Data, Data Storage, Data Collection
Lecture 7: Data Storage

Romain Pascual

MICS, CentraleSupélec, Université Paris-Saclay

1/44

Recap

2/44

Recap: Data Storage

@ Understand the difference between storage models (flat,
tabular, hierarchical, columnar) and formats (CSV, JSON,
Parquet)

® Choose the right format based on your use case: Excel for
business, CSV/JSON for sharing, Parquet for analytics

© Consider the trade-offs between readability, size, speed, and
interoperability when selecting a format

O For long-term storage, prioritize open standards and
self-describing formats with proper metadata

® Document your storage decisions and maintain data
provenance for reproducibility

® Consider ethical implications including privacy, accessibility,
and sustainability

3/44

Introduction

4/44

Within the lifecycle

Collect

b

EO re

h

Communicate

5/44

Session Objectives

At the end of this session, you should be able to:

® Explain the differences between SQL and NoSQL databases.

® Describe the four families of NoSQL databases and their use
cases.

® Perform basic CRUD operations in MongoDB.

6/44

Why NoSQL databases?

NoSQL for Not only SQL
H B - (|

= & = =\EE/

=
e =

\
H B H &

Ce_ntralizec—l Distribut;.d

Goals
® Provides better scalability for distributed databases
® Provides better support for semi-structured databases

¢ (Addresses the object-relational impedance mismatch: store
data as objects, like in code, instead of tables)

7/44

Aggregate

Aggregate: The Basic Unit of NoSQL

© N AW N R

Unlike relational databases, we can control how data is distributed.
The atomic blocks for distribution are called aggregates.

Definition (Aggregate)
A collection of data that interacts as a single unit. }
{
"user_id"”: 123,
"name” : " Alice"”,
"balance”: 1000,
"orders”: |
{"order_id”: 1, "amount”: 99.99},
{"order_id”: 2, "amount”: 49.99}
]
}

9/44

Aggregates for Distribution and Operations

Aggregates are the atomic blocks for:
® Replication: Copying data across nodes for redundancy.
e Sharding: Splitting data across nodes for scalability.

e Operations: CRUD operations access the complete unit.

Aggregate A Aggregate B

’Nodel‘ ’Node2‘ ’Node3‘ ’Node4‘

10/ 44

Comparison with Relational Databases

® ~ a row in relational databases: store a specific entity
® =£ a row in relational databases: can nest other aggregates }

1 {

2 "user_id": 123,

3 "name": "Alice",

4 "balance": 1000,

5 "orders": [

6 {"order_id": 1, "amount": 99.99},

7 {"order_id": 2, "amount": 49.99}

s]

o }

11/44

Distributing a Relational Database

users

user_id

name

123

Alice

456

Bob

orders
order_id | user_id | amount
1 123 99.99
2 123 49.99
3 456 29.99

Distributing a Relational Database

orders
users
ser.id | name order_id | user_id | amount
= 12; e 1 123 | 99.99
456 Bob 2 123 49.99
3 456 29.99

Noge 1 Noge 2
[ssue

® Data for an entity is split across nodes, e.g., Alice + her orders

® Queries require JOINs, e.g., “Get all orders for Alice”

12/44

Denormalize the Table

orders
users
d order_id | user_id | amount
usg; I:?i‘: 1 123 99.99
\ 2 123 49.99
user_id | name amount

123 | Alice | [99.99, 49.99]

Idea

® Simulate the JOINs such that all data for an entity is stored
together (data co-location)

13 /44

Example: Get All Orders for Alice

orders
users
usor id | name order_id | user_id | amount
125 Alice 1 123 99.99
456 Bob 2 123 49.99
3 456 29.99
:
2 "user_id": 123,
3 "name” : " Alice",
4 "balance”: 1000,
5 "orders”: [
6 {"order_id”: 1, "amount”: 99.99},
7 {"order_id”: 2, "amount”: 49.99}
s
9o }

® SQL: Requires a JOIN between tables.

® NoSQL: Simply access the aggregate.

14/ 44

Denormalization in Aggregates

Why It Matters
¢ Performance: Avoids complex JOIN operations, which can be
slow in distributed systems.
e Simplicity: Simplifies queries by keeping related data
together.
o Flexibility: Allows for flexible schema design, accommodating
changes more easily.

Trade-offs

¢ Redundancy: Denormalization can lead to data redundancy,
which may increase storage requirements.

e Consistency: Ensuring data consistency can be more
challenging with denormalized data.

15/ 44

Aggregates are Schemaless

Aggregates might not have the same attributes.

1 g

2 "user_id": 123,
3 "name” : " Alice”,
4 "balance”: 1000,
5 “orders”: [

6 {"order_id”: 1,
7 {"order_id”: 2,
s]

0 }

"amount” :
"amount” :

99.99},

49 .99}

® No need to fix a rigid schema.

e NULL values are avoided.

1
2 "user_id”: 456,
3 "name” : "Bob",
4 "balance”: 0

5 }

16/ 44

Atomic Operations on Aggregates

Operations on a single aggregate are atomic:
® The entire operation is completed as a single unit.

® No partial updates

1{
2 "user_id”: 123, Process
3 "name” : " Alice”, 1 {
4 "balance”: 1000, Orders 2 "user_-id”: 123,
5 "orders”: [3 "name" : " Alice"”,
6 {"order_id”: 1, "amount”: 99.99}, 4 "balance”: 850.02
7 {"order_id”: 2, "amount”: 49.99} 5)
8]
9 }
h e
Node 1 Node 1
® Ensures data consistency within an aggregate.
® Simplifies error handling and recovery.

17/44

Cross-Aggregate Operations

1 {
1{ 2 "order_id": 1,
., . 3 "user_id”: 123,
:2; ”USern—lAd”AI]_-ZP”: 4 "amount” : 99.99,
”name 5 - tce 5 "status”: "pending”,
4 balance”: 1000, 6 "items” :
5 "orders”: [id”:
6 {"order_id”: 1, "amount”: 99.99}, ; v{n;:eTflfj’L;pigéﬂ
; | {"order_id”: 2, "amount”: 49.99} 9 "price”: 999.99,
9 } 10 "quantity”: 1}
11
12 }

Noge 1 Noge 1

18/ 44

Cross-Aggregate Operations

1 {
1{ 2 "order_id": 1,
2 "user_id”: 123, 3 ”user,ui 3 123,
» w ® q @ 4 amount” : 99.99,
9 name- Alice”, 5 "status”: " pending”
4 "balance”: 1000, P g
5 "orders”: [o items - A1
6 {"order_id”: 1, "amount”: 99.99}, ; ’{n;r:-neeT'ilfi’L-apig;':
; | {"order_id”: 2, "amount”: 49.99} 9 "price”: 999.99,
9 } 10 "quantity”: 1}
11
12 }

Node 1 Node 2
Cross-aggregate operations can involve several nodes:

® No guarantee that related aggregates are stored on the same
node.

® Network latency and partition might cause inconsistencies.

18/ 44

Aggregate-Based Databases

& Schemaless

® No rigid schema

® Flexible
evolution

< Denormalization

® Fast queries

«¢ Distribution

® Aggregate in a

& Aggregate
Update

e Atomicity (all or
nothing)

® Redundancy single node
(cheap storage) e Control
@ Design

43 Cross-Aggregate

® No atomicity

® Availability vs.
consistency

® Optimize for
query patterns

® Eventual
consistency

19/ 44

NoSQL Databases

Four families of NoSQL

Key Value
Key Value N ¥ 3 3
2

Key Value ¥) Y
Key Value
Key-Value Document Column Graph

A NoSQL is not a single database or query language but a
diverse family of technologies.

® The first three NoSQL families use aggregates, while graph
databases were designed ACID-compliant.

21/44

Key-Value Databases

Description

Key: Usually (auto-generated) an alphanumeric string.

Value: An aggregate.

Distribution based on the key (little to no integrity constraint)

Optimized for speed (read/write queries) and scalability.

Keys Values

‘P "z5leijh7u45izhfo" }—){! 867, 573, 324 ‘

‘P "rezab5346uy j5uwoz" }—)‘! 163, 519, 324‘

Examples
Amazon DynamoDB, Redis. J

22/44

Document-Oriented Databases

Description
® Data is modeled as nested key-value pairs.
® Supports searching aggregates based on their attribute values.

® Values are typically JSON, or XML documents.

1 g
2 "user_id": 123,
3 "name” : " Alice",
4 "balance”: 1000,
5 "orders”: |
6 {"order_id”: 1, "amount”: 99.99},
7 {"order_id”: 2, "amount”: 49.99}
s
9}
Examples
MongoDB, CouchDB. J

23 /44

Column-Oriented Databases

Description
® Data is stored in columns rather than rows.
e Columns (or column families) as aggregates.

® Optimized for analytical queries on large datasets.

Name | Age | City
Alice 28 Paris
Bob 32 London
Charlie | 25 Berlin

VY
Row Storage Column Storage
[“Alice ™ Alice
Row 1 || 28 | Name | Bob Examp|es
Paris | Charlie
| Bob - Apache Cassandra, HBase.
Row 2 f 32 [Age |32
London | 25 |
i Charlie | Paris
Row 3 25 [City | London
\ Berlin Berlin
Row-based access Column-based access
reads entire row reads only needed columns

24 /44

Graph Databases

Description
® Relationships are first-class citizens.
® Nodes, edges, and properties are the core components.

® Optimized for traversing relationships.

Examples
Neo4;| J

Laptop

25/44

Polyglot Persistence

® NoSQL databases complement rather than replace relational
databases.

® Use different data storage technologies based on data type
and usage.

Application

// | \\‘
Session Product Price Customer Financial
data data analytics preferences transactions

> B < T < S~ —

26/44

MongoDB

MongoDB: Generalities

General Characteristics
® Document-oriented NoSQL database (JSON-like documents)
e (Client-server architecture

® Open-source (Community Edition) and commercial
(Enterprise Edition)

® Cloud-based solution: MongoDB Atlas

Key Advantages
® Flexible schema for evolving data requirements
® Horizontal scalability with sharding
® Rich query language and aggregation framework

28 /44

Data Organization and Storage Format

Data Structure BSON (Binary JSON)
¢ Document: nested ® Faster parsing and
dictionaries processing
* Collection: set of ® More space-efficient
documents ® Supports Data types
® Database: set of collections |

© o N oA W N R

Every document must have an _id field:

® Auto-generated as ObjectId if not specified

{
" _id”: Objectld ("507f1f77bcf86cd799439011"),
"title”: "The Shawshank Redemption”,
"year”: 1994,
"directors”: ["Frank Darabont”],
"actors”: ["Tim Robbins”, "Morgan Freeman”],
"rating”: 9.3,
"awards”: {"nominations”: 7, "wins”": 0}

}

29 /44

Seting Up MongoDB

Local Installation: MongoDB Community Server

Server : Client Options
® Start server with: mongod ® CLI: mongosh
e Default port: 27017 e GUIs: Compass, Atlas Ul
e Can manage multiple ® Drivers for all major
databases languages

Cloud Solution: MongoDB Atlas
® Fully-managed cloud database
® Connection through an API
® Web-based GUI for database management

30/44

https://www.mongodb.com/try/download/community
https://www.mongodb.com/cloud/atlas/register

Connecting to a MongoDB Database

Use the MongoDB shell to connect:
® mongosh: connect to the server (localhost:27017 by default)
® use <database>: switch to a specific database

® db.createCollection(<collection>): create a collection
in the database

1 $§ mongosh

31/44

Connecting to a MongoDB Database

Use the MongoDB shell to connect:
® mongosh: connect to the server (localhost:27017 by default)
® use <database>: switch to a specific database

® db.createCollection(<collection>): create a collection
in the database

1 $§ mongosh
2 > use moviedb
3 switched to db moviedb

31/44

Connecting to a MongoDB Database

Use the MongoDB shell to connect:
® mongosh: connect to the server (localhost:27017 by default)
® use <database>: switch to a specific database

® db.createCollection(<collection>): create a collection
in the database

1 $ mongosh

2 > use moviedb

3 switched to db moviedb

4 > db.createCollection("movies")
5 { ok: 1 %}

31/44

Connecting to a MongoDB Database

Use the MongoDB shell to connect:
® mongosh: connect to the server (localhost:27017 by default)
® use <database>: switch to a specific database

® db.createCollection(<collection>): create a collection
in the database

1 $ mongosh

2 > use moviedb

3 switched to db moviedb

4 > db.createCollection("movies")
5 { ok: 1 %}

6 > show collections

7 movies

31/44

Connecting to a MongoDB Database

Use the MongoDB shell to connect:
® mongosh: connect to the server (localhost:27017 by default)
® use <database>: switch to a specific database

® db.createCollection(<collection>): create a collection
in the database

$ mongosh

> use moviedb

switched to db moviedb

> db.createCollection("movies")
{ ok: 1 }

> show collections

B < N I N O N N

movies

A n the lab, we will manage these steps by accessing the API via
Python

31/44

Manipulating Data with MongoDB

MongoDB provides a set of functions to apply CRUD operations
on the data.

A CRUD: Create, Update, Read, Delete

Format of a CRUD function in MongoDB

db.collection.function()

® db: current database
® collection: collection where the CRUD operation is applied.

e function: invoked function.)

32/44

Create

Insert Operations in MongoDB
® insertOne: adds a new document to a collection

® insertMany: adds multiple documents to a collection

1 db.movies.insertOne ({

2 "title": "Inception",

3 "year": 2010,

4 "genres": ["Action", "Sci-Fi", "Thriller"],

5 "director": "Christopher Nolan",

6 "actors": ["Leonardo DiCaprio", "Ken Watanabe"],
7 "rating": 8.8

8 1)

A f the collection does not exist, any insert operation will create

It.

33/44

Read

Query Operations in MongoDB
® find: retrieve documents matching a query
® findOne: retrieve a single document

® Query operators: $gt, $1t, $in, $regex, etc.

1 db.movies. find (// Find the title of all Sci—Fi movies
2 {"genres”: "Sci—Fi"},

3 {"title”: 1, "_id": 0}

4)

1 SELECT title FROM movies WHERE genres = 'Sci—Fi’

34 /44

Update

Update Operations in MongoDB
® updatelne: update the first document matching the filter

® updateMany: update all documents matching the filter
® Update operators:

$set: Set field value

$unset: Remove field

$push: Add to array

$inc: Increment numeric value

db. movies.updateOne(// Update movie rating
{"title”: "lInception”},
{"$set”: {"rating”: 8.9}}

)

db. movies.updateOne(// Add award to movie
{"title": "lInception”},
{"$push”: {"awards.wins”: ["Best Visual Effects”]}}

NG A W N

)

There is also replaceOne to replace the entire document.

35/44

Delete

Delete Operations in MongoDB
® deleteOne: delete the first matching document

® deleteMany: delete all matching documents

// Delete a specific movie

1

2 db. movies.deleteOne({" title”: "lInception”})
3

4 /) Delete all movies from a year

5 db. movies.deleteMany ({"year”: 2010})

A Delete operations cannot be undone: always verify filters

36 /44

Aggregation

Aggregation operations process multiple documents and return
computed results.

Simple Aggregation Methods
® countDocuments: count documents in a collection

® distinct: find distinct values for a field

// Count movies by genre
db. movies.countDocuments({" genres”: " Sci—Fi" })

N N

// Find all unique directors
db.movies. distinct (" director”)

A For complex aggregations, use aggregation pipelines.

37 /44

Aggregation Pipelines

Definition (Aggregation Pipelines)

A sequence of data processing stages where each stage transforms
the documents as they flow through sequentially.

Common Pipeline Stages

® $match: Filter documents ® $unwind: Deconstruct

® $group: Group documents array

® $sort: Sort documents ® $addFields: Add fields
pipeline = |

// First transformation

{" $stagel”: {...}}
}}., // Second transformation

{" $stage2”: {...

38/44

Aggregation Example: What Does it Compute?

© o N oA W N R

-
o

-
=
~

db. movies. aggregate (
[

// Pipeline

{"$match”: {"rating”: {"$gte”: 8.0}}},

{"$group”: {

"_id”: " $director”,

"count”: {"$sum": 1},

"avg-rating”: {"S$avg”: "S$rating”}
I
{"$sort”: {"avg_rating”: —1}},
{"$limit": 3}

//
//

Stage
Stage

Stage
Stage

[y

39/44

Aggregation Example: What Does it Compute?

© o N oA W N R

10

db. movies.aggregate (
[// Pipeline
{"$match”: {"rating”: {"$gte”: 8.0}}}, // Stage 1
{"$group”: { // Stage 2
"_id”: " $director”,
"count”: {"$sum": 1},
"avg-rating”: {"S$avg”: "S$rating”}
I
{"$sort”: {"avg_rating”: —1}}, // Stage 3
{"$limit": 3} // Stage 4
D]

This pipeline finds the top 3 directors with the highest average
ratings among movies rated 8.0 or higher, showing how many
qualifying movies each director has and their average rating.

39/44

Data Modeling in MongoDB

Embedding Referencing
® Store related data in same ® Store references between
document documents
® Better for read performance ® Better for write performance
® Use when data is frequently ® Use when data changes
accessed together frequently
® Use when data has ® Use for many-to-many
one-to-few relationships) relationships
v
1 { 1 {
2 "title”: "The Dark Knight", 2 "title”: "The Dark Knight",
3 Tcast”: [3 Tactor_ids”: |
4 {"name”: " Christian Bale”, 4 Objectld (" ..."),
5 "role”: "Bruce Wayne"}, 5 Objectld (" ...")
6 {"name”: "Heath Ledger”, 6]
7 "role”: "Joker”} 7 }
g]
o}

40/ 44

Takeaways about MongoDB

® Document-oriented database (JSON-like documents stored in

collections)

e Offers both local and cloud-based solutions

SQL MongoDB

Tables Collections

Rows Documents

Columns Fields

Joins Embedded documents or references
GROUP BY | $group aggregation stage

41/44

Conclusion

42/44

Takeaways: NoSQL

@ NoSQL databases address challenges of distributed systems
and semi-structured data

® The aggregate is the fundamental unit of organization in
NoSQL databases

© Data modeling is crucial for performance in NoSQL databases

@ Four main families of NoSQL databases: Key-value,
Document-oriented, Column-oriented, Graph databases

©® NoSQL databases complement rather than replace relational
databases (polyglot persistence)

43 /44

Forget SQL vs NOSQL!

44 /44

	Recap
	Introduction
	Aggregate
	NoSQL Databases
	MongoDB
	Conclusion

