pB

We obtain coproducts by duality.
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Examples

The product of two sets X and Y in Set is the Cartesian product
X × Y with the standard projections.

Exercice:
1. What is the coproduct of two sets?

The disjoint union.

2. What are the products and coproducts in preorders (or posets)
viewed as categories?

The meet (supremum) and join (infimum) operations.

3. Give an example of a category without products.

Any discrete category with at least two objects.
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Pullbacks
The pullback of a cospan A

g−→ C
h←− B is a span A

pA←− P
pB−→ B

s.t. the following diagram commutes

P A

B C

pA

pB g

h

and is universal with this property, i.e., for any span A
fA←− X

fB−→ B

forming a commutative square with A
g−→ C

h←− B, there is a unique
morphism f : X → P s.t. the following diagram commutes

X

P A

B C

∃!f
fA

fB
pA

pB g

h

We obtain pushouts by duality.R. Pascual – Formale Systeme II: Theorie 56/63



Pushouts in Set

The pushout of A
g←− C

h−→ B in Set is

P = (A ⊔ B)/∼

A ⊔ B is the disjoint union of A and B, i.e.,
({0} × A) ∪ ({1} × B)

∼ is the equivalence relation s.t.

g(c) ∼ h(c) for all c ∈ C

The coprojections pA : A→ P and pB : B → P map a ∈ A and
b ∈ B to their equivalence classes in P.
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Cone

Given a small diagram D : J → C, a cone on D is an object c of
C, the vertex (or apex) of the cone together with a familly of
maps (fj : c → D(j))j∈J s.t. for all morphisms u : i → j , the
following triangle commutes

c

D(j) D(j)

fi fj

D(u)

Viewing c as the constant diagram ∆(c), a cone on D is a natural
transformation α : ∆(c)→ D.
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Limit

A limit of D is cone (pj : l → D(j))j∈J which is universal with
that property, i.e., for any other cone on D, there exists a unique
morphism f : c → l s.t. pj ◦ f = fj for all j in J .

We obtain cocones and colimits by duality.
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Example

The limit of a diagram D : J → C is (if it exists)

a terminal object if J is the empty category ∅,

a product if J is a discrete category,

a pullback if J is a cospan,

an equalizer if if J is • •

Exercice: Show that f : a→ b is monic iff the following diagram is
a pullback.

a a

a b

ida

ida f

f
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Product

Diagram

Coproduct

Diagram

Pullback

Diagram

Pushout

Limit

Diagram

Colimit
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Summary

Elementary algebra is the abstraction of numbers
Group theory is the abstraction of symmetry
Ring theory is the abstraction of arithmetics

Category theory is the abstraction of composition

Look at ‘things’ in context, i.e., w.r.t. similar ‘things’

R. Pascual – Formale Systeme II: Theorie 62/63



Summary

Elementary algebra is the abstraction of numbers
Group theory is the abstraction of symmetry
Ring theory is the abstraction of arithmetics

Category theory is the abstraction of composition

Look at ‘things’ in context, i.e., w.r.t. similar ‘things’

R. Pascual – Formale Systeme II: Theorie 62/63



R. Pascual – Formale Systeme II: Theorie 63/63


	Categories
	Functors
	Natural transformations
	Universal properties

