
Data, Data Storage, Data Collection
Lecture 7: Data Storage

Romain Pascual

MICS, CentraleSupélec, Université Paris-Saclay

1 / 48

Recap

2 / 48

Recap: Data Wrangling

1 Start with initial assessment of the data quality

2 Handle missing data and outliers

3 Transform the data to prepare it for analysis

4 Reshape the data for better readability or comparability with
specific analysis techniques.

5 Keep the original data and document the cleaning steps

3 / 48

Introduction

4 / 48

Within the lifecycle

Collect

Clean

Store

Analyze

Communicate

5 / 48

Session Objectives

At the end of this session, you should be able to:

• Distinguish between storage structures (flat files, tabular,
hierarchical, columnar).

• Compare formats (CSV, JSON, Parquet) based on trade-offs
(readability, size, speed, interoperability).

• Explain the differences between SQL, NoSQL, and cloud
storage use cases.

• Apply a decision framework to select appropriate storage for a
given scenario.

• Discuss the broader implications of storage choices (e.g.,
ethics, sustainability)

6 / 48

Why Storage Matters?

After wrangling, we need to store the data for analysis

>

Memory

(RAM, Cache)

@

File

(CSV, JSON)

õ

System

(Disk, Cloud)

Serialize Store

.

Poor storage choices cause bottlenecks!

• Slow queries • Inability to scale • Data loss

We discuss the logic behind data storage, not just the technologies.

7 / 48

Storage Persistence, Strategies

8 / 48

In-Memory vs On-Disk

In-Memory (RAM) On-Disk (HDD/SSD)

Speed 10-100 ns 0.1-10 ms

Persistence Volatile Persistent

Cost (2025) $5-$10 per GB $0.02-$0.10 per GB

Capacity GBs TBs

1 # In-Memory

2 data = {"key": "value"} # Stored in RAM

3

4 # On-Disk

5 import pickle

6 pickle.dump(data , open(’data’, ’wb’)) # Save to disk

7 data=pickle.load(open(’data’, ’rb’)) # Load from disk

9 / 48

Filesystems vs. Database Management Systems

FMS

à ¡ �

i

A A A

DBMS

à ¡ �

õ DBMS

O O O

• OS method to organize data
files

• Simple folder/file hierarchy

• Keep redundant data

• Low complexity

• No built-in querying
capabilities

• Software for accessing, and
manipulating data

• Structured tables/collections

• Eliminates redundant data

• High complexity

• Supports complex queries
and indexing

10 / 48

Storage Structures and
Formats

11 / 48

Data Storage Models

Definition (Storage Model)

Conceptual structure or paradigm for organizing data, defining how
it is logically stored and accessed.

• Flat files: Simple textual
files

• Tabular: Organised in rows
and columns

• Hierarchical: Nested
key-value pairs

• Columnar: Data stored by
columns

• Specialized:
Domain-specific formats

This is about the structure of the data.

12 / 48

From Models to Formats

Data Model
(Logical)

Storage Structure
(Physical)

File Format
(Encoding)

Flat, Tabular, Columnar,
Hierarchical, Specialized

Tables, Key-Value,
Arrays, Columns

CSV, JSON, PNG,
Parquet, HDF5

• Data model defines the logical structure.

• Storage Structure defines the physical organization.

• File format defines the encoding.

13 / 48

Excel (Tabular)

Characteristics:

• Widely used in business environments

• Proprietary format (.xlsx)

• 1 048 576 rows × 16 384 columns per sheet

• Supports formulas, charts, and multiple sheets

• User-friendly interface

Limitations:

• Not ideal for big data or automation

• Compatibility issues between versions

14 / 48

Tabular File Format Comparison

Excel

Characteristics

• Business standard (.xlsx)

• 1 048 576 rows × 16 384
columns

• Formulas, charts, multiple
sheets

• User-friendly interface

Limitations

• Not for big data

• Version compatibility issues

CSV

Characteristics

• Universal, simple format

• Human-readable

• Works with almost any tool
or programming language

Limitations

• No data types (everything is
a string)

• Easy to break

• No complex structures

15 / 48

When Excel is not the right tool...

16 / 48

JSON: JavaScript Object Notation (Hierarchical)

Characteristics
• Standard for API and config.

• Nested key-value structure

• Human-readable format

Limitations
• Verbose syntax

• No support for comments

• Inefficient for large datasets

1 {

2 "title": "The Hitchhiker ’s Guide to the Galaxy",

3 "author": "Douglas Adams",

4 "year": 1979,

5 "characters": [

6 {"name": "Arthur Dent", "species ": "Human", "role": "Protagonist "},

7 {"name": "Ford Prefect", "species ": "Betelgeusian", "role": "Researcher "},

8 {"name": "Marvin", "species ": "Robot", "role": "Android "}

9],

10 "notable_quote": "Don ’t Panic.",

11 "answer_to_life": 42,

12 "adaptations": ["radio", "TV", "film"]

13 }

17 / 48

Parquet: (Columns)

Characteristics:

• Columnar format optimized for big data

• High performance compression and encoding schemes

• Efficient for analytical queries

• Works well with Spark, Hadoop, and other big data tools

Limitations:

• Binary format (not human-readable)

18 / 48

Row vs. Column Storage

Name Age City
Alice 28 Paris

Bob 32 London

Charlie 25 Berlin

Row Storage

Row 1
Alice
28
Paris

Row 2
Bob
32
London

Row 3
Charlie
25
Berlin

Column Storage

Name
Alice
Bob
Charlie

Age
28
32
25

City
Paris
London
Berlin

Row-based access
reads entire row

Column-based access
reads only needed columns 19 / 48

Summary: Comparing Common File Formats

Criterion Excel CSV JSON Parquet

Fast to read/write ✗ • • ✓

Space-efficient • ✗ ✗ ✓

Compatibility ✗ ✓ ✓ ✗

Human-readable ✓ ✓ ✓ ✗

Supports nested data • ✗ ✓ ✗

Good for sharing • ✓ ✓ •
Good for analysis ✓ • ✗ ✓

Excel is user-friendly but proprietary,
CSV and JSON are widely compatible and flexible,
Parquet is optimized for large-scale analytics.

20 / 48

Choosing the Right File Format

T
Is performance or size critical?

Parquet

4
Human-readable?

ú
Nested structure?

JSON CSV

Yes

No

Yes

No

Yes No

21 / 48

Databases

22 / 48

SQL: Relational Databases

Key Concepts

• Tables with rows and columns

• Keys (primary, foreign)

• Atomicity, Consistency, Isolation, Durability

• Underlying formalization: Relational algebra

id name age email
1 Alice 37 alice@example.com
2 Frank 22 frank@example.com
3 Zoe 21 zoe@example.com
4 David 20 david@example.com
5 Eve 30 eve@example.com
6 Bob 19 bob@example.com
7 Grace 27 grace@example.com
8 Charlie 32 charlie@example.com

users
1 SELECT name , email

2 FROM users

3 WHERE age > 29

4 ORDER BY name;

name email
Alice alice@example.com
Charlie charlie@example.com
Eve eve@example.com

Input

Result

23 / 48

Understanding Storage Engines

You will not build a storage engine from
scratch . . .

. . . But you will need to

• Select the right engine.

• Tune it for your workload.

So you need to understand what is under
the hood!

õ

Storage Engine

ï ¡

Transactional
Workloads

Analytical
Workloads

Optimized for Optimized for

In particular, storage engines are optimized for different workloads

24 / 48

Databases: OLTP vs. OLAP

OLTP (Online Transaction
Processing)

• Fast, frequent reads/writes

• Small, simple transactions

• Indexes for quick lookups

Example: Banking transactions

OLAP (Online Analytical
Processing)

• Complex queries and
aggregations

• Large datasets, few
columns

• Calculates statistics

Example: Business intelligence

ï

OLTP

Ô

Extract, Transform, Load

¡

OLAP

25 / 48

NoSQL: Beyond Relational

26 / 48

The Rise of NoSQL: Volume, Velocity, Variety

• Volume: Massive data growth

• Velocity: High-speed data generation

• Variety: Diverse data types

Centralized Distributed

27 / 48

The Rise of NoSQL: Volume, Velocity, Variety

• Volume: Massive data growth

• Velocity: High-speed data generation

• Variety: Diverse data types

Centralized

Distributed

27 / 48

The Rise of NoSQL: Volume, Velocity, Variety

• Volume: Massive data growth

• Velocity: High-speed data generation

• Variety: Diverse data types

Centralized

Distributed

27 / 48

The Rise of NoSQL: Volume, Velocity, Variety

• Volume: Massive data growth

• Velocity: High-speed data generation

• Variety: Diverse data types

Centralized

Distributed

27 / 48

The Rise of NoSQL: Volume, Velocity, Variety

• Volume: Massive data growth

• Velocity: High-speed data generation

• Variety: Diverse data types

Centralized Distributed

27 / 48

The Evolution of Database Systems: From SQL to NoSQL

Historical Context
• Pre-SQL Era: Early databases (1960s-70s) were often

hierarchical or network models without standardized schema

• 1970: Edgar F. Codd proposed the relational model

• early 1970’s: SEQUEL (Structured English Query Language),
designed by IBM

• 1979: First SQL database (Oracle) commercialized

• 1980s-90s: SQL became the dominant standard for
structured data

The Rise of ”Not Only SQL”

As a response to the three 3 V’s

• Architecture Shift: From centralized to distributed systems

• Data Shift: Unstructured or rapidly changing data

28 / 48

BASE Principles (vs. ACID)

• Basically Available: System appears to work most of the time

• Soft state: Data may change over time without explicit
updates

• Eventual consistency: Data will be consistent... eventually

Why NoSQL?

• Better suited for large-scale, distributed data

• More flexible schema design

• Horizontal scalability

• Optimized for specific data models and access patterns

29 / 48

Four families of NoSQL

Key Value

Key Value

Key Value

Key Value

Key-Value
Simple, fast lookups

Document
Nested KV pairs

Column
Optimized for analytics Graph Relationships

30 / 48

The CAP Theorem and its
Implications

31 / 48

Version n Version n-2Version n-1Version n

Consistent Inconsistent

Consistency (C):

• Every read receives the most recent write (or an error).

• All nodes see the same data at the same time.

32 / 48

? ?

Available Unavailable

Availability (A):

• Every request received by a non-failing node in the system
must result in a response

, even if it is not with the latest data.

33 / 48

? ?

Available Unavailable

Availability (A):

• Every request received by a non-failing node in the system
must result in a response

, even if it is not with the latest data.

33 / 48

? ?

Available Unavailable

Availability (A):

• Every request received by a non-failing node in the system
must result in a response

, even if it is not with the latest data.

33 / 48

Version n-2Version n-1Version n

?

Version n-2Version n-1Version n

?

Available Unavailable

Availability (A):

• Every request received by a non-failing node in the system
must result in a response, even if it is not with the latest data.

33 / 48

No partition Partition

Partition Tolerance (P):

• The system continues to function despite network partitions.

• Tolerates arbitrarily many message losses.

34 / 48

Theorem (CAP1)

Any distributed system can
have at most two of the
following three properties:

• Consistency

• Availability

• Partition Tolerance

Eric Brewer

1Armando Fox and Eric Brewer. “Harvest, Yield, and Scalable Tolerant
Systems”. In: Proceedings of the Seventh Workshop on Hot Topics in
Operating Systems. Mar. 1999, pp. 174–178

35 / 48

Sketch of the proof from Gilbert and Lynch2

Version n

1 By contradiction, consider a system S that fulfills the three
properties.

2Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59.

36 / 48

Sketch of the proof from Gilbert and Lynch2

Version n

2 Partition the system into two subsystems S1 and S2.

2Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59.

36 / 48

Sketch of the proof from Gilbert and Lynch2

Version n

3 By partition tolerance, the system continues to function.

2Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59.

36 / 48

Sketch of the proof from Gilbert and Lynch2

Version n

4 Client c1 requests to write new data to a node in S1.

2Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59.

36 / 48

Sketch of the proof from Gilbert and Lynch2

Version n Version n+1

5 By availability, the system handles the request and writes the
new data.

2Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59.

36 / 48

Sketch of the proof from Gilbert and Lynch2

Version n Version n+1

6 Since the network is partitioned, the data cannot be replicated
to the nodes in S2.

2Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59.

36 / 48

Sketch of the proof from Gilbert and Lynch2

Version n Version n+1

?

7 Client c2 requests to read the data to a node in S2.

2Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59.

36 / 48

Sketch of the proof from Gilbert and Lynch2

Version n Version n+1

?

8 By availability, the system handles the request and outputs
the old data.

2Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59.

36 / 48

Sketch of the proof from Gilbert and Lynch2

Version n Version n+1

?

≠

9 The second request yields an inconsistent answer.

2Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59.

36 / 48

Applications to NoSQL

Availability

Consistency Partition Tolerance

Oracle
MySQL

SQLServer
PostgreSQL

DB2

SimpleDB
Memcached

Redis

CosmosDB

Elasticsearch
Spark

HBase
BigTable

CouchBase
DynamoDB
Cassandra

MongoDB

Neo4j
OrientDB
FlockDB

Relational Key-Value Column Document Graph †C↔A

37 / 48

Applications to NoSQL

Availability

Consistency Partition Tolerance

Oracle
MySQL

SQLServer
PostgreSQL

DB2

SimpleDB
Memcached

Redis

CosmosDB

Elasticsearch
Spark

HBase
BigTable

CouchBase
DynamoDB
Cassandra

MongoDB

Neo4j
OrientDB
FlockDB

Relational

Key-Value Column Document Graph †C↔A

37 / 48

Applications to NoSQL

Availability

Consistency Partition Tolerance

Oracle
MySQL

SQLServer
PostgreSQL

DB2

SimpleDB
Memcached

Redis

CosmosDB

Elasticsearch
Spark

HBase
BigTable

CouchBase
DynamoDB
Cassandra

MongoDB

Neo4j
OrientDB
FlockDB

Relational Key-Value

Column Document Graph †C↔A

37 / 48

Applications to NoSQL

Availability

Consistency Partition Tolerance

Oracle
MySQL

SQLServer
PostgreSQL

DB2

SimpleDB
Memcached

Redis

CosmosDB

Elasticsearch
Spark

HBase
BigTable

CouchBase
DynamoDB
Cassandra

MongoDB

Neo4j
OrientDB
FlockDB

Relational Key-Value Column

Document Graph †C↔A

37 / 48

Applications to NoSQL

Availability

Consistency Partition Tolerance

Oracle
MySQL

SQLServer
PostgreSQL

DB2

SimpleDB
Memcached

Redis

CosmosDB

Elasticsearch
Spark

HBase
BigTable

CouchBase
DynamoDB
Cassandra

MongoDB

Neo4j
OrientDB
FlockDB

Relational Key-Value Column Document

Graph †C↔A

37 / 48

Applications to NoSQL

Availability

Consistency Partition Tolerance

Oracle
MySQL

SQLServer
PostgreSQL

DB2

SimpleDB
Memcached

Redis

CosmosDB

Elasticsearch
Spark

HBase
BigTable

CouchBase
DynamoDB
Cassandra

MongoDB

Neo4j
OrientDB
FlockDB

Relational Key-Value Column Document Graph

†C↔A

37 / 48

Applications to NoSQL

Availability

Consistency Partition Tolerance

Oracle
MySQL

SQLServer
PostgreSQL

DB2

SimpleDB†

Memcached†

Redis

CosmosDB†

Elasticsearch
Spark

HBase
BigTable

CouchBase†

DynamoDB†

Cassandra†

MongoDB†

Neo4j
OrientDB
FlockDB

Relational Key-Value Column Document Graph †C↔A

37 / 48

Example: Bank Database

A financial database stores each
client’s bank balance.

Clients interact via an ATM to:

• Check balance

• Withdraw money

• Deposit money

Given these operations, which aspect of the CAP theorem would
you prioritize: consistency, availability, or partition tolerance?

38 / 48

Long Time Storage

39 / 48

Long-Term Storage in the Data Science Lifecycle

õ

Collection

¡

Use

�

Archival

�

Disposal

Why Is Data Archive Part of Data Science?

• Reproducibility of analyses and results

• Compliance with data retention policies

• Future reuse for new analyses or model training

• Preservation of data provenance and metadata

40 / 48

Challenges and Principles of Long-Term Storage

Technical Challenges:

• Format Compatibility: Ensuring readability by future tools

• Metadata Preservation: Maintaining reproducibility

• Data Integrity: Preventing corruption over time

• Storage Costs: Balancing accessibility and expense

41 / 48

Data Retention and Disposal

Data Retention Policies

u

Legal
requirements

r

Organizational
policies

¢

Data value
for future use

M Regular policy review

Secure Data Disposal

ß

Physical destruction

ø

Cryptographic shredding

8 Ensure compliance with GDPR “right to be forgotten”

42 / 48

Formats for Archival

Criteria for Archival Formats:

• Open standards (e.g., CSV, JSON, Parquet)

• Self-describing (e.g., JSON with schema, Parquet with
metadata)

1 {

2 "metadata": {

3 "format": "JSON",

4 "created": "2025 -10 -12"

5 },

6 "data": "..."

7 }

43 / 48

Example: Archiving a Data Science Project
1 project/

2 |-- data/

3 | |-- raw/ # Original immutable data

4 | |-- processed/ # Cleaned/processed data

5 | \-- README.md # Data documentation

6 |-- models/

7 | |-- model.onnx # Serialized model

8 | \-- metadata.json # Model metadata

9 |-- notebooks/ # Analysis notebooks

10 |-- requirements.txt # Python dependencies

11 \-- README.md # Project documentation

12

Key Files to Archive

• Raw and processed data (in open formats)

• Trained models and their metadata

• Analysis code and notebooks

• Environment specifications

• Documentation and data dictionaries

44 / 48

Conclusion

45 / 48

Ethical and Practical Considerations

Ethical Implications

• 8 Privacy: Who has access to the data?

• � Accessibility: Is the data available to those who need it?

•
 Sustainability: What’s the environmental impact?

Practical Considerations

• Â Long-term storage: Will you need this data in 5 years?

• � Cost: What’s the total cost of ownership?

• Ô Maintenance: Who will maintain this storage system?

46 / 48

Common Pitfalls and Best Practices

Pitfalls
• Using Excel for big data

• Over-engineering (e.g.,
graph DB for simple data)

• Ignoring costs (e.g., cloud
storage fees)

Best Practices

1 Start simple (CSV/SQL), scale up as needed

2 Document storage schema and access patterns

3 Test with real data early

47 / 48

Takeaways: Data Storage

1 Understand the difference between storage models (flat,
tabular, hierarchical, columnar) and formats (CSV, JSON,
Parquet)

2 Choose the right format based on your use case: Excel for
business, CSV/JSON for sharing, Parquet for analytics

3 Consider the trade-offs between readability, size, speed, and
interoperability when selecting a format

4 For long-term storage, prioritize open standards and
self-describing formats with proper metadata

5 Document your storage decisions and maintain data
provenance for reproducibility

6 Consider ethical implications including privacy, accessibility,
and sustainability

48 / 48

	Recap
	Introduction
	Storage Persistence, Strategies
	Storage Structures and Formats
	Databases
	NoSQL: Beyond Relational
	The CAP Theorem and its Implications
	Long Time Storage
	Conclusion

