Data, Data Storage, Data Collection

Lecture 9: Data Normalization and Denormalization

Romain Pascual

MICS, CentraleSupélec, Université Paris-Saclay

1/62

Recap

2/62

Recap: NoSQL

@ NoSQL databases address challenges of distributed systems
and semi-structured data

® The aggregate is the fundamental unit of organization in
NoSQL databases

© Data modeling is crucial for performance in NoSQL databases

@ Four main families of NoSQL databases: Key-value,
Document-oriented, Column-oriented, Graph databases

©® NoSQL databases complement rather than replace relational
databases (polyglot persistence)

3/62

Introduction

4/62

Within the lifecycle

Collect

b

EO re

h

Communicate

5/62

Session Objectives

At the end of this session, you should be able to:

® Explain why normalization reduces redundancy and ensures
consistency

Identify and correct design flaws causing data anomalies

Describe the normal forms up to 5NF and their principles,

Apply the main normal forms to simple data tables

Discuss when denormalization may be justified

6/62

Bad Data

Flatmate Expenses

Expense Category | Amount | Paid by | Year | Month
Pizza Food 25 Sam 2025 11
Internet Utilities 40 Alex 2025 11
Coffee Groceries 12 Mia 2025 11
Time Machine | Utilities 250 Bill 2025 11

7/62

Bad Data

Flatmate Expenses

Expense Category | Amount | Paid by | Year | Month
Pizza Food 25 Sam 2025 11
Internet Utilities 40 Alex 2025 11
Coffee Groceries 12 Mia 2025 11
Time Machine Utilities 250 Bill 2025 11

A The Time Machine entry is likely erroneous.

Bad data can arise from:

® missing data,
® input errors,

Remember the lectures about data collection.

7/62

Data Integrity

Flatmate Expenses

Expense | Category | Amount | Paid by | Year | Month
Pizza Food 25 Sam 2025 11
Internet Utilities 40 Alex 2025 11
Coffee Groceries 12 Mia 2025 11
Dishwasher | Utilities 250 Bill 2025 11

8/62

Data Integrity

Flatmate Expenses

Expense | Category | Amount | Paid by | Year | Month
Pizza Food 25 Sam 2025 11
Internet Utilities 40 Alex 2025 11
Coffee Groceries 12 Mia 2025 11
Dishwasher | Utilities 250 Bill 2025 11
Pizza Food 25 Alex 2025 11
Internet Utilities 40 Bill 2025 11

8/62

Data Integrity

Flatmate Expenses

ExpenselD | Expense | Category | Price | Paid by | Year | Month
1842 Pizza Food 25 Sam 2025 11
9571 Internet Utilities 40 Alex 2025 11
6511 Coffee Groceries 12 Mia 2025 11
3427 Dishwasher | Utilities 250 Bill 2025 11
8689 Pizza Food 25 Alex 2025 11
9571 Internet Utilities 40 Bill 2025 11

Good database design can protect against some cases of bad data:
when it describes something that cannot be logicaly true.

® The Internet expense appears twice paid by different people.

® This is a failure of data integrity: the data contradicts itself.

When data disagrees with itself, it is not “just” a problem of bad

data, but a problem of bad database design (normalization).

8/62

Data Normalization

9/62

Data Normalization

Definition (Normalization)

Process of organizing data into tables and columns in a way that
eliminates redundancy and prevents inconsistencies.

Flatmate Expenses

ExpenselD | Expense | Category | Price | Paid by | Year | Month
1842 Pizza Food 25 Sam 2025 11
9571 Internet Utilities 40 Alex 2025 11
6511 Coffee Groceries 12 Mia 2025 11
3427 Dishwasher | Utilities 250 Bill 2025 11
8689 Pizza Food 25 Alex 2025 11
9571 Internet Utilities 40 Bill 2025 11

Two rows claim to describe the expense (9571) but disagree on Paid by.

A The previous table is not allowed as it violates the idea of a
single version of the truth: the same fact appears twice with
conflicting values.

10/62

The Normal Forms

® How do we normalize?

® When have we normalized
“enough™?

11/62

The Normal Forms

® How do we normalize?

® When have we normalized
“enough”?

Normal Forms
Criteria to assess redundant data.

® Proposed by Edgar F. Codd!?
(relational model)

® Progressive levels of data LD,
integrity Edgar F. Codd
1NF — 2NF — 3NF — 4NF — 5NF | (1923-2003)

'Edgar Codd. “A Relational Model of Data for Large Shared Data Banks”.
In: Commun. ACM 13.6 (1970)
2Edgar Codd. Further Normalization of the Data Base Relational

Model. Tech. rep. IBM Research Report RJ909. 1971
11/62

Shared Items in the Flat
Who owns what in the flat?

Flat_Members_ltems

Name | Age Shared Items

Alex 23 | Microwave, 2 Lamp, 2 Chairs
Mia 20 Blender, 2 Chairs, Table
Bill 26 Gaming Console

Sam 21 3 Chairs, TV , Lamp

12/62

Shared Items in the Flat

Who owns what in the flat?

Flat_Members_ltems

Name | Age Shared Items

Alex 23 Microwave, 2 Lamp, 2 Chairs
Mia 20 Blender, 2 Chairs, Table
Bill 26 Gaming Console

Sam 21 3 Chairs, TV , Lamp

Is the Shared Items cell describing one thing or several?

Repeating Group

A repeating group is a set of values in a single cell. It might
create issues beacuse of:

® Varying types

® Number of values

12/62

Handle with Strings

Who owns what in the flat?

Can we store repeating groups as a comma-separated string?

Flat_Members_ltems

Name | Age Shared Items

Alex 23 “Microwave, 2 Lamp, 2 Chairs”
Mia 20 “Blender, 2 Chairs, Table"”
Bill 26 “Gaming Console”

Sam 21 “3 Chairs, TV , Lamp”

13/62

Handle with Strings

Who owns what in the flat?

Can we store repeating groups as a comma-separated string?

Flat_Members_ltems

Name | Age Shared Items

Alex 23 “Microwave, 2 Lamp, 2 Chairs”
Mia 20 “Blender, 2 Chairs, Table"”
Bill 26 “Gaming Console”

Sam 21 “3 Chairs, TV , Lamp”

A Querying is difficult: How to search for "2 Chairs"?
A\ Updating is error-prone: How to modify individual items?

|

13/62

Multiple Columns

Who owns what in the flat?

Can we use multiple columns for each item?

Flat_Members_ltems

Name | Age Item 1 Qty 1l | ltem2 | Qty 2 | Item 3 | Qty 3
Alex 23 Microwave 1 Lamp 2 Chairs 2
Mia 20 Blender 1 Chairs 2 Table 1
Bill 26 | Gaming Console 1
Sam 21 Chairs 3 TV 1 Lamp 1

The number of columns depends on the person, not on the data model.

14 /62

Multiple Columns

Who owns what in the flat?

Can we use multiple columns for each item?

Flat_Members_ltems

Name | Age Item 1 Qty 1l | ltem2 | Qty 2 | Item 3 | Qty 3
Alex 23 Microwave 1 Lamp 2 Chairs 2
Mia 20 Blender 1 Chairs 2 Table 1
Bill 26 | Gaming Console 1
Sam 21 Chairs 3 TV 1 Lamp 1

The number of columns depends on the person, not on the data model.

A Disorganized: How to read and maintain the order?

A Sparse: How to handle person having various number of
items?

A Wide: How well does it scale?

14 /62

Multiple Columns

Who owns what in the flat?

Can we use multiple columns for each item?

Flat_Members_ltems

Name | Age Item 1 Qty 1l | ltem2 | Qty 2 | Item 3 | Qty 3
Alex 23 Microwave 1 Lamp 2 Chairs 2
Mia 20 Blender 1 Chairs 2 Table 1
Bill 26 | Gaming Console 1
Sam 21 Chairs 3 TV 1 Lamp 1

The number of columns depends on the person, not on the data model.

A Disorganized: How to read and maintain the order?

A Sparse: How to handle person having various number of
items?

A Wide: How well does it scale?

Storing a repeating group of data in a single row violates 1NF. J

14 /62

First Normal Form (1NF)

INF — Codd (1970)

Each field must contain atomic (indivisible) values:
® No collections (e.g., lists, sets).
® No nested tables.

By construction most relational DBMS (including standard SQL)
do not support tables with non-atomic values.

Codd considered 1INF mandatory for relational databases, while the
other normal forms were merely guidelines for database design.

15/62

Extensions of INF

If INF is consider the basis for integration in a RDBMS, we might
consider other properties to be part of 1NF:

¢ Unique datatype within a column (compare with spreadsheets)

® Mandatory primary keys

16 /62

Extensions of INF

If INF is consider the basis for integration in a RDBMS, we might
consider other properties to be part of 1NF:

¢ Unique datatype within a column (compare with spreadsheets)

® Mandatory primary keys

INF — Christopher Date (2007)
@ There is no specific top-to-bottom ordering of the rows.
® There is no specific left-to-right ordering of the columns.
© There are no duplicate rows.

O Every intersection of a row and a column contains exactly one
value from the applicable domain and nothing else.

16 /62

Achieving INF

We need to store the items in a separate rows instead.

Flat_ltems
Name Item Qty
Alex Microwave 1
Alex Lamp 2
Alex Chairs 2
Mia Blender 1
Mia Chairs 2
Mia Table 1
Bill Gaming Console 1
Sam Chairs 3
Sam TV 1
Sam Lamp 1

17/62

Achieving INF

We need to store the items in a separate rows instead.

Flat_ltems
Name Item Qty
Alex Microwave 1
Alex Lamp 2
Alex Chairs 2
Mia Blender 1
Mia Chairs 2
Mia Table 1
Bill Gaming Console 1
Sam Chairs 3
Sam TV 1
Sam Lamp 1

Each person now corresponds to several rows.

17/62

Achieving INF

We need to store the items in a separate rows instead.

Flat_ltems
Name Item Qty
Alex Microwave 1
Alex Lamp 2
Alex Chairs 2
Mia Blender 1
Mia Chairs 2
Mia Table 1
Bill Gaming Console 1
Sam Chairs 3
Sam TV 1
Sam Lamp 1

Each person now corresponds to several rows.

Primary key is now a combination of Name and Item: it expresses
one fact per row.

17/62

Adding the Age?

Suppose we want to add the age to the table (new column).

Flat_Info
Name ltem Qty | Age
Alex Microwave 1 23
Alex Lamp 2 23
Alex Chairs 2 23
Mia Blender 1 20
Mia Chairs 2 20
Mia Table 1 20
Bill Gaming Console | 1 26
Sam Chairs 3 21
Sam TV 1 21
Sam Lamp 1 21
® The table is still in INF
A\ Data duplication: Age is repeated for each item. J

18/62

Deletion Anomaly

Bill sells his console

Flat_Info
Name Item Qty | Age
Alex Microwave 1 23
Alex Lamp 2 23
Alex Chairs 2 23
Mia Blender 1 20
Mia Chairs 2 20
Mia Table 1 20
Bill Gaming Console 1 26
Sam Chairs 3 21
Sam TV 1 21
Sam Lamp 1 21

19/62

Deletion Anomaly

Bill sells his console, and we delete the entry from the table.

Flat_Info
Name Item Qty | Age
Alex Microwave 1 23
Alex Lamp 2 23
Alex Chairs 2 23
Mia Blender 1 20
Mia Chairs 2 20
Mia Table 1 20
Bill | GamingCensele | 1 26
Sam Chairs 3 21
Sam TV 1 21
Sam Lamp 1 21

Deletion Anomaly

® Deleting Bill's gaming console deletes Bill’'s age as well.

19/62

Update Anomaly

It is Alex's birthday who turns 24, we need to update the table.

Flat_Info
Name Item Qty | Age
Alex | Microwave 1 23
Alex Lamp 2 23
Alex Chairs 2 23
Mia Blender 1 20
Mia Chairs 2 20
Mia Table 1 20
Sam Chairs 3 21
Sam TV 1 21
Sam Lamp 1 21

20/62

Update Anomaly

It is Alex's birthday who turns 24, we need to update the table.

Flat_Info
Name Item Qty | Age
Alex | Microwave 1
Alex Lamp 2
Alex Chairs 2
Mia Blender 1 20
Mia Chairs 2 20
Mia Table 1 20
Sam Chairs 3 21
Sam TV 1 21
Sam Lamp 1 21

Update Anomaly

® |f we miss any, the database becomes inconsistent.
® Now Alex is both 23 and 24 in the database!

20/62

Update Anomaly

It is Alex's birthday who turns 24, we need to update the table.

Flat_Info
Name Item Qty | Age

Alex | Microwave 1

Alex Lamp 2 23
Alex Chairs 2 23
Mia Blender 1 20
Mia Chairs 2 20
Mia Table 1 20
Sam Chairs 3 21
Sam TV 1 21
Sam Lamp 1 21

20/62

Insertion Anomaly

Tim joins the flat, but does not bring any new item.

Flat_Info
Name Item Qty | Age
Alex | Microwave 1 23
Alex Lamp 2 23
Alex Chairs 2 23
Mia Blender 1 20
Mia Chairs 2 20
Mia Table 1 20
Sam Chairs 3 21
Sam TV 1 21
Sam Lamp 1 21

21/62

Insertion Anomaly

Tim joins the flat, but does not bring any new item.

Flat_Info
Name Item Qty | Age
Alex | Microwave 1 23
Alex Lamp 2 23
Alex Chairs 2 23
Mia Blender 1 20
Mia Chairs 2 20
Mia Table 1 20
Sam Chairs 3 21
Sam TV 1 21
Sam Lamp 1 21
Tim 22

Insertion Anomaly

e We can not add Tim without an item (primary key).

21/62

2NF

2NF — Informal Definition

Every non-key attribute must depend on the entire primary key:

there is no part key dependency.

Flat_Info

Name | ltem | Qty

Age

® Does Qty depend on the entire primary key?
® Does Age depend on the entire primary key?

22/62

2NF

2NF — Informal Definition

Every non-key attribute must depend on the entire primary key:
there is no part key dependency.

Flat_Info

Name | Item | Qty | Age

® Does Qty depend on the entire primary key? Yes
® Does Age depend on the entire primary key?

22/62

2NF

2NF — Informal Definition

Every non-key attribute must depend on the entire primary key:
there is no part key dependency.

Flat_Info

Name | Item | Qty | Age

® Does Qty depend on the entire primary key? Yes
® Does Age depend on the entire primary key? No

Issue appeared when we added Age to the table, where is did not
really belong.

22/62

Attributes, Keys and Dependencies
Flat_Info

Name | Item | Qty | Age

To (formally) discuss 2NF and 3NF, we need to understand how a
table is uniquely identified, so we need some additional notions.

® Superkeys

® Candidate keys

® Prime attribute

® Functional Dependency

23/62

Superkey

Flat_Info

Name | Item | Qty | Age

Superkey

A set of attributes that can uniquely identify each row.

A 1t may contain unnecessary attributes.

Shared Flatmate Superkeys
¢ {Name, ltem},
¢ {Name, Item, Qty},
¢ {Name, Item, Age},
¢ {Name, Item, Qty, Age}

24/62

Candidate Key

Flat_Info

Name | Item | Qty | Age

A minimal superkey.

Candidate Key J

A\ Removing any attribute breaks uniqueness.

Shared Flatmate Candidate Keys
Only candidate key: {Name, Item}. J

25 /62

Prime Attribute
Flat_Info

Name | Item | Qty | Age

Prime Attribute
An attribute that is part of at least one candidate key. J

Every other attribute is non-prime.

Shared Flatmate Prime Attributes
Non-prime attributes: Qty and Age J

26/ 62

Functional Dependencies
Flat_Info

Name | Item | Qty | Age

Definition (Functional Dependencies (FD) X — Y)
For each value in X, there is a unique of value in Y that depends
only on the value in X.

A\ The projection on X x Y of the relation is a function: knowing
the values for X is enough to know the for Y.
Shared Flatmate Functional Dependencies

¢ {Name, Item} — {Qty}

¢ {Name} — {Age}

27 /62

2NF, Formally

2NF — Formal Definition

No non-prime attribute depends on part of a candidate key.

Shared Flatmate Dependencies
Only candidate key: {Name, ltem}.
Non-prime attributes: Qty and Age.
Functional dependencies:

¢ {Name, ltem} — {Qty}

¢ {Name} — {Age}

Issue appeared when we added Age to the table, where is did not
really belong.

28/62

Achieving 2NF

Split into two tables:

No part-key dependency: 2NF.

Flat_ltems Flat_Members
Name Item Qty Name | Age
Alex Microwave 1 Alex 23
Alex Lamp 2 Mia 20
Alex Chairs 2 Bill 26
Mia Blender 1 Sam 21
Mia Chairs 2
Mia Table 1
Bill Gaming Console 1
Sam Chairs 3
Sam TV 1
Sam Lamp 1

29/62

Adding Rent Information

We add RoomSize and Rent to the database.

Flat_Members

Name | Age | RoomSize | Rent
Alex 23 Large 500
Mia 20 Small 300

Bill 26 Large 500
Sam 21 Medium 400

Dependencies (v 2NF):
¢ {Name} — {Age}

¢ {Name} — {RoomSize}

¢ {Name} — {Rent}

30/62

Room Swap

Bill is often out of the flat and swaps room with Mia.

Flat_Members

Name | Age | RoomSize | Rent
Alex 23 Large 500
Mia 20 Large 300

Bill 26 Small 500
Sam 21 Medium 400

What happened? Dependencies:

¢ {Name} — {Age}

¢ {Name} — {RoomSize}

¢ {RoomSize} — {Rent}

31/62

Room Swap

Bill is often out of the flat and swaps room with Mia.
Flat_Members

Name | Age | RoomSize | Rent

Alex 23 Large 500
Mia 20 Large 300
Bill 26 Small 500

Sam 21 Medium 400

The table assumes that Rent depends on Name,
but the data shows it depends on RoomSize.
What happened? Dependencies: (TD: Transitive Dependency)
{Name} — {Age}
{Name} — {RoomSize}
{RoomSize} — {Rent}
{Name} — {RoomSize} — {Rent}: TD

31/62

Achieving 3NF

Split the table to eliminate transitive dependencies.

Flat_Members

Room_Rent

Each table represents

a single entity type.

Name | Age | RoomSize RoomSize | Rent
Alex 23 Large Small 300
Mia 20 Small Medium 400
Bill 26 Large Large 500
Sam 21 Medium

32/62

3NF
3NF

Every non-prime attribute depends directly on every candidate key,
and not on part of a candidate key or other non-prime attributes.

Every non-key attribute depends on the key,

the whole key and nothing but the key.

Flat_Members

Room_Rent

RoomSize

RoomSize

Rent

Name | Age

Dependencies (v 3NF):

¢ {Name} — {Age}
¢ {Name} — {RoomSize}

¢ {RoomSize} — {Rent}

33/62

BCNF

Boyce-Codd Normal Form
For every functional dependency X — Y, X is a superkey. J

Every attribute depends on the key,
the whole key and nothing but the key. J

Most 3NF tables are also in BCNF.

BCNF fixes a loophole in 3NF and eliminates remaining anomalies
caused by functional dependencies when multiple candidate keys
overlap.

34/62

Member Profiles: Hobbies and Languages

Flat_Profiles
Name | Hobby | Language
Alex | Cooking English
Alex Cycling English
Alex | Cooking French
Alex Cycling French
Mia Painting English
Mia Reading English
Mia | Painting | Spanish
Mia Reading | Spanish
Bill Gaming English
Bill Gaming German

35/62

Member Profiles: Hobbies and Languages

Flat_Profiles
Name | Hobby | Language
Alex | Cooking English
Alex | Cycling English
Alex | Cooking French
Alex Cycling French
Alex | Cooking Finnish
Mia Painting English
Mia Reading English
Mia | Painting | Spanish
Mia Reading Spanish
Bill Gaming English
Bill Gaming German

Update Anomaly

® Alex also speaks Finnish!

35/62

Member Profiles: Hobbies and Languages

Flat_Profiles

Name | Hobby | Language
Alex | Cooking English
Alex | Cycling English
Alex | Cooking French
Alex Cycling French
Alex | Cooking Finnish
Mia Painting English
Mia Reading English
Mia | Painting | Spanish
Mia Reading Spanish
Bill Gaming English
Bill Gaming German

Update Anomaly
® Alex also speaks Finnish!

¢ We should also have (Alex, Cycling, Finnish).

35/62

Dependencies

Flat_Profiles

Name | Hobby

Language

Something about the table design allows for impossible situations.

36/ 62

Dependencies

Flat_Profiles

Name | Hobby

Language

Something about the table design allows for impossible situations.

What are the non-trivial functional dependencies?

36/ 62

Dependencies

Flat_Profiles

Name | Hobby

Language

Something about the table design allows for impossible situations.

What are the non-trivial functional dependencies? There are none.

36/ 62

Dependencies

Flat_Profiles

Name | Hobby | Language

Something about the table design allows for impossible situations.
What are the non-trivial functional dependencies? There are none.

The problem is not a functional dependency, but the opposite: too
much independence between attributes.

36/ 62

Multivalued Dependencies
Language

Cycling
English

Cooking
English

Hobby

Cooking
French

37/62

Multivalued Dependencies
Language

Cycling
English

Cooking
English

Hobby

Cooking
French

Multivalued Dependencies
® Each member has a set of hobbies

® Fach member has a set of languages
® These sets are independent of each other
This is called a multivalued dependency.

37/62

Understanding Multivalued Dependencies

Definition (Multivalued Dependency (MVD) X — Y)

For each value in X, there is a set of value in Y that depends only
on the value in X: knowing X fixes the possible Y's.

38/62

Understanding Multivalued Dependencies

Definition (Multivalued Dependency (MVD) X — Y)

For each value in X, there is a set of value in Y that depends only

on the value in X: knowing X fixes the possible Y's.)

Formal Characterisation of MVDs
A relation R(X, Y, Z) satisfies X — Y if for every x, y1, z1, y2, 22:

R(x,y1,21) A R(x, y2,22) = R(x,y1,22) A R(x, y2,21)

For each x, the values in Y and Z form a Cartesian product.

38/62

Example

v {Name} — {Hobby}
¢ (Alex, Cooking, English) and (Alex, Cycling, French) in the

table

e (Alex, Cooking, French) and (Alex, Cycling, English) also in

the table

Flat_Profiles
Name | Hobby | Language
Alex | Cooking English
Alex | Cycling English
Alex | Cooking French
Alex Cycling French

39/62

Example

v {Name} — {Hobby}
¢ (Alex, Cooking, English) and (Alex, Cycling, French) in the

table

e (Alex, Cooking, French) and (Alex, Cycling, English) also in

the table

Flat_Profiles
Name | Hobby | Language
Alex | Cooking English
Alex | Cycling English
Alex | Cooking French
Alex Cycling French
Alex | Cooking Finnish

39/62

Example
Flat_Profiles

Name | Hobby | Language
Alex | Cooking English
Alex | Cycling English
Alex | Cooking French
Alex Cycling French
Alex | Cooking Finnish
Alex | Cycling Finnish

v {Name} — {Hobby}
¢ (Alex, Cooking, English) and (Alex, Cycling, French) in the
table
e (Alex, Cooking, French) and (Alex, Cycling, English) also in
the table

Once we have established the MVD, (Alex, Cooking, Finnish) and
(Alex, Cycling, English) implies (Alex, Cycling, Finnish).

39/62

Is the table in 3NF?

What are the candidate keys?

Flat_Profiles

Name

Hobby

Language

¢ Knowing {Name} alone gives several tuples (different

hobbies/languages),

40/62

Is the table in 3NF?

What are the candidate keys?

Flat_Profiles

Name

Hobby

Language

¢ Knowing {Name} alone gives several tuples (different

hobbies/languages),

® Knowing {Name, Hobby} still gives several tuples (different

languages),

40/62

Is the table in 3NF?

What are the candidate keys?

Flat_Profiles

Name | Hobby | Language

¢ Knowing {Name} alone gives several tuples (different
hobbies/languages),

® Knowing {Name, Hobby} still gives several tuples (different
languages),

® Knowing {Name, Language} still gives several tuples
(different hobbies).

40/62

Is the table in 3NF?

What are the candidate keys?

Flat_Profiles
Name | Hobby | Language

¢ Knowing {Name} alone gives several tuples (different
hobbies/languages),

® Knowing {Name, Hobby} still gives several tuples (different
languages),
® Knowing {Name, Language} still gives several tuples
(different hobbies).
So the key is {Name, Hobby, Language}.

v As a result, the tabel is trivially in 3NF.

40/62

ANF

4NF

For every (non-trivial) multivalued dependencies X — Y, X is a
superkey.

41/62

ANF

4NF

For every (non-trivial) multivalued dependencies X — Y, X is a
superkey.

The key is {Name, Hobby, Language}.
The MVDs are:

¢ {Name} — {Hobby}

¢ {Name} — {Language}

{Name} is not the key, so the multivalued dependencies are not
on the key.

41/62

Achieving 4NF

As always, the fix it the split the table into multuple tables.

We still have MVD, but they become trivial since they cover all

attributes.

Member_Hobbies

Member_Language

Name Hobby Name | Language
Alex Cooking Alex English
Alex Cycling Alex French
Mia Painting Mia English
Mia Reading Mia Spanish
Bill Gaming Bill English
Sam | Swimming Bill German

Sam English

42/62

Flatmate Chores

Alex: | am happy to do Cleaning and Repairs. | know how to use a Brush
and a Vacuum.

Mia: | can take care of Decorating and Repairs. | know how to handle a
Hammer, a Screw Gun, and a Vacuum.

Sam: | am available for Decorating and Cleaning. | can use a Brush, a
Hammer, and a Vacuum.

We also know which tools can be needed for each chore:
® The Brush and the Vacuum are used for Cleaning.
® The Brush and the Screw Gun are used for Decorating.

® The Hammer, the Vacuum and the Screw Gun are used for Repairs.

From this information, we can build the table of chores each flatmate can
actually do with the tools they know.

43/62

Initial Table Design

Flat_Chores
Name Tool Chore
Alex Brush Cleaning
Alex Vacuum Cleaning
Alex Vacuum Repairs
Mia Hammer Repairs
Mia | Screw Gun | Decorating
Mia | Screw Gun Repairs
Mia Vacuum Repairs
Sam Brush Cleaning
Sam Brush Decorating
Sam Vacuum Cleaning

There is no MVD, the table is in 4NF.

44 /62

Initial Table Design

Sam: | am available for Decorating and Cleaning. | can use a Brush,

a Hammer, and a Vacuum.

Flat_Chores
Name Tool Chore
Alex Brush Cleaning
Alex Vacuum Cleaning
Alex Vacuum Repairs
Mia Hammer Repairs
Mia | Screw Gun | Decorating
Mia | Screw Gun Repairs
Mia Vacuum Repairs
Sam Brush Cleaning
Sam Brush Decorating
Sam Vacuum Cleaning

There is no MVD, the table is in 4NF. But the table does not state

that Sam can use the Hammer.

44 /62

Decomposition into Pairwise Relations

At the beginning, we were given three pieces of information, so we
should have built 3 tables:

Can_Be_Used _For

Can_Use
Prefered_Chores Name Tool
Name Chore Alex Brush
Alex Cleaning Alex Vacuum
Alex Repairs Mia Hammer
Mia Decorating Mia | Screw Gun
Mia Repairs Mia Vacuum
Sam Cleaning Sam Brush
Sam | Decorating Sam Hammer
Sam Vacuum

Tool Chore
Brush Cleaning
Brush Decorating
Hammer Repairs
Screw Gun Repairs
Screw Gun | Decorating
Vacuum Cleaning
Vacuum Repairs

When needed, we retrieve the information by joining the tables.

5NF

Join Dependency
A table can be losslessly reconstructed from several smaller tables. J

Some tables represent facts that come from several independent
relationships. All pairwise joins look correct, but the full table
may still contain redundancy or missing combinations.

5NF — Projection-Join Normal Form
Every non-trivial join dependency is a superkey. J

It is the final normal form as far as removing redundancy is
concerned.

46 /62

Ternary Relations

A Ternary relationships may still exist

Decomposing such a table into pairwise relations can create

spurious rows.

Flat_Chores

Name Tool Chore
Alex Brush Cleaning
Alex Vacuum Repairs
Mia Hammer Repairs
Mia | Screw Gun | Decorating
Mia | Screw Gun Repairs
Mia Vacuum Repairs
Sam Brush Decorating
Sam Vacuum Cleaning

47 /62

Ternary Relations

A Ternary relationships may still exist

Decomposing such a table into pairwise relations can create
spurious rows.

Prefered_Chores

Name Chore
Alex Cleaning
Alex Repairs
Mia | Decorating
Mia Repairs
Sam | Decorating
Sam Cleaning

Can_Use Can_Be_Used For
Name Tool Tool Chore
Alex Brush Brush Decorating
Alex Vacuum Brush Cleaning
Mia Hammer Hammer Repairs
Mia | Screw Gun Vacuum Cleaning
Mia Vacuum Vacuum Repairs
Sam Brush Screw Gun Repairs
Sam Vacuum Screw Gun | Decorating

47 /62

Ternary Relations

A Ternary relationships may still exist

Decomposing such a table into pairwise relations can create

spurious rows.

Flat_Chores
Name Tool Chore
Alex Brush Cleaning
Alex Vacuum Cleaning
Alex Vacuum Repairs
Mia Hammer Repairs
Mia | Screw Gun | Decorating
Mia | Screw Gun Repairs
Mia Vacuum Repairs
Sam Brush Decorating
Sam Brush Cleaning
Sam Vacuum Cleaning

47 /62

Summary (Normal Forms)
Edgar Codd (inventor of the relational model) proposed the theory
of data normalization, through normal forms:
e 1NF: Atomic values.
® 2NF: No partial dependencies.
3NF/BCNF: No transitive dependencies.

4NF: No multivalued dependencies.

5NF: No join dependencies.

And more (no longer about redundancy)

Core Idea
Decompose tables into smaller, related tables, such that each
table represent one specific topic.

Reduces database modification anomalies (appropriate for OLTP
systems).

4862

Data Denormalization

49 /62

Data Modeling for a Commercial Platform

A normalized schema: Customers, Orders, Products.

Customers Products
CustomerID | Name | City ProductID Product UnitPrice
Co1 Alex | Paris P01 Coffee Machine 50
C02 Sam | Lyon P02 Mug 5
Co3 Mia Lille P03 Tea Box 6

Order_Products

Orders _
OrderID | CustomerlD | Date O'ggim P'°gg;t"3 Q“a{“'ty
001 cot 2025-11-01 oot T -
002 co2 2025-11-02 o0 o .
003 co3 2025-11-03 o0 o >

Each fact is stored once and the structure prevents contradictions.

50 /62

Why Would We Ever Not Normalize?

Normalization protects against inconsistencies and modification
anomalies. In principle, we would like every table to be normalized.

51/62

Why Would We Ever Not Normalize?

Normalization protects against inconsistencies and modification
anomalies. In principle, we would like every table to be normalized.

But... in practice, some databases are denormalized.

Denormalization

Intentional modification of a normalized database in a way that
violates previously maintained normal forms.

51/62

Why Would We Ever Not Normalize?

Normalization protects against inconsistencies and modification
anomalies. In principle, we would like every table to be normalized.

But... in practice, some databases are denormalized.

Denormalization

Intentional modification of a normalized database in a way that
violates previously maintained normal forms.

Why would a designer deliberately accept redundancy and
inconsistency risk?

51/62

Denormalization due to External Integration

When integrating data from other platforms (secondary data), the
source may provide a single flat table. We have no control over it.

Orders
Customer | City | Order Date Product Unit Price | Quantity
Alex Paris | 2025-11-01 | Coffee Machine 50 1
Alex Paris | 2025-11-01 Mug 5 2
Sam Lyon | 2025-11-02 Tea Box 6 3
Mia Lille | 2025-11-03 | Coffee Machine 50 1

52/62

Denormalization due to External Integration

When integrating data from other platforms (secondary data), the
source may provide a single flat table. We have no control over it.

Orders
Customer | City | Order Date Product Unit Price | Quantity
Alex Paris | 2025-11-01 | Coffee Machine 50 1
Alex Paris | 2025-11-01 Mug 5 2
Sam Lyon | 2025-11-02 Tea Box 6 3
Mia Lille | 2025-11-03 | Coffee Machine 50 1

A\ If the source contains inconsistencies, loading it into the
normalized schema may fail.

Sometimes denormalization is not a choice, but a constraint of
data integration. J

52/62

Denormalization from Evolving Rules

The source database could have been normalized. Why is it not?

53/62

Denormalization from Evolving Rules
The source database could have been normalized. Why is it not?

A normalized schema assumes certain rules:

® Each product has a single official price.

53 /62

Denormalization from Evolving Rules

The source database could have been normalized. Why is it not?

A normalized schema assumes certain rules:

® Each product has a single official price.

® What about discounts, promotions or dynamic pricing?

Orders
Customer | City | Order Date Product Unit Price | Quantity
Alex Paris | 2025-11-01 | Coffee Machine 50 1
Alex Paris | 2025-11-01 Mug 5 2
Sam Lyon | 2025-11-02 Tea Box 6 3
Mia Lille | 2025-11-03 | Coffee Machine 40 1

A Rule changes make the strictly normalized design obsolete.

Sometimes denormalization is a design choice, for anticipating

changes.

53 /62

Purposes of Denormalization

Why denormalize a database?

Denormalization for Practical Considerations
@ Data arrives from a system that is not normalized.

® Business rules evolve and invalidate a normalized design.

54 /62

Purposes of Denormalization

Why denormalize a database?

Denormalization for Practical Considerations
@ Data arrives from a system that is not normalized.

@® Business rules evolve and invalidate a normalized design.

Denormalization for Performance

©® To make queries faster.

To understand it, we need some knowledge of how relational
database technology works at a high level.

54 /62

Two Layers in a Relational DBMS

[Tables, Keys, Views, Queries

] Logic Layer

Logic Layer

¢ What you see and interact
with.

® Guarantees correctness of
answers.

55 /62

Two Layers in a Relational DBMS

[Tables, Keys, Views, Queries] Logic Layer
[Storage, Indexes, Execution Engine] Processing Layer
Logic Layer Processing Layer
¢ What you see and interact e Controls physical
with. organization of data.
® Guarantees correctness of ® Handles processing of
answers. operations

55 /62

Two Layers in a Relational DBMS

[Tables, Keys, Views, Queries] Logic Layer
[Storage, Indexes, Execution Engine] Processing Layer
Logic Layer Processing Layer
¢ What you see and interact e Controls physical
with. organization of data.
® Guarantees correctness of ® Handles processing of
answers. operations

Performance issues should be addressed in the processing layer. J

55 /62

Query Handling

SQL Query: SELECT * FROM Orders

[] Logic Layer

56 /62

Query Handling

SQL Query: SELECT * FROM Orders

[Query Interpretation] Logic Layer

Execution Plan .

[] Processing Layer

® The logic layer receives and interprets the query.

56 /62

Query Handling

SQL Query: SELECT * FROM Orders

[Query Interpretation] Logic Layer

Execution Plan T Query Answer

[Data Retrieval] Processing Layer

® The logic layer receives and interprets the query.

® The processing layer optimizes and executes it.

56 /62

Query Handling

SQL Query: SELECT * FROM Orders

[Query Interpretation] Logic Layer

Execution Plan T Query Answer

[Data Retrieval] Processing Layer

® The logic layer receives and interprets the query.
® The processing layer optimizes and executes it.

e Storage change (indexes, caching) can happen without
changing the logical design.

Denormalization is not the first solution for performance! J

56 /62

Query with JOIN

The JOIN Problem J

Joins combine records from multiple tables, which can be slow.

57 /62

Query with JOIN

The JOIN Problem J

Joins combine records from multiple tables, which can be slow.

Table A —— Joined Result ¥—— Table B |

57 /62

Query with JOIN

The JOIN Problem
Joins combine records from multiple tables, which can be slow.

| Table A ——| Joined Result k—— Table B

Solution: Physical Optimization
® QOptimize the processing layer:
® |ndexes
® Statistics for the query optimizer
® Caching
® Parallelization

® Data is stored in a pre-joined form under the hood.

® The logic layer remains unchanged: tables stay normalized.

57 /62

When Physical Fixes Are Not Possible

What if the DBMS only provides limited control over the
processing layer?

Denormalization may be the only option for:
® Acceptable performance

e Simplified reads

A\ Inconsistencies become possible, and updates become slower.

58 /62

Read-Only and Analytical Databases

e Data is read often, updated rarely.

¢ Denormalized structures (e.g., wider tables, precomputed
summaries) can improve performance.

59 /62

Read-Only and Analytical Databases

e Data is read often, updated rarely.

¢ Denormalized structures (e.g., wider tables, precomputed
summaries) can improve performance.

OLTP Extract, Transform, Load OLAP

® Behind the scenes, the operational source may remain
normalized (OLTP).

® A loading process transfers the data into a denormalized
reporting structure (OLAP).

59 /62

Summary (Denormalization)

There are three recurring situations:
@ Data arrives from a non-normalized system.
® Business rules evolve, invalidating a normalized design.

© Performance concerns lead to pre-joined or duplicated data.

Denormalization can violate any normal form (5NF, 4NF, 3NF,
2NF, 1NF). J

® Reduces query complexity but sacrifices consistency.
® Best suited for read-heavy contexts (e.g., OLAP systems).

60 /62

Conclusion

61/62

Takeaways: Normalization and Denormalization

Normalization
® Eliminates redundancy and ensures data integrity.
® 1INF — 2NF — 3NF — BCNF — 4NF — 5NF.
© Solves update, deletion, and insertion anomalies.
@ Best for OLTP systems (frequent writes).

Denormalization
@ Intentional violation of normal forms for practical or
performance reasons.

@® Best for OLAP systems (frequent reads).

Normalize for consistency, denormalize for performance.)

62/ 62

	Recap
	Introduction
	Data Normalization
	1NF
	2NF
	3NF & BCNF
	4NF
	5NF
	Summary

	Data Denormalization
	Denormalization for Practical Considerations
	Denormalization for Performance

	Conclusion

