
Exercise Sheet: Practical Data Collection

Data, Data Storage, Data Collection

Exercise 1 - Designing a Sampling Algorithm

You are tasked with collecting data on student study habits at your university. The target
population is all 10,000 students, but you only have resources to survey 500. The university has
4 faculties with the following enrollments:

Faculty Number of Students

Science 3000

Humanities 2000

Engineering 4000

Business 1000

(1) Systematic Sampling:

You are given a list of all 10,000 students.

(a) Write an algorithm to select every k-th student from the list to achieve a sample of 500.
Shift the index of the first taken by a random value. The input should be the list of
students studentList, and the size of the desired sample sampleSize (here 500), and the
output should be a systematic sample of the associated size.

(b) What potential bias could this method introduce? How would you mitigate it?

(a) Pseudocode:

Algorithm 1: Systematic Sampling

Input: The list of students studentList, and the size of the
desired sample sampleSize (here 500)

Output: Sample of students computed systematically
1 k ← size (studentList) / sampleSize ; // (=20)

2 start ← randomInt (1, k);
3 sample ← empty list;
4 ;
5 for i ← 0 to sampleSize do
6 sample ← sample ∪ studentList[start + i * k];
7 end
8 return sample;

(b) Potential Bias: If the student list is ordered in a way that correlates with the variable
of interest (e.g., students sorted by faculty), systematic sampling could introduce peri-
odicity bias by over- or under-representing certain groups. A mitigation strategy is to
shuffle the student list before applying systematic sampling, or use stratified sampling
instead.

1



(2) Stratified sampling

Stratified sampling is a technique where the population is divided into subgroups called strata,
which share a common characteristic (here, the faculty). Instead of drawing a simple random
sample from the entire population, we sample from each stratum proportionally to its size in
the population.

This approach ensures that important subgroups are represented in the sample, reducing the
risk that some groups are over- or underrepresented. It is particularly useful when the variable
of interest may differ systematically between strata. In our example, study habits might vary
across faculties, so sampling proportionally ensures that the collected data better reflects the
diversity of the full student population.

(a) Calculate the number of students to sample from each faculty to ensure proportional
representation in a sample of 500.

(b) Write an algorithm to generate a stratified random sample of 500 students. The in-
put should be the list of students grouped by faculties as a list of pairs faculties =
[(facultyName, studentList)], and the size of the desired sample sampleSize (here 500),
and the output should be a stratified sample of the associated size. You can reuse the pre-
vous algorithm and call it as a function systematicSampling(studentsList, strataSampleSize).

(c) Why is this approach better than simple random sampling for ensuring representation
across faculties?

(a) Sample sizes:

Faculty Sample Size

Science 150

Humanities 100

Engineering 200

Business 50

(b) Pseudocode:

Algorithm 2: Stratified Sampling (Proportional)

Input: The list of students grouped by faculty:
faculties = [(facultyName, studentList)], and the total
sample size sampleSize (here 500)

Output: Sample of students of size sampleSize, stratified
proportionally across faculties

1 sample ← empty list;
2 foreach facultyName, populationSize ∈ faculties do
3 proportion ← populationSize / sum of all populations;
4 strataSampleSize ← round(proportion * sampleSize);
5 studentsList ← getStudents(facultyName);
6 facultySample ← systematicSampling (studentsList,

strataSampleSize);
7 sample ← sample ∪ facultySample;

8 end
9 return sample;

(c) Stratified sampling ensures that each faculty is proportionally represented in the sample.
Simple random sampling might accidentally over- or under-represent certain faculties.
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(3) Non-Response Bias

(a) Suppose only 60% of the sampled students respond. Propose a method to adjust your
analysis to account for non-response bias.

To mitigate the bias that might be induced from missing answers, we can compare
the demographic characteristics (e.g., faculty, year of study) of respondents and non-
respondents. Use post-stratification to weight the responses of underrepresented groups
more heavily in the analysis, or conduct follow-up surveys targeting non-respondents.

Exercise 2 - Data Collection and the Curse of Dimensionality

In this exercise, we explore the challenges of high-dimensional data collection and propose strate-
gies to address them. The issue is known as the “curse of dimensionality”: as the number of
dimensions (variables) increases, the data becomes increasingly sparse, making it difficult to:

• Find meaningful patterns or relationships.
• Generalize results to new data (risk of overfitting).
• Apply traditional statistical or machine learning methods effectively.

We consider the following scenario: A research team wants to collect data to predict student
academic performance based on a wide range of factors. They propose measuring 50 variables,
including:

• Demographic information (e.g., age, gender, socioeconomic status)
• Behavioral data (e.g., library visits, extracurricular activities)
• Digital footprints (e.g., online study platform usage, social media activity)
• Psychometric scores (e.g., stress levels, motivation)

The team plans to collect this data for 1,000 students.

(1) Explain why collecting 50 variables for 1,000 students might lead to the “curse of dimen-
sionality.” Use a simple calculation to illustrate the sparsity of the data. How could this
affect the reliability of any conclusions drawn from the data?
Hint: what happens if every variable is binary (True or False)?

Therefore, the goal is to reduce the dimensionality of this dataset while preserving the pair-
wise distances between students as much as possible. Indeed, when analyzing high-dimensional
data, the relationships between data points (e.g., students) are often captured by how “close”
or “far” they are from each other in the original space. For instance, two students with similar
study habits, socioeconomic backgrounds, and academic performance will be “close” in the 50-
dimensional space, while two students with very different profiles will be “far” apart. If we reduce
the dimensionality (e.g., from 50 to 10 variables), we want to ensure that these relationships are
preserved.

The Johnson-Lindenstrauss Lemma states that a set of points in a high-dimensional space
can be embedded into a lower-dimensional space in such a way that distances between the points
are nearly preserved. Specifically, given 0 < ϵ < 1, an integer n, a set X of n points in RD, and
an integer d > 8 lnn

ϵ2
, there exists a (linear) map f : RD → Rd such that for all pairs of points

u, v in X,
(1− ϵ)∥u− v∥2 ≤ ∥f(u)− f(v)∥2 ≤ (1 + ϵ)∥u− v∥2

where ∥ · ∥ is the Euclidean norms (or L2 norm) in the appropriate space.
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(2) Suppose you want to preserve the pairwise distances between students with an error margin
of ϵ = 0.3. Calculate the minimum number of dimensions d required to embed the dataset
according to the Johnson-Lindenstrauss Lemma. Use the approximation d ≈ 8 lnn

ϵ2
, you

can also appropriate lnn as 2 logn
3 .

(3) If you reduce the dataset to d = 10 dimensions, what is the maximum error margin ϵ you
can guarantee for the 1,000 students? Use the same approximation.

Assume you have implemented a dimensionality reduction technique and reduced the dataset
to 10 dimensions. You now want to perform a k-nearest neighbors (k-NN) search on this reduced
dataset. Let us recall how the k-NN algorithm works. Given a dataset and a query point, the
algorithm identifies the k closest points (neighbors) to the query in the dataset, based on a
distance metric (usually Euclidean distance). The label or value of the query point is then
determined by the majority vote (for classification) or the average (for regression) of its k
neighbors.

(4) How might the error margin ϵ affect the results of your k-NN search? Discuss the impli-
cations for the accuracy of your search.

(5) Discuss one trade-off between collecting more variables and collecting more samples (e.g.,
more students). How would you balance this trade-off in practice?

(1) With 50 variables and 1,000 students, the data space is sparse. For example, if each
variable is binned into 2 categories, the total possible combinations are 250 ≃ 1015. This
means that the proportion of the space covered by the sample is 103

1015
= 10−12. The

sparsity makes it difficult to find meaningful patterns or generalize results.
(2) For n = 1000 students and ϵ = 0.3, the minimum number of dimensions d is:

d ≈ 8 ln 1000

(0.3)2
≈ 614

Thus, you need at least d = 614 dimensions to guarantee the error margin.
(3) For d = 10 dimensions and n = 1000 students, rearrange the formula to solve for ϵ:

ϵ ≈
√

8 lnn

d
=

√
8 ln 1000

10
≈ 2.35

This means that with d = 10, you can only guarantee an error margin of ϵ ≈ 2.35, which
is not very precise.

(4) The error margin ϵ affects the k-NN search by distorting the distances between points
in the reduced space. If ϵ is large (e.g., 2.35), the distances between students in the
10-dimensional space may not accurately reflect their true distances in the original 50-
dimensional space. This could lead to incorrect neighbor assignments. A student who
is truly far from a query student might appear close in the reduced space, leading to
incorrect neighbor selection. Conversely, a student who is truly close might appear far,
causing the algorithm to miss relevant neighbors. As a result, the accuracy of the k-NN
search could be significantly reduced, leading to incorrect predictions or classifications.

(5) Collecting more variables increases the risk of sparsity and noise, while collecting more
samples improves statistical power but may be costly. A balanced approach is to pri-
oritize variables with strong theoretical or empirical relevance and ensure a sufficient
sample size for reliable analysis.
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