
Data, Data Storage, Data Collection
Lecture 9: Data Normalization and Denormalization

Romain Pascual

MICS, CentraleSupélec, Université Paris-Saclay

1 / 62



Recap

2 / 62



Recap: NoSQL

1 NoSQL databases address challenges of distributed systems
and semi-structured data

2 The aggregate is the fundamental unit of organization in
NoSQL databases

3 Data modeling is crucial for performance in NoSQL databases

4 Four main families of NoSQL databases: Key-value,
Document-oriented, Column-oriented, Graph databases

5 NoSQL databases complement rather than replace relational
databases (polyglot persistence)

3 / 62



Introduction

4 / 62



Within the lifecycle

Collect

Clean

Store

Analyze

Communicate

5 / 62



Session Objectives

At the end of this session, you should be able to:

• Explain why normalization reduces redundancy and ensures
consistency

• Identify and correct design flaws causing data anomalies

• Describe the normal forms up to 5NF and their principles,

• Apply the main normal forms to simple data tables

• Discuss when denormalization may be justified

6 / 62



Bad Data

Expense Category Amount Paid by Year Month
Pizza Food 25 Sam 2025 11

Internet Utilities 40 Alex 2025 11

Coffee Groceries 12 Mia 2025 11

Time Machine Utilities 250 Bill 2025 11

Flatmate Expenses

. The Time Machine entry is likely erroneous.

Bad data can arise from:

• missing data,

• input errors,

• . . .

Remember the lectures about data collection.

7 / 62



Bad Data

Expense Category Amount Paid by Year Month
Pizza Food 25 Sam 2025 11

Internet Utilities 40 Alex 2025 11

Coffee Groceries 12 Mia 2025 11

Time Machine Utilities 250 Bill 2025 11

Flatmate Expenses

. The Time Machine entry is likely erroneous.

Bad data can arise from:

• missing data,

• input errors,

• . . .

Remember the lectures about data collection.

7 / 62



Data Integrity

Expense Category Amount Paid by Year Month
Pizza Food 25 Sam 2025 11

Internet Utilities 40 Alex 2025 11

Coffee Groceries 12 Mia 2025 11

Dishwasher Utilities 250 Bill 2025 11

Flatmate Expenses

Good database design can protect against some cases of bad data:
when it describes something that cannot be logicaly true.

• The Internet expense appears twice paid by different people.

• This is a failure of data integrity: the data contradicts itself.

When data disagrees with itself, it is not “just” a problem of bad
data, but a problem of bad database design (normalization).

8 / 62



Data Integrity

Expense Category Amount Paid by Year Month
Pizza Food 25 Sam 2025 11

Internet Utilities 40 Alex 2025 11

Coffee Groceries 12 Mia 2025 11

Dishwasher Utilities 250 Bill 2025 11

Pizza Food 25 Alex 2025 11

Internet Utilities 40 Bill 2025 11

Flatmate Expenses

Good database design can protect against some cases of bad data:
when it describes something that cannot be logicaly true.

• The Internet expense appears twice paid by different people.

• This is a failure of data integrity: the data contradicts itself.

When data disagrees with itself, it is not “just” a problem of bad
data, but a problem of bad database design (normalization).

8 / 62



Data Integrity

ExpenseID Expense Category Price Paid by Year Month
1842 Pizza Food 25 Sam 2025 11

9571 Internet Utilities 40 Alex 2025 11

6511 Coffee Groceries 12 Mia 2025 11

3427 Dishwasher Utilities 250 Bill 2025 11

8689 Pizza Food 25 Alex 2025 11

9571 Internet Utilities 40 Bill 2025 11

Flatmate Expenses

Good database design can protect against some cases of bad data:
when it describes something that cannot be logicaly true.

• The Internet expense appears twice paid by different people.

• This is a failure of data integrity: the data contradicts itself.

When data disagrees with itself, it is not “just” a problem of bad
data, but a problem of bad database design (normalization).

8 / 62



Data Normalization

9 / 62



Data Normalization

Definition (Normalization)

Process of organizing data into tables and columns in a way that
eliminates redundancy and prevents inconsistencies.

ExpenseID Expense Category Price Paid by Year Month
1842 Pizza Food 25 Sam 2025 11

9571 Internet Utilities 40 Alex 2025 11

6511 Coffee Groceries 12 Mia 2025 11

3427 Dishwasher Utilities 250 Bill 2025 11

8689 Pizza Food 25 Alex 2025 11

9571 Internet Utilities 40 Bill 2025 11

Flatmate Expenses

Two rows claim to describe the expense (9571) but disagree on Paid by.

. The previous table is not allowed as it violates the idea of a
single version of the truth: the same fact appears twice with
conflicting values.

10 / 62



The Normal Forms

• How do we normalize?

• When have we normalized
“enough”?

Normal Forms

Criteria to assess redundant data.

• Proposed by Edgar F. Codd1,2

(relational model)

• Progressive levels of data
integrity

1NF→ 2NF→ 3NF→ 4NF→ 5NF

Edgar F. Codd
(1923-2003)

11 / 62



The Normal Forms

• How do we normalize?

• When have we normalized
“enough”?

Normal Forms

Criteria to assess redundant data.

• Proposed by Edgar F. Codd1,2

(relational model)

• Progressive levels of data
integrity

1NF→ 2NF→ 3NF→ 4NF→ 5NF

Edgar F. Codd
(1923-2003)

1Edgar Codd. “A Relational Model of Data for Large Shared Data Banks”.
In: Commun. ACM 13.6 (1970)

2Edgar Codd. Further Normalization of the Data Base Relational
Model. Tech. rep. IBM Research Report RJ909. 1971

11 / 62



Shared Items in the Flat

Who owns what in the flat?

Name Age Shared Items
Alex 23 Microwave, 2 Lamp, 2 Chairs

Mia 20 Blender, 2 Chairs, Table

Bill 26 Gaming Console

Sam 21 3 Chairs, TV , Lamp

Flat Members Items

Is the Shared Items cell describing one thing or several?

Repeating Group

A repeating group is a set of values in a single cell. It might
create issues beacuse of:

• Varying types

• Number of values

12 / 62



Shared Items in the Flat

Who owns what in the flat?

Name Age Shared Items
Alex 23 Microwave, 2 Lamp, 2 Chairs

Mia 20 Blender, 2 Chairs, Table

Bill 26 Gaming Console

Sam 21 3 Chairs, TV , Lamp

Flat Members Items

Is the Shared Items cell describing one thing or several?

Repeating Group

A repeating group is a set of values in a single cell. It might
create issues beacuse of:

• Varying types

• Number of values

12 / 62



Handle with Strings

Who owns what in the flat?

Can we store repeating groups as a comma-separated string?

Name Age Shared Items
Alex 23 “Microwave, 2 Lamp, 2 Chairs”

Mia 20 “Blender, 2 Chairs, Table”

Bill 26 “Gaming Console”

Sam 21 “3 Chairs, TV , Lamp”

Flat Members Items

. Querying is difficult: How to search for ”2 Chairs”?

. Updating is error-prone: How to modify individual items?

13 / 62



Handle with Strings

Who owns what in the flat?

Can we store repeating groups as a comma-separated string?

Name Age Shared Items
Alex 23 “Microwave, 2 Lamp, 2 Chairs”

Mia 20 “Blender, 2 Chairs, Table”

Bill 26 “Gaming Console”

Sam 21 “3 Chairs, TV , Lamp”

Flat Members Items

. Querying is difficult: How to search for ”2 Chairs”?

. Updating is error-prone: How to modify individual items?

13 / 62



Multiple Columns

Who owns what in the flat?

Can we use multiple columns for each item?

Name Age Item 1 Qty 1 Item 2 Qty 2 Item 3 Qty 3
Alex 23 Microwave 1 Lamp 2 Chairs 2

Mia 20 Blender 1 Chairs 2 Table 1

Bill 26 Gaming Console 1

Sam 21 Chairs 3 TV 1 Lamp 1

Flat Members Items

The number of columns depends on the person, not on the data model.

. Disorganized: How to read and maintain the order?

. Sparse: How to handle person having various number of
items?

. Wide: How well does it scale?

Storing a repeating group of data in a single row violates 1NF.

14 / 62



Multiple Columns

Who owns what in the flat?

Can we use multiple columns for each item?

Name Age Item 1 Qty 1 Item 2 Qty 2 Item 3 Qty 3
Alex 23 Microwave 1 Lamp 2 Chairs 2

Mia 20 Blender 1 Chairs 2 Table 1

Bill 26 Gaming Console 1

Sam 21 Chairs 3 TV 1 Lamp 1

Flat Members Items

The number of columns depends on the person, not on the data model.

. Disorganized: How to read and maintain the order?

. Sparse: How to handle person having various number of
items?

. Wide: How well does it scale?

Storing a repeating group of data in a single row violates 1NF.

14 / 62



Multiple Columns

Who owns what in the flat?

Can we use multiple columns for each item?

Name Age Item 1 Qty 1 Item 2 Qty 2 Item 3 Qty 3
Alex 23 Microwave 1 Lamp 2 Chairs 2

Mia 20 Blender 1 Chairs 2 Table 1

Bill 26 Gaming Console 1

Sam 21 Chairs 3 TV 1 Lamp 1

Flat Members Items

The number of columns depends on the person, not on the data model.

. Disorganized: How to read and maintain the order?

. Sparse: How to handle person having various number of
items?

. Wide: How well does it scale?

Storing a repeating group of data in a single row violates 1NF.
14 / 62



First Normal Form (1NF)

1NF – Codd (1970)

Each field must contain atomic (indivisible) values:

• No collections (e.g., lists, sets).

• No nested tables.

By construction most relational DBMS (including standard SQL)
do not support tables with non-atomic values.

Codd considered 1NF mandatory for relational databases, while the
other normal forms were merely guidelines for database design.

15 / 62



Extensions of 1NF

If 1NF is consider the basis for integration in a RDBMS, we might
consider other properties to be part of 1NF:

• Unique datatype within a column (compare with spreadsheets)

• Mandatory primary keys

1NF – Christopher Date (2007)

1 There is no specific top-to-bottom ordering of the rows.

2 There is no specific left-to-right ordering of the columns.

3 There are no duplicate rows.

4 Every intersection of a row and a column contains exactly one
value from the applicable domain and nothing else.

16 / 62



Extensions of 1NF

If 1NF is consider the basis for integration in a RDBMS, we might
consider other properties to be part of 1NF:

• Unique datatype within a column (compare with spreadsheets)

• Mandatory primary keys

1NF – Christopher Date (2007)

1 There is no specific top-to-bottom ordering of the rows.

2 There is no specific left-to-right ordering of the columns.

3 There are no duplicate rows.

4 Every intersection of a row and a column contains exactly one
value from the applicable domain and nothing else.

16 / 62



Achieving 1NF

We need to store the items in a separate rows instead.

Name Item Qty
Alex Microwave 1

Alex Lamp 2

Alex Chairs 2

Mia Blender 1

Mia Chairs 2

Mia Table 1

Bill Gaming Console 1

Sam Chairs 3

Sam TV 1

Sam Lamp 1

Flat Items

Each person now corresponds to several rows.

Primary key is now a combination of Name and Item: it expresses
one fact per row.

17 / 62



Achieving 1NF

We need to store the items in a separate rows instead.

Name Item Qty
Alex Microwave 1

Alex Lamp 2

Alex Chairs 2

Mia Blender 1

Mia Chairs 2

Mia Table 1

Bill Gaming Console 1

Sam Chairs 3

Sam TV 1

Sam Lamp 1

Flat Items

Each person now corresponds to several rows.

Primary key is now a combination of Name and Item: it expresses
one fact per row.

17 / 62



Achieving 1NF

We need to store the items in a separate rows instead.

Name Item Qty
Alex Microwave 1

Alex Lamp 2

Alex Chairs 2

Mia Blender 1

Mia Chairs 2

Mia Table 1

Bill Gaming Console 1

Sam Chairs 3

Sam TV 1

Sam Lamp 1

Flat Items

Each person now corresponds to several rows.

Primary key is now a combination of Name and Item: it expresses
one fact per row.

17 / 62



Adding the Age?

Suppose we want to add the age to the table (new column).

Name Item Qty Age
Alex Microwave 1 23

Alex Lamp 2 23

Alex Chairs 2 23

Mia Blender 1 20

Mia Chairs 2 20

Mia Table 1 20

Bill Gaming Console 1 26

Sam Chairs 3 21

Sam TV 1 21

Sam Lamp 1 21

Flat Info

• The table is still in 1NF

. Data duplication: Age is repeated for each item.

18 / 62



Deletion Anomaly

Bill sells his console

, and we delete the entry from the table.

Name Item Qty Age
Alex Microwave 1 23

Alex Lamp 2 23

Alex Chairs 2 23

Mia Blender 1 20

Mia Chairs 2 20

Mia Table 1 20

Bill Gaming Console 1 26

Sam Chairs 3 21

Sam TV 1 21

Sam Lamp 1 21

Flat Info

Deletion Anomaly

• Deleting Bill’s gaming console deletes Bill’s age as well.

19 / 62



Deletion Anomaly

Bill sells his console, and we delete the entry from the table.

Name Item Qty Age
Alex Microwave 1 23

Alex Lamp 2 23

Alex Chairs 2 23

Mia Blender 1 20

Mia Chairs 2 20

Mia Table 1 20

Bill Gaming Console 1 26

Sam Chairs 3 21

Sam TV 1 21

Sam Lamp 1 21

Flat Info

Deletion Anomaly

• Deleting Bill’s gaming console deletes Bill’s age as well.

19 / 62



Update Anomaly

It is Alex’s birthday who turns 24, we need to update the table.

Name Item Qty Age
Alex Microwave 1 23

Alex Lamp 2 23

Alex Chairs 2 23

Mia Blender 1 20

Mia Chairs 2 20

Mia Table 1 20

Sam Chairs 3 21

Sam TV 1 21

Sam Lamp 1 21

Flat Info

Update Anomaly

• If we miss any, the database becomes inconsistent.

• Now Alex is both 23 and 24 in the database!

20 / 62



Update Anomaly

It is Alex’s birthday who turns 24, we need to update the table.

Name Item Qty Age
Alex Microwave 1 24

Alex Lamp 2 24

Alex Chairs 2 24

Mia Blender 1 20

Mia Chairs 2 20

Mia Table 1 20

Sam Chairs 3 21

Sam TV 1 21

Sam Lamp 1 21

Flat Info

Update Anomaly

• If we miss any, the database becomes inconsistent.

• Now Alex is both 23 and 24 in the database!

20 / 62



Update Anomaly

It is Alex’s birthday who turns 24, we need to update the table.

Name Item Qty Age
Alex Microwave 1 24

Alex Lamp 2 23

Alex Chairs 2 23

Mia Blender 1 20

Mia Chairs 2 20

Mia Table 1 20

Sam Chairs 3 21

Sam TV 1 21

Sam Lamp 1 21

Flat Info

Update Anomaly

• If we miss any, the database becomes inconsistent.

• Now Alex is both 23 and 24 in the database!

20 / 62



Insertion Anomaly

Tim joins the flat, but does not bring any new item.

Name Item Qty Age
Alex Microwave 1 23

Alex Lamp 2 23

Alex Chairs 2 23

Mia Blender 1 20

Mia Chairs 2 20

Mia Table 1 20

Sam Chairs 3 21

Sam TV 1 21

Sam Lamp 1 21

Flat Info

Insertion Anomaly

• We can not add Tim without an item (primary key).

21 / 62



Insertion Anomaly

Tim joins the flat, but does not bring any new item.

Name Item Qty Age
Alex Microwave 1 23

Alex Lamp 2 23

Alex Chairs 2 23

Mia Blender 1 20

Mia Chairs 2 20

Mia Table 1 20

Sam Chairs 3 21

Sam TV 1 21

Sam Lamp 1 21

Tim 22

Flat Info

Insertion Anomaly

• We can not add Tim without an item (primary key).

21 / 62



2NF

2NF – Informal Definition

Every non-key attribute must depend on the entire primary key:
there is no part key dependency.

Name Item Qty Age
...

...
...

...

Flat Info

• Does Qty depend on the entire primary key?

Yes

• Does Age depend on the entire primary key?

No

Issue appeared when we added Age to the table, where is did not
really belong.

22 / 62



2NF

2NF – Informal Definition

Every non-key attribute must depend on the entire primary key:
there is no part key dependency.

Name Item Qty Age
...

...
...

...

Flat Info

• Does Qty depend on the entire primary key? Yes

• Does Age depend on the entire primary key?

No

Issue appeared when we added Age to the table, where is did not
really belong.

22 / 62



2NF

2NF – Informal Definition

Every non-key attribute must depend on the entire primary key:
there is no part key dependency.

Name Item Qty Age
...

...
...

...

Flat Info

• Does Qty depend on the entire primary key? Yes

• Does Age depend on the entire primary key? No

Issue appeared when we added Age to the table, where is did not
really belong.

22 / 62



Attributes, Keys and Dependencies

Name Item Qty Age
...

...
...

...

Flat Info

To (formally) discuss 2NF and 3NF, we need to understand how a
table is uniquely identified, so we need some additional notions.

• Superkeys

• Candidate keys

• Prime attribute

• Functional Dependency

23 / 62



Superkey

Name Item Qty Age
...

...
...

...

Flat Info

Superkey

A set of attributes that can uniquely identify each row.

. It may contain unnecessary attributes.

Shared Flatmate Superkeys

• {Name, Item},
• {Name, Item, Qty},
• {Name, Item, Age},
• {Name, Item, Qty, Age}

24 / 62



Candidate Key

Name Item Qty Age
...

...
...

...

Flat Info

Candidate Key

A minimal superkey.

. Removing any attribute breaks uniqueness.

Shared Flatmate Candidate Keys

Only candidate key: {Name, Item}.

25 / 62



Prime Attribute

Name Item Qty Age
...

...
...

...

Flat Info

Prime Attribute

An attribute that is part of at least one candidate key.

Every other attribute is non-prime.

Shared Flatmate Prime Attributes

Non-prime attributes: Qty and Age

26 / 62



Functional Dependencies

Name Item Qty Age
...

...
...

...

Flat Info

Definition (Functional Dependencies (FD) X → Y )

For each value in X , there is a unique of value in Y that depends
only on the value in X .

. The projection on X × Y of the relation is a function: knowing
the values for X is enough to know the for Y .

Shared Flatmate Functional Dependencies

• {Name, Item} → {Qty}
• {Name} → {Age}

27 / 62



2NF, Formally

2NF – Formal Definition

No non-prime attribute depends on part of a candidate key.

Shared Flatmate Dependencies

Only candidate key: {Name, Item}.

Non-prime attributes: Qty and Age.

Functional dependencies:

• {Name, Item} → {Qty}
• {Name} → {Age}

Issue appeared when we added Age to the table, where is did not
really belong.

28 / 62



Achieving 2NF

Split into two tables:

Name Item Qty
Alex Microwave 1

Alex Lamp 2

Alex Chairs 2

Mia Blender 1

Mia Chairs 2

Mia Table 1

Bill Gaming Console 1

Sam Chairs 3

Sam TV 1

Sam Lamp 1

Flat Items

Name Age
Alex 23

Mia 20

Bill 26

Sam 21

Flat Members

No part-key dependency: 2NF.

29 / 62



Adding Rent Information

We add RoomSize and Rent to the database.

Name Age RoomSize Rent
Alex 23 Large 500

Mia 20 Small 300

Bill 26 Large 500

Sam 21 Medium 400

Flat Members

Dependencies (✓ 2NF):

• {Name} → {Age}
• {Name} → {RoomSize}
• {Name} → {Rent}

30 / 62



Room Swap

Bill is often out of the flat and swaps room with Mia.

Name Age RoomSize Rent
Alex 23 Large 500

Mia 20 Large 300

Bill 26 Small 500

Sam 21 Medium 400

Flat Members

The table assumes that Rent depends on Name,
but the data shows it depends on RoomSize.

What happened? Dependencies:

(TD: Transitive Dependency)

• {Name} → {Age}
• {Name} → {RoomSize}
• {RoomSize} → {Rent}

• {Name} → {RoomSize} → {Rent}: TD

31 / 62



Room Swap

Bill is often out of the flat and swaps room with Mia.

Name Age RoomSize Rent
Alex 23 Large 500

Mia 20 Large 300

Bill 26 Small 500

Sam 21 Medium 400

Flat Members

The table assumes that Rent depends on Name,
but the data shows it depends on RoomSize.

What happened? Dependencies: (TD: Transitive Dependency)

• {Name} → {Age}
• {Name} → {RoomSize}
• {RoomSize} → {Rent}
• {Name} → {RoomSize} → {Rent}: TD

31 / 62



Achieving 3NF

Split the table to eliminate transitive dependencies.

Name Age RoomSize
Alex 23 Large

Mia 20 Small

Bill 26 Large

Sam 21 Medium

Flat Members

RoomSize Rent
Small 300

Medium 400

Large 500

Room Rent

Each table represents a single entity type.

32 / 62



3NF

3NF

Every non-prime attribute depends directly on every candidate key,
and not on part of a candidate key or other non-prime attributes.

Every non-key attribute depends on the key,
the whole key and nothing but the key.

Name Age RoomSize
...

...
...

Flat Members

RoomSize Rent
...

...

Room Rent

Dependencies (✓ 3NF):

• {Name} → {Age}
• {Name} → {RoomSize}

• {RoomSize} → {Rent}

33 / 62



BCNF

Boyce-Codd Normal Form

For every functional dependency X → Y , X is a superkey.

Every attribute depends on the key,
the whole key and nothing but the key.

Most 3NF tables are also in BCNF.

BCNF fixes a loophole in 3NF and eliminates remaining anomalies
caused by functional dependencies when multiple candidate keys
overlap.

34 / 62



Member Profiles: Hobbies and Languages

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Mia Painting English

Mia Reading English

Mia Painting Spanish

Mia Reading Spanish

Bill Gaming English

Bill Gaming German

Flat Profiles

Update Anomaly

• Alex also speaks Finnish!

• We should also have (Alex, Cycling, Finnish).

35 / 62



Member Profiles: Hobbies and Languages

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Alex Cooking Finnish

Mia Painting English

Mia Reading English

Mia Painting Spanish

Mia Reading Spanish

Bill Gaming English

Bill Gaming German

Flat Profiles

Update Anomaly

• Alex also speaks Finnish!

• We should also have (Alex, Cycling, Finnish).

35 / 62



Member Profiles: Hobbies and Languages

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Alex Cooking Finnish

Mia Painting English

Mia Reading English

Mia Painting Spanish

Mia Reading Spanish

Bill Gaming English

Bill Gaming German

Flat Profiles

Update Anomaly

• Alex also speaks Finnish!

• We should also have (Alex, Cycling, Finnish).

35 / 62



Dependencies

Name Hobby Language
...

...
...

Flat Profiles

Something about the table design allows for impossible situations.

What are the non-trivial functional dependencies? There are none.

The problem is not a functional dependency, but the opposite: too
much independence between attributes.

36 / 62



Dependencies

Name Hobby Language
...

...
...

Flat Profiles

Something about the table design allows for impossible situations.

What are the non-trivial functional dependencies?

There are none.

The problem is not a functional dependency, but the opposite: too
much independence between attributes.

36 / 62



Dependencies

Name Hobby Language
...

...
...

Flat Profiles

Something about the table design allows for impossible situations.

What are the non-trivial functional dependencies? There are none.

The problem is not a functional dependency, but the opposite: too
much independence between attributes.

36 / 62



Dependencies

Name Hobby Language
...

...
...

Flat Profiles

Something about the table design allows for impossible situations.

What are the non-trivial functional dependencies? There are none.

The problem is not a functional dependency, but the opposite: too
much independence between attributes.

36 / 62



Multivalued Dependencies

Cooking
English

Cycling
English

Cooking
French

Cycling
French

H
o
b
b
y

Language

Multivalued Dependencies

• Each member has a set of hobbies

• Each member has a set of languages

• These sets are independent of each other

This is called a multivalued dependency.

37 / 62



Multivalued Dependencies

Cooking
English

Cycling
English

Cooking
French

Cycling
French

H
o
b
b
y

Language

Multivalued Dependencies

• Each member has a set of hobbies

• Each member has a set of languages

• These sets are independent of each other

This is called a multivalued dependency.

37 / 62



Understanding Multivalued Dependencies

Definition (Multivalued Dependency (MVD) X ↠ Y )

For each value in X , there is a set of value in Y that depends only
on the value in X : knowing X fixes the possible Y s.

Formal Characterisation of MVDs

A relation R(X ,Y ,Z ) satisfies X ↠ Y if for every x , y1, z1, y2, z2:

R(x , y1, z1) ∧ R(x , y2, z2) =⇒ R(x , y1, z2) ∧ R(x , y2, z1)

For each x , the values in Y and Z form a Cartesian product.

38 / 62



Understanding Multivalued Dependencies

Definition (Multivalued Dependency (MVD) X ↠ Y )

For each value in X , there is a set of value in Y that depends only
on the value in X : knowing X fixes the possible Y s.

Formal Characterisation of MVDs

A relation R(X ,Y ,Z ) satisfies X ↠ Y if for every x , y1, z1, y2, z2:

R(x , y1, z1) ∧ R(x , y2, z2) =⇒ R(x , y1, z2) ∧ R(x , y2, z1)

For each x , the values in Y and Z form a Cartesian product.

38 / 62



Example

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Alex Cooking Finnish

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Alex Cooking Finnish

Alex Cycling Finnish

Flat Profiles

✓ {Name} ↠ {Hobby}
• (Alex, Cooking, English) and (Alex, Cycling, French) in the
table

• (Alex, Cooking, French) and (Alex, Cycling, English) also in
the table

Once we have established the MVD, (Alex, Cooking, Finnish) and
(Alex, Cycling, English) implies (Alex, Cycling, Finnish).

39 / 62



Example

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Alex Cooking Finnish

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Alex Cooking Finnish

Alex Cycling Finnish

Flat Profiles

✓ {Name} ↠ {Hobby}
• (Alex, Cooking, English) and (Alex, Cycling, French) in the
table

• (Alex, Cooking, French) and (Alex, Cycling, English) also in
the table

Once we have established the MVD, (Alex, Cooking, Finnish) and
(Alex, Cycling, English) implies (Alex, Cycling, Finnish).

39 / 62



Example

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Alex Cooking Finnish

Name Hobby Language
Alex Cooking English

Alex Cycling English

Alex Cooking French

Alex Cycling French

Alex Cooking Finnish

Alex Cycling Finnish

Flat Profiles

✓ {Name} ↠ {Hobby}
• (Alex, Cooking, English) and (Alex, Cycling, French) in the
table

• (Alex, Cooking, French) and (Alex, Cycling, English) also in
the table

Once we have established the MVD, (Alex, Cooking, Finnish) and
(Alex, Cycling, English) implies (Alex, Cycling, Finnish).

39 / 62



Is the table in 3NF?

What are the candidate keys?

Name Hobby Language
...

...
...

Flat Profiles

• Knowing {Name} alone gives several tuples (different
hobbies/languages),

• Knowing {Name, Hobby} still gives several tuples (different
languages),

• Knowing {Name, Language} still gives several tuples
(different hobbies).

So the key is {Name, Hobby, Language}.

✓ As a result, the tabel is trivially in 3NF.

40 / 62



Is the table in 3NF?

What are the candidate keys?

Name Hobby Language
...

...
...

Flat Profiles

• Knowing {Name} alone gives several tuples (different
hobbies/languages),

• Knowing {Name, Hobby} still gives several tuples (different
languages),

• Knowing {Name, Language} still gives several tuples
(different hobbies).

So the key is {Name, Hobby, Language}.

✓ As a result, the tabel is trivially in 3NF.

40 / 62



Is the table in 3NF?

What are the candidate keys?

Name Hobby Language
...

...
...

Flat Profiles

• Knowing {Name} alone gives several tuples (different
hobbies/languages),

• Knowing {Name, Hobby} still gives several tuples (different
languages),

• Knowing {Name, Language} still gives several tuples
(different hobbies).

So the key is {Name, Hobby, Language}.

✓ As a result, the tabel is trivially in 3NF.

40 / 62



Is the table in 3NF?

What are the candidate keys?

Name Hobby Language
...

...
...

Flat Profiles

• Knowing {Name} alone gives several tuples (different
hobbies/languages),

• Knowing {Name, Hobby} still gives several tuples (different
languages),

• Knowing {Name, Language} still gives several tuples
(different hobbies).

So the key is {Name, Hobby, Language}.

✓ As a result, the tabel is trivially in 3NF.

40 / 62



4NF

4NF

For every (non-trivial) multivalued dependencies X ↠ Y , X is a
superkey.

The key is {Name, Hobby, Language}.

The MVDs are:

• {Name} ↠ {Hobby}
• {Name} ↠ {Language}

{Name} is not the key, so the multivalued dependencies are not
on the key.

41 / 62



4NF

4NF

For every (non-trivial) multivalued dependencies X ↠ Y , X is a
superkey.

The key is {Name, Hobby, Language}.

The MVDs are:

• {Name} ↠ {Hobby}
• {Name} ↠ {Language}

{Name} is not the key, so the multivalued dependencies are not
on the key.

41 / 62



Achieving 4NF

As always, the fix it the split the table into multuple tables.

Name Hobby
Alex Cooking

Alex Cycling

Mia Painting

Mia Reading

Bill Gaming

Sam Swimming

Member Hobbies

Name Language
Alex English

Alex French

Mia English

Mia Spanish

Bill English

Bill German

Sam English

Member Language

We still have MVD, but they become trivial since they cover all
attributes.

42 / 62



Flatmate Chores

Alex: I am happy to do Cleaning and Repairs. I know how to use a Brush
and a Vacuum.

Mia: I can take care of Decorating and Repairs. I know how to handle a
Hammer, a Screw Gun, and a Vacuum.

Sam: I am available for Decorating and Cleaning. I can use a Brush, a
Hammer, and a Vacuum.

We also know which tools can be needed for each chore:

• The Brush and the Vacuum are used for Cleaning.

• The Brush and the Screw Gun are used for Decorating.

• The Hammer, the Vacuum and the Screw Gun are used for Repairs.

From this information, we can build the table of chores each flatmate can
actually do with the tools they know.

43 / 62



Initial Table Design

Sam: I am available for Decorating and Cleaning. I can use a Brush,
a Hammer, and a Vacuum.

Name Tool Chore
Alex Brush Cleaning

Alex Vacuum Cleaning

Alex Vacuum Repairs

Mia Hammer Repairs

Mia Screw Gun Decorating

Mia Screw Gun Repairs

Mia Vacuum Repairs

Sam Brush Cleaning

Sam Brush Decorating

Sam Vacuum Cleaning

Flat Chores

There is no MVD, the table is in 4NF.

But the table does not state
that Sam can use the Hammer.

44 / 62



Initial Table Design

Sam: I am available for Decorating and Cleaning. I can use a Brush,
a Hammer, and a Vacuum.

Name Tool Chore
Alex Brush Cleaning

Alex Vacuum Cleaning

Alex Vacuum Repairs

Mia Hammer Repairs

Mia Screw Gun Decorating

Mia Screw Gun Repairs

Mia Vacuum Repairs

Sam Brush Cleaning

Sam Brush Decorating

Sam Vacuum Cleaning

Flat Chores

There is no MVD, the table is in 4NF. But the table does not state
that Sam can use the Hammer.

44 / 62



Decomposition into Pairwise Relations

At the beginning, we were given three pieces of information, so we
should have built 3 tables:

Name Chore
Alex Cleaning

Alex Repairs

Mia Decorating

Mia Repairs

Sam Cleaning

Sam Decorating

Prefered Chores Name Tool
Alex Brush

Alex Vacuum

Mia Hammer

Mia Screw Gun

Mia Vacuum

Sam Brush

Sam Hammer

Sam Vacuum

Can Use

Tool Chore
Brush Cleaning

Brush Decorating

Hammer Repairs

Screw Gun Repairs

Screw Gun Decorating

Vacuum Cleaning

Vacuum Repairs

Can Be Used For

When needed, we retrieve the information by joining the tables.

45 / 62



5NF

Join Dependency

A table can be losslessly reconstructed from several smaller tables.

Some tables represent facts that come from several independent
relationships. All pairwise joins look correct, but the full table
may still contain redundancy or missing combinations.

5NF – Projection-Join Normal Form

Every non-trivial join dependency is a superkey.

It is the final normal form as far as removing redundancy is
concerned.

46 / 62



Ternary Relations

. Ternary relationships may still exist

Decomposing such a table into pairwise relations can create
spurious rows.

Name Tool Chore
Alex Brush Cleaning

Alex Vacuum Repairs

Mia Hammer Repairs

Mia Screw Gun Decorating

Mia Screw Gun Repairs

Mia Vacuum Repairs

Sam Brush Decorating

Sam Vacuum Cleaning

Flat Chores

47 / 62



Ternary Relations

. Ternary relationships may still exist

Decomposing such a table into pairwise relations can create
spurious rows.

Name Chore
Alex Cleaning

Alex Repairs

Mia Decorating

Mia Repairs

Sam Decorating

Sam Cleaning

Prefered Chores
Name Tool
Alex Brush

Alex Vacuum

Mia Hammer

Mia Screw Gun

Mia Vacuum

Sam Brush

Sam Vacuum

Can Use

Tool Chore
Brush Decorating

Brush Cleaning

Hammer Repairs

Vacuum Cleaning

Vacuum Repairs

Screw Gun Repairs

Screw Gun Decorating

Can Be Used For

47 / 62



Ternary Relations

. Ternary relationships may still exist

Decomposing such a table into pairwise relations can create
spurious rows.

Name Tool Chore
Alex Brush Cleaning

Alex Vacuum Cleaning

Alex Vacuum Repairs

Mia Hammer Repairs

Mia Screw Gun Decorating

Mia Screw Gun Repairs

Mia Vacuum Repairs

Sam Brush Decorating

Sam Brush Cleaning

Sam Vacuum Cleaning

Flat Chores

47 / 62



Summary (Normal Forms)

Edgar Codd (inventor of the relational model) proposed the theory
of data normalization, through normal forms:

• 1NF: Atomic values.

• 2NF: No partial dependencies.

• 3NF/BCNF: No transitive dependencies.

• 4NF: No multivalued dependencies.

• 5NF: No join dependencies.

• And more (no longer about redundancy)

Core Idea

Decompose tables into smaller, related tables, such that each
table represent one specific topic.

Reduces database modification anomalies (appropriate for OLTP
systems).

48 / 62



Data Denormalization

49 / 62



Data Modeling for a Commercial Platform

A normalized schema: Customers, Orders, Products.

CustomerID Name City
C01 Alex Paris

C02 Sam Lyon

C03 Mia Lille

Customers

ProductID Product UnitPrice
P01 Coffee Machine 50

P02 Mug 5

P03 Tea Box 6

Products

OrderID CustomerID Date
O01 C01 2025-11-01

O02 C02 2025-11-02

O03 C03 2025-11-03

Orders
OrderID ProductID Quantity

O01 P01 1

O01 P02 2

O02 P03 3

O03 P01 1

Order Products

Each fact is stored once and the structure prevents contradictions.

50 / 62



Why Would We Ever Not Normalize?

Normalization protects against inconsistencies and modification
anomalies. In principle, we would like every table to be normalized.

But... in practice, some databases are denormalized.

Denormalization

Intentional modification of a normalized database in a way that
violates previously maintained normal forms.

Why would a designer deliberately accept redundancy and
inconsistency risk?

51 / 62



Why Would We Ever Not Normalize?

Normalization protects against inconsistencies and modification
anomalies. In principle, we would like every table to be normalized.

But... in practice, some databases are denormalized.

Denormalization

Intentional modification of a normalized database in a way that
violates previously maintained normal forms.

Why would a designer deliberately accept redundancy and
inconsistency risk?

51 / 62



Why Would We Ever Not Normalize?

Normalization protects against inconsistencies and modification
anomalies. In principle, we would like every table to be normalized.

But... in practice, some databases are denormalized.

Denormalization

Intentional modification of a normalized database in a way that
violates previously maintained normal forms.

Why would a designer deliberately accept redundancy and
inconsistency risk?

51 / 62



Denormalization due to External Integration

When integrating data from other platforms (secondary data), the
source may provide a single flat table. We have no control over it.

Customer City Order Date Product Unit Price Quantity
Alex Paris 2025-11-01 Coffee Machine 50 1

Alex Paris 2025-11-01 Mug 5 2

Sam Lyon 2025-11-02 Tea Box 6 3

Mia Lille 2025-11-03 Coffee Machine 50 1

Orders

. If the source contains inconsistencies, loading it into the
normalized schema may fail.

Sometimes denormalization is not a choice, but a constraint of
data integration.

52 / 62



Denormalization due to External Integration

When integrating data from other platforms (secondary data), the
source may provide a single flat table. We have no control over it.

Customer City Order Date Product Unit Price Quantity
Alex Paris 2025-11-01 Coffee Machine 50 1

Alex Paris 2025-11-01 Mug 5 2

Sam Lyon 2025-11-02 Tea Box 6 3

Mia Lille 2025-11-03 Coffee Machine 50 1

Orders

. If the source contains inconsistencies, loading it into the
normalized schema may fail.

Sometimes denormalization is not a choice, but a constraint of
data integration.

52 / 62



Denormalization from Evolving Rules

The source database could have been normalized. Why is it not?

A normalized schema assumes certain rules:

• Each product has a single official price.

• What about discounts, promotions or dynamic pricing?

Customer City Order Date Product Unit Price Quantity
Alex Paris 2025-11-01 Coffee Machine 50 1

Alex Paris 2025-11-01 Mug 5 2

Sam Lyon 2025-11-02 Tea Box 6 3

Mia Lille 2025-11-03 Coffee Machine 40 1

Orders

. Rule changes make the strictly normalized design obsolete.

Sometimes denormalization is a design choice, for anticipating
changes.

53 / 62



Denormalization from Evolving Rules

The source database could have been normalized. Why is it not?

A normalized schema assumes certain rules:

• Each product has a single official price.

• What about discounts, promotions or dynamic pricing?

Customer City Order Date Product Unit Price Quantity
Alex Paris 2025-11-01 Coffee Machine 50 1

Alex Paris 2025-11-01 Mug 5 2

Sam Lyon 2025-11-02 Tea Box 6 3

Mia Lille 2025-11-03 Coffee Machine 40 1

Orders

. Rule changes make the strictly normalized design obsolete.

Sometimes denormalization is a design choice, for anticipating
changes.

53 / 62



Denormalization from Evolving Rules

The source database could have been normalized. Why is it not?

A normalized schema assumes certain rules:

• Each product has a single official price.

• What about discounts, promotions or dynamic pricing?

Customer City Order Date Product Unit Price Quantity
Alex Paris 2025-11-01 Coffee Machine 50 1

Alex Paris 2025-11-01 Mug 5 2

Sam Lyon 2025-11-02 Tea Box 6 3

Mia Lille 2025-11-03 Coffee Machine 40 1

Orders

. Rule changes make the strictly normalized design obsolete.

Sometimes denormalization is a design choice, for anticipating
changes.

53 / 62



Purposes of Denormalization

Why denormalize a database?

Denormalization for Practical Considerations

1 Data arrives from a system that is not normalized.

2 Business rules evolve and invalidate a normalized design.

Denormalization for Performance

3 To make queries faster.

To understand it, we need some knowledge of how relational
database technology works at a high level.

54 / 62



Purposes of Denormalization

Why denormalize a database?

Denormalization for Practical Considerations

1 Data arrives from a system that is not normalized.

2 Business rules evolve and invalidate a normalized design.

Denormalization for Performance

3 To make queries faster.

To understand it, we need some knowledge of how relational
database technology works at a high level.

54 / 62



Two Layers in a Relational DBMS

Tables, Keys, Views, Queries Logic Layer

Storage, Indexes, Execution Engine Processing Layer

Logic Layer

• What you see and interact
with.

• Guarantees correctness of
answers.

Processing Layer

• Controls physical
organization of data.

• Handles processing of
operations

Performance issues should be addressed in the processing layer.

55 / 62



Two Layers in a Relational DBMS

Tables, Keys, Views, Queries Logic Layer

Storage, Indexes, Execution Engine Processing Layer

Logic Layer

• What you see and interact
with.

• Guarantees correctness of
answers.

Processing Layer

• Controls physical
organization of data.

• Handles processing of
operations

Performance issues should be addressed in the processing layer.

55 / 62



Two Layers in a Relational DBMS

Tables, Keys, Views, Queries Logic Layer

Storage, Indexes, Execution Engine Processing Layer

Logic Layer

• What you see and interact
with.

• Guarantees correctness of
answers.

Processing Layer

• Controls physical
organization of data.

• Handles processing of
operations

Performance issues should be addressed in the processing layer.

55 / 62



Query Handling

SQL Query: SELECT * FROM Orders

Logic Layer

Processing Layer

Execution Plan Query Answer

• The logic layer receives and interprets the query.

• The processing layer optimizes and executes it.

• Storage change (indexes, caching) can happen without
changing the logical design.

Denormalization is not the first solution for performance!

56 / 62



Query Handling

SQL Query: SELECT * FROM Orders

Query Interpretation Logic Layer

Processing Layer

Execution Plan

Query Answer

• The logic layer receives and interprets the query.

• The processing layer optimizes and executes it.

• Storage change (indexes, caching) can happen without
changing the logical design.

Denormalization is not the first solution for performance!

56 / 62



Query Handling

SQL Query: SELECT * FROM Orders

Query Interpretation Logic Layer

Data Retrieval Processing Layer

Execution Plan Query Answer

• The logic layer receives and interprets the query.

• The processing layer optimizes and executes it.

• Storage change (indexes, caching) can happen without
changing the logical design.

Denormalization is not the first solution for performance!

56 / 62



Query Handling

SQL Query: SELECT * FROM Orders

Query Interpretation Logic Layer

Data Retrieval Processing Layer

Execution Plan Query Answer

• The logic layer receives and interprets the query.

• The processing layer optimizes and executes it.

• Storage change (indexes, caching) can happen without
changing the logical design.

Denormalization is not the first solution for performance!

56 / 62



Query with JOIN

The JOIN Problem

Joins combine records from multiple tables, which can be slow.

Table A Joined Result Table B

Solution: Physical Optimization

• Optimize the processing layer:
• Indexes
• Statistics for the query optimizer
• Caching
• Parallelization

• Data is stored in a pre-joined form under the hood.

• The logic layer remains unchanged: tables stay normalized.

57 / 62



Query with JOIN

The JOIN Problem

Joins combine records from multiple tables, which can be slow.

Table A Joined Result Table B

Solution: Physical Optimization

• Optimize the processing layer:
• Indexes
• Statistics for the query optimizer
• Caching
• Parallelization

• Data is stored in a pre-joined form under the hood.

• The logic layer remains unchanged: tables stay normalized.

57 / 62



Query with JOIN

The JOIN Problem

Joins combine records from multiple tables, which can be slow.

Table A Joined Result Table B

Solution: Physical Optimization

• Optimize the processing layer:
• Indexes
• Statistics for the query optimizer
• Caching
• Parallelization

• Data is stored in a pre-joined form under the hood.

• The logic layer remains unchanged: tables stay normalized.

57 / 62



When Physical Fixes Are Not Possible

What if the DBMS only provides limited control over the
processing layer?

Denormalization may be the only option for:

• Acceptable performance

• Simplified reads

. Inconsistencies become possible, and updates become slower.

58 / 62



Read-Only and Analytical Databases

• Data is read often, updated rarely.

• Denormalized structures (e.g., wider tables, precomputed
summaries) can improve performance.

ï

OLTP

Ô

Extract, Transform, Load

¡

OLAP

• Behind the scenes, the operational source may remain
normalized (OLTP).

• A loading process transfers the data into a denormalized
reporting structure (OLAP).

59 / 62



Read-Only and Analytical Databases

• Data is read often, updated rarely.

• Denormalized structures (e.g., wider tables, precomputed
summaries) can improve performance.

ï

OLTP

Ô

Extract, Transform, Load

¡

OLAP

• Behind the scenes, the operational source may remain
normalized (OLTP).

• A loading process transfers the data into a denormalized
reporting structure (OLAP).

59 / 62



Summary (Denormalization)

There are three recurring situations:

1 Data arrives from a non-normalized system.

2 Business rules evolve, invalidating a normalized design.

3 Performance concerns lead to pre-joined or duplicated data.

Denormalization can violate any normal form (5NF, 4NF, 3NF,
2NF, 1NF).

• Reduces query complexity but sacrifices consistency.

• Best suited for read-heavy contexts (e.g., OLAP systems).

60 / 62



Conclusion

61 / 62



Takeaways: Normalization and Denormalization

Normalization

1 Eliminates redundancy and ensures data integrity.

2 1NF → 2NF → 3NF → BCNF → 4NF → 5NF.

3 Solves update, deletion, and insertion anomalies.

4 Best for OLTP systems (frequent writes).

Denormalization

1 Intentional violation of normal forms for practical or
performance reasons.

2 Best for OLAP systems (frequent reads).

Normalize for consistency, denormalize for performance.

62 / 62


	Recap
	Introduction
	Data Normalization
	1NF
	2NF
	3NF & BCNF
	4NF
	5NF
	Summary

	Data Denormalization
	Denormalization for Practical Considerations
	Denormalization for Performance

	Conclusion

