# Data, Data Storage, Data Collection Lecture 4: Practical Data Collection

Romain Pascual

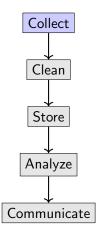
MICS, CentraleSupélec, Université Paris-Saclay

# Recap

## Recap: Foundations of Data Collection

- 1 Data collection is the first step of the data lifecycle
- 2 Always align the data you collect with the research question
- Oifferentiate types of data (qualitative/quantitative, primary/secondary), each has strengths and limitations.
- Scope matters: target population, access frame, and sample are rarely identical

## Within the lifecycle



## Introduction

## Quick Poll

#### Study Aim:

Why do people skip breakfast?

Which method would you choose? Why?

- A. Survey Ask 1000 people directly
- B. Logs Analyze breakfast sales at cafeterias and bakeries
- C. Interviews In-depth conversations with volunteers
- D. Fitness trackers Infer eating habits indirectly

## Session Objectives

At the end of this session, you should be able to:

- Compare and select data collection methods based on study aims and data types
- Recognize common biases in collection and strategies to mitigate them
- Appreciate the importance of provenance and documentation for later reuse

## Why Methods Matters

Data can come from experiments, surveys, sensors, APIs, or logs. Each method shapes the **kind of information** we obtain.

- What is feasible to measure?
- How reliable and representative is it?
- What risks of bias or error are introduced?

The choice of the method is inseparable from the **question** and the **quality of the conclusions**.

## Data Collection Methods

Methods depend on the **study aim** and **type of data required**.

#### **Experiments & Simulations**

When to use: Test causal

relationships

**How to collect:** Manipulate variables and record outputs

Methods depend on the **study aim** and **type of data required**.

#### **Experiments & Simulations**

When to use: Test causal

relationships

How to collect: Manipulate variables and record outputs

#### Surveys

When to use: Opinions,

characteristics

**How to collect:** Structured questionnaires to sample

Methods depend on the **study aim** and **type of data required**.

#### **Experiments & Simulations**

When to use: Test causal

relationships

How to collect: Manipulate variables and record outputs

#### Surveys

When to use: Opinions,

characteristics

**How to collect:** Structured questionnaires to sample

#### Sensors & Logs

When to use: Quantitative,

continuous data

**How to collect:** Automated devices or software logs

Methods depend on the **study aim** and **type of data required**.

#### **Experiments & Simulations**

When to use: Test causal

relationships

How to collect: Manipulate variables and record outputs

#### Surveys

When to use: Opinions,

characteristics

**How to collect:** Structured questionnaires to sample

#### Sensors & Logs

When to use: Quantitative,

continuous data

**How to collect:** Automated devices or software logs

#### **APIs & Secondary Data**

When to use: Use existing

external data

**How to collect:** Requests,

data feeds

#### **Experiments**

Purpose: Test causal links, validate hypotheses

#### Definition (Experiment)

A study in which the researcher:

- Manipulates one or more independent variables (X)
- Observes the effect on dependent variables (Y)
- Controls or randomizes other factors to reduce confounding

Modeled as:

$$Y = f(X) + \epsilon$$

**Goal:** Estimate how changes in X cause changes in Y, accounting for noise  $\epsilon$ .

#### **Examples:**

- Does caffeine improve reaction time?
- Do fertilizers influence crop yield?

## Confounding Variables

#### Definition (Confounding Variable)

A factor that affects both the independent (X) and dependent variables (Y), potentially misleading the experiment.

**Example:** (Studying caffeine and reaction time)

- Independent variable: caffeine intake
- Dependent variable: reaction time
- Confounders: sleep quality, age, or time of day

**Solution:** randomize subjects, control confounders, or include them in the analysis.

#### And document them!

#### Causal vs Correlation

#### Definition (Correlation)

A statistical relationship between two variables: they change together.

#### Definition (Causation)

A relationship where a change in one variable (cause) produces a change in another (effect).

## Causal vs Correlation: Example

Example

Ice cream sales and shark attacks both increase in summer.

## Causal vs Correlation: Example

#### Example

Ice cream sales and shark attacks both increase in summer.

This is only a correlation and the causal link comes from summer temperature.

Determining causation vs correlation is one of the central challenges in data science and experimental research. There are some methods (mostly from statistics) that can help (but its beyond the goal of this lecture).

## Designing an Experiment

#### Steps to analyze a factor:

- Form treatment group(s) (receives the intervention) and control group (baseline)
- 2 Randomly assign subjects to reduce confounding
- Measure outcomes
- **4** Use statistical tests to assess significance:
  - Continuous data: Student's t-test, ANOVA
  - Categorical data: Chi-square test

#### Example (Studying caffeine and reaction time)

- Control (no coffee): 0.55, 0.60, 0.57, 0.58, 0.56 s
- Treatment (coffee): 0.50, 0.52, 0.51, 0.49, 0.50 s

If you do the math (t-test), you find out that the difference is much bigger than what you would expect by random chance.

## Experiments: Advantages and Challenges

- Causal inference: estimate effect of variables
- Reproducibility: same inputs produce same outputs
- ✓ Isolation: control specific variables
- Mechanistic understanding: explore how variables interact

- X Ethical constraints: some manipulations may be unethical
- X External validity: may not generalize beyond experimental setting
- X Practical limits: large parameter sweeps require resources
- X Sample size / measurement error: too small or noisy → low power

Some experiments are too costly, slow, or unethical

Some experiments are too costly, slow, or unethical

Simulations can mimic experimental settings!

#### Simulation

**Purpose:** Explore and predict system behavior when real experiments are impractical.

#### Definition (Simulation)

A study where a model is use to imitate a system and generate synthetic outputs (Y) from chosen inputs (X).

Modeled as:

$$Y = f(X, \theta) + \epsilon$$

**Goal:** Estimate how changes in X and assumptions  $\theta$  (model parameters) influence Y, accounting for randomness  $\epsilon$ .

 $\triangle$  f is no longer the reality but a model approximation

#### **Examples:**

- Airplane crash tests (instead of building many real planes)
- Queueing in a supermarket or call center.

## Types of Simulations

#### Deterministic

Same inputs  $\rightarrow$  same outputs

Example: Physics equations for projectile motion

#### Stochastic

Random inputs  $\rightarrow$  random outputs

Example: Monte Carlo simulation for risk assessment

#### Agent-based

Rules for individual entities and measure emergent system behavior

Example: Epidemic spread, crowd movement

## Simulation: Advantages and Challenges

- ✓ Explore many scenarios quickly ("what-if" cases)
- ✓ No ethical constraints
- ✓ Useful for complex systems, e.g., if exact solutions are missing
- ✓ Can guide real experiments

- X Quality depend on model assumptions
- X Needs validation against real data
- X Large simulations may require computational resources
- Cannot fully replace real-world experiments

### Survey

**Purpose:** Collect information on opinions, behaviors, or characteristics of a population.

#### Definition (Survey)

A systematic method to gather data from individuals using questions or prompts, often through questionnaires or interviews.

Modeled as:

$$Y = f(X) + \epsilon$$

**Goal:** Estimate population characteristics and relationships between variables X based on responses Y, accounting for individual variability  $\epsilon$ .

#### **Examples:**

- Online questionnaire about students' study habits.
- National health survey measuring smoking prevalence.

## Practical Guidelines for Surveys

When designing or using surveys:

- Keep it short: Long surveys reduce response rates
- Use clear language: Avoid jargon
- Be specific: Ask one thing at a time
- Pilot test: Try on a small group to detect issues
- Document: Record when, how, and to whom the survey was given

X Do you like this course?

✓ On a scale of 1–5, how would you rate your satisfaction with this course?

For more further guidance, ask your favorite social scientist

## Example of a Survey Question

Do you have any specific food restriction?

## Example of a Survey Question

Do you have any specific food restriction?

Vegetarian
Vegan
No fish
No meat
With meat but without pork
With fish
With meat and fish

## Example of a Survey Question

| 10 y | ou have any specific food restriction? |
|------|----------------------------------------|
|      | Vegetarian                             |
|      | Vegan                                  |
|      | No fish                                |
|      | No meat                                |
|      | With meat but without pork             |
|      | With fish                              |
|      | With meat and fish                     |

What do you think of this question design?

## Survey (Advantages and Challenges)

- ✓ Scalability: reach large and diverse populations
- ✓ Standardization: same questions to all respondents
- ✓ Flexibility: applicable to many domains

- X Bias: the sample might not be representative of the population
- X Question design: Poorly worded questions can lead to misleading results
- X Survey fatigue: Long surveys may lead to incomplete responses

#### Automated Data Collection

**Purpose:** Collect quantitative data from physical devices or digital systems

#### Definition (Automated Data Collection)

A systematic method to gather data by measuring a quantity of interest (X) and converting it into recorded signals (Y).

Modeled as:

$$Y = f(X) + \epsilon$$

**Goal:** Obtain reliable and interpretable values Y from raw measurements X, accounting for processing f and noise  $\epsilon$ .

## Sensors and Logs

#### Definition (Sensors)

Physical devices recording measurements (X) from the world.

#### **Examples:**

- Thermometer: f = Id and  $Y \approx X$
- Pedometer: f gives the number of steps from acceleration X

#### Definition (Logs)

Digital devices recording events (X) in software or hardware.

#### **Examples:**

- Application logs: f aggregates button clicks X into usage statistics Y
- Database transaction logs: f counts queries from transaction events X

## Automated Data Collection (Advantages and Challenges)

- ✓ Automation: no active user input required
- ✓ High-frequency:

  Continuous or

  near-continuous streams
- ✓ Precision: fine temporal/spatial resolution
- ✓ Scalable: large amounts of data captured continuously
- Multimodal integration: Combine multiple sources

- Noise-prone: faulty sensors, device drift, missing values
- X Context-sensitive: logs and measurements often lack interpretation of events
- X Privacy concerns: sensitive personal or behavioral traces (for logs)

## Continuous vs Batch Processing of Automated Data

Automated data can be handled in two main ways:

#### Batch (stored) processing:

- Suitable for large-scale analytics, historical trends, and complex computations
- Storage and retrieval strategies are important

#### **Continuous (streaming) processing:**

- Useful for real-time monitoring, alerts, and control
- Requires fast processing and often temporary storage

## Streaming (Online) Algorithms

### Definition (Streaming (Online) Algorithm)

An algorithm that processes data sequentially as it arrives, without storing the entire dataset.

No knowledge of future and cannot store all the past.

- Single pass: input items are processed one by one
- Memory efficient: uses limited memory, cannot store all X
- Approximate: results are often estimates, but updated continuously
- Real-time: suitable for continuous or high-frequency data (sensors, logs)

**Goal:** Maintain useful statistics or models Y while new data  $X_t$  keeps arriving.

## Streaming Counter

#### Problem

Count the number of elements seen so far in a stream  $(X^{\omega})$ .

 $X^{\omega}$  are infinite words with values in X.

## **Algorithm 1:** Naive Exact Counter

 $n \leftarrow 0$ ;

foreach element in the stream do

 $n \leftarrow n + 1$ ;

return *n*;

Uses  $\mathcal{O}(\log n)$  bits to store n exactly.

Can we do better?

#### Can we do better?

#### Result

There is no exact solution in  $o(\log n)$  space.

#### Can we do better?

#### Result

There is no exact solution in  $o(\log n)$  space.

But we can look for approximate answers!

#### Morris Counter

**Goal:** Estimate *n* with very little memory, but allow only an approximation of the answer.

#### **Algorithm 2:** Morris's Streaming Counter

 $c \leftarrow 0$ ;

#### foreach element in the stream do

 $c \leftarrow c + 1$  with probability  $2^{-c}$ ;

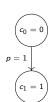
return  $2^c - 1$ ;

Memory usage:  $c \approx \log n$ , so  $\mathcal{O}(\log \log n)$  space.



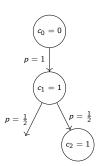
Stream of 5 elements:  $x_1, x_2, x_3, x_4, x_5$ 

Element | Counter c | Estimate  $2^c - 1$ 

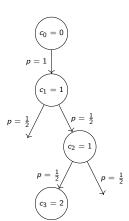


| Element               | Counter c | Estimate $2^c - 1$ |
|-----------------------|-----------|--------------------|
| <i>x</i> <sub>1</sub> | 0 	o 1    | 1                  |

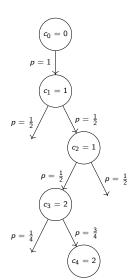
| Element               | Counter c | Estimate $2^c - 1$ |
|-----------------------|-----------|--------------------|
|                       | 0 	o 1    | 1                  |
| <i>x</i> <sub>2</sub> | 1	o 1     | 1                  |



| Element               | Counter <i>c</i> | Estimate $2^c - 1$ |
|-----------------------|------------------|--------------------|
|                       | 0 	o 1           | 1                  |
| <i>x</i> <sub>2</sub> | 1	o 1            | 1                  |
| <i>X</i> 3            | 1	o 2            | 3                  |



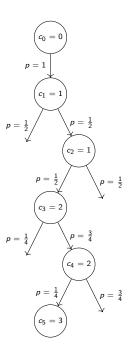
| Element               | Counter <i>c</i>  | Estimate $2^c - 1$ |
|-----------------------|-------------------|--------------------|
|                       | 0 	o 1            | 1                  |
| <i>x</i> <sub>2</sub> | 1	o 1             | 1                  |
| <i>X</i> 3            | 1	o 2             | 3                  |
| <i>X</i> 4            | $2 \rightarrow 2$ | 3                  |



#### **Stream of 5 elements:** $x_1, x_2, x_3, x_4, x_5$

| Element               | Counter <i>c</i>  | Estimate $2^c - 1$ |
|-----------------------|-------------------|--------------------|
|                       | 0 	o 1            | 1                  |
| <i>x</i> <sub>2</sub> | 1	o 1             | 1                  |
| <i>X</i> 3            | 1	o 2             | 3                  |
| <i>X</i> 4            | 2 	o 2            | 3                  |
| <i>x</i> <sub>5</sub> | $2 \rightarrow 3$ | 7                  |

The final estimate  $2^c - 1 = 7$  approximates the true count n = 5.



#### Morris Counter: What Does it Return?

Let  $c_n$  be the value of the counter after n stream items, then  $\mathbb{E}[2^{c_n}] = n + 1$ .

Base case (n=0).  $c_0=0$ , so  $2^{c_0}=1$  and  $\mathbb{E}[2^{c_0}]=1=0+1$ . Inductive step (assume  $\mathbb{E}[2^{c_n}]=n+1$ ). Consider one more element  $(n \to n+1)$ . By the formula of total probabilities:

$$\mathbb{E}[2^{c_{n+1}}] = \sum_{i=0}^{\infty} \mathbb{P}(c_n = i) \mathbb{E}[2^{c_{n+1}} | c_n = i]$$

## Morris Counter: Conditional Expectation

If  $c_n = i$ , then:

$$c_{n+1} = egin{cases} c_n + 1 & ext{with probability } 2^{-i} \ c_n & ext{with probability } 1 - 2^{-i} \end{cases}$$

## Morris Counter: Conditional Expectation

If  $c_n = i$ , then:

$$c_{n+1} = egin{cases} c_n + 1 & ext{with probability } 2^{-i} \ c_n & ext{with probability } 1 - 2^{-i} \end{cases}$$

Conditional expectation:

$$\mathbb{E}[2^{c_{n+1}} \mid c_n = i] = \underbrace{2^{i}(1 - 2^{-i})}_{unchanged} + \underbrace{2^{i+1} \cdot 2^{-i}}_{incremented} = 2^{i} + 1.$$

Plugging it in the formula, we obtain

$$\mathbb{E}[2^{c_{n+1}}] = \underbrace{\sum_{i=0}^{\infty} \mathbb{P}(c_n = i)2^i}_{=\mathbb{E}[2^{c_n}]} + \underbrace{\sum_{i=0}^{\infty} \mathbb{P}(c_n = i)}_{=1}.$$

#### Morris Counter: Conclusion

Thus,

$$\mathbb{E}[2^{c_{n+1}}] = \mathbb{E}[2^{c_n}] + 1$$

By hypothesis  $\mathbb{E}[2^{c_n}] = n + 1$ , and by induction

$$\mathbb{E}[2^{c_{n+1}}] = (n+1)+1$$

Hence,  $2^{c_n} - 1$  is an **unbiased** estimator of n.

## Streaming Algorithms in Data Collection

Sensors and logs can generate massive streams of data that are impossible to store entirely.

Streaming algorithms process this data on the fly, producing approximate statistics.

#### **Applications:**

- Monitoring IoT devices, sensors, or telemetry
- Real-time analytics without massive storage

#### What is actually collected?

- Not the full raw stream X<sub>t</sub>
- Instead, the algorithm maintains a compact state  $c_t$
- The collected data is either the internal state  $c_t$  or the derived statistic  $Y_t = f(c_t)$  (e.g.,  $2^{c_t} 1$ )

#### $APIs^1$

Purpose: Reuse existing data through programmatic access.

#### Definition (API-based Data Collection)

A method to gather data by querying a digital system to obtain responses Y derived from query variables X.

Modeled as:

$$Y = f(X) + \epsilon$$

**Goal:** Obtain data Y from API query parameters X, accounting for processing f and noise or incompleteness  $\epsilon$ .

#### **Examples:**

- Weather API: X is the location and f(X) is the temperature.
- Stock prices from financial APIs.

You have seen this already last year in the cloud computing lecture.

<sup>&</sup>lt;sup>1</sup>Application Programming Interfaces

## API (Advantages and Challenges)

- ✓ Cost-efficient: no need to collect primary data yourself
- ✓ Scalable: access to large datasets with repeated calls
- Reproducibility: standardized sources and formats
- ✓ Programmatic automation: Can be integrated into pipelines

- X Access limits: rate limits, paywalls
- X Partial view: only exposed data are accessible, may differ from full internal state
- X Opacity: data might have been collected for other purposes
- X Dependency on provider: API changes can break pipelines

# Bias

#### What is Bias?

#### Definition (Bias)

Systematic deviation from the true characteristics of the population.

#### Why it matters:

- Incorrect conclusions (e.g., flawed policies, ineffective treatments)
- Perpetuate inequalities (e.g., hiring algorithms favoring certain groups)

## **UW NEWS**

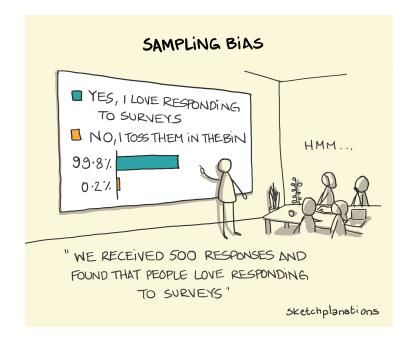
NEWS RELEASES | RESEARCH | TECHNOLOGY

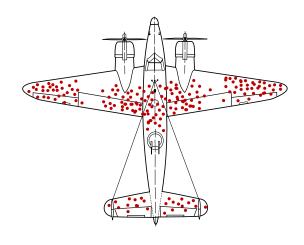
October 31, 2024

Al tools show biases in ranking job applicants' names according to perceived race and gender

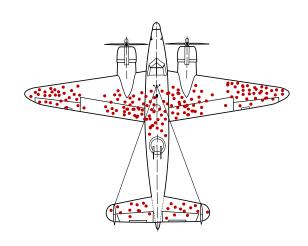
Stefan Milne

UW News



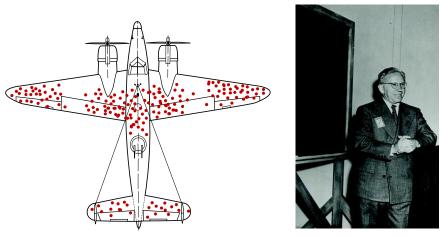


## Survivorship Bias





Abraham Wald



Abraham Wald

Can you think of modern examples?

## THE AVAILABILITY HEURISTICT

THINGS THAT COME TO MIND EASILY WE THINK OF AS MORE COMMON AND MORE IMPORTANT



EASY TO RECOUL HARD TO RECOUL CAN LEAD TO

PLANECRASHES SAFE FLIGHTS FEAR OF FLYING



COLD SPELL GRADUAL WARMING IGNORING CLIMATE

CHANGE



WINNING TICKETS NORMALTICKETS BUYING MORE

... AT THE EXPENSE OF THINGS THAT MAY BE MORE COMMON BUT THAT DON'T EASILY COME TO MIND

+ AND BIAS

sketchplanations

Non-response Bias Participants who do not respond may differ from those who do (e.g., unhappy customers skip surveys).

Non-response Bias Participants who do not respond may differ from those who do (e.g., unhappy customers skip surveys).

Response Bias Participants answer in a way they think is "desirable" (e.g., overreporting healthy behaviors).

- Non-response Bias Participants who do not respond may differ from those who do (e.g., unhappy customers skip surveys).
- Response Bias Participants answer in a way they think is "desirable" (e.g., overreporting healthy behaviors).
- Selection Bias Certain groups are overrepresented (e.g., only highly motivated individuals respond).

- Non-response Bias Participants who do not respond may differ from those who do (e.g., unhappy customers skip surveys).
- Response Bias Participants answer in a way they think is "desirable" (e.g., overreporting healthy behaviors).
- Selection Bias Certain groups are overrepresented (e.g., only highly motivated individuals respond).
- Undercoverage Bias Some groups are excluded from the sample (e.g., only surveying students who attend lectures).

Bias is not just a human problem: it also affects machine-generated data.

Sensors Sensor drift or faulty calibration leads to systematic errors.

Bias is not just a human problem: it also affects machine-generated data.

Sensors Sensor drift or faulty calibration leads to systematic errors.

Logs Missing or truncated events (e.g., failed transactions not logged).

Bias is not just a human problem: it also affects machine-generated data.

Sensors Sensor drift or faulty calibration leads to systematic errors.

Logs Missing or truncated events (e.g., failed transactions not logged).

APIs Provider filters or rate limits exclude certain data.

Bias is not just a human problem: it also affects machine-generated data.

Sensors Sensor drift or faulty calibration leads to systematic errors.

Logs Missing or truncated events (e.g., failed transactions not logged).

APIs Provider filters or rate limits exclude certain data.

Simulations Underrepresented states (e.g., rare events not modeled).

## Strategies to Reduce Bias

- Use multiple sampling methods to ensure representation
- Randomize selection or sampling
- Calibrate and validate measurement instruments (sensors, logs, APIs)
- Document limitations and check for missing data
- Compare with external or real-world data where possible

# Provenance & Documentation

## The FAIR Data Principles

Mark D. Wilkinson et al. "The FAIR Guiding Principles for Scientific Data Management and Stewardship". In: Scientific Data 3.1 (Mar. 2016). ISSN: 2052-4463. DOI: 10.1038/sdata.2016.18

#### **Motivation:**

- Digital data abundant but hard to find, access, combine, or reuse
- Need for reproducible, interoperable, trustworthy data

FAIR principles guide good data management to make datasets usable by both computers and humans. It is about both the **data itself** and its **metadata**.

# The FAIR Principles: Making Data Usable

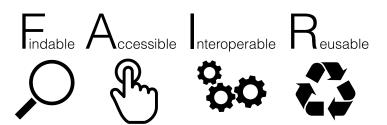
#### Data should be:

• Findable: Easy to locate

• Accessible: Retrievable with standard tools

• Interoperable: Usable with other datasets

• Reusable: Well-documented for future use



#### Findable, Accessible, Interoperable, Reusable

- Use standard formats (CSV, JSON)
- Include a clear license (e.g., Creative Commons)
- Assign a DOI (e.g., via https://zenodo.org/)
- Allow downloading over standard protocols (e.g., HTTP, FTP)
- Document with metadata standards (e.g., Dublin Core)

#### Findable, Accessible, Interoperable, Reusable

- (I) Use standard formats (CSV, JSON)
  - Include a clear license (e.g., Creative Commons)
  - Assign a DOI (e.g., via https://zenodo.org/)
  - Allow downloading over standard protocols (e.g., HTTP, FTP)
  - Document with metadata standards (e.g., Dublin Core)

#### Findable, Accessible, Interoperable, Reusable

- (I) Use standard formats (CSV, JSON)
- (R) Include a clear license (e.g., Creative Commons)
  - Assign a DOI (e.g., via https://zenodo.org/)
  - Allow downloading over standard protocols (e.g., HTTP, FTP)
  - Document with metadata standards (e.g., Dublin Core)

#### Findable, Accessible, Interoperable, Reusable

- (I) Use standard formats (CSV, JSON)
- (R) Include a clear license (e.g., Creative Commons)
- (F) Assign a DOI (e.g., via https://zenodo.org/)
  - Allow downloading over standard protocols (e.g., HTTP, FTP)
  - Document with metadata standards (e.g., Dublin Core)

#### Findable, Accessible, Interoperable, Reusable

- (I) Use standard formats (CSV, JSON)
- (R) Include a clear license (e.g., Creative Commons)
- (F) Assign a DOI (e.g., via https://zenodo.org/)
- (A) Allow downloading over **standard protocols** (e.g., HTTP, FTP)
  - Document with **metadata standards** (e.g., Dublin Core)

#### Findable, Accessible, Interoperable, Reusable

- (I) Use standard formats (CSV, JSON)
- (R) Include a clear license (e.g., Creative Commons)
- (F) Assign a DOI (e.g., via https://zenodo.org/)
- (A) Allow downloading over **standard protocols** (e.g., HTTP, FTP)
- (R) Document with metadata standards (e.g., Dublin Core)

# What to Document: The Essentials

- **1 Who, When, Where:** Who collected the data? When and where was it collected?
- **How:** What tools/methods were used? (e.g., survey questions, sensor types, API versions)
- **3 What:** What do the columns/variables mean? (e.g., units, data types, encoding)
- 4 Why: What was the purpose of collecting this data?

# Example (Survey Documentation)

- 1 Who: 3rd-year students at Bachelor AIDAMS
- 2 How: Online questionnaire via Google Forms
- **3 What:** StudyHours: weekly hours spent studying (integer)
- 4 Why: Analyze the influence of study time on exam scores

# Conclusion

# Takeaways: Data Collection Methods

- Choose the right method based on your study aim and the type of data required.
- **2 Experiments & Simulations:** Use to test causal relationships and explore scenarios.
- 3 Surveys: Use to collect opinions, behaviors, or characteristics.
- 4 Automated Collection Use for quantitative, continuous data collection.
- 6 APIs & Secondary Data: Use existing external data for efficiency and scalability.

"Choosing a collection method is like picking the right lens — it shapes what you will see."

# Takeaways: Bias in Data Collection

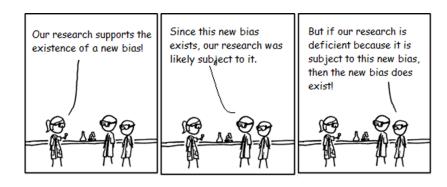
- Bias is systematic deviation from the true population characteristics.
- 2 Common biases: non-response, undercoverage, selection, response, and computational bias.
- 3 Mitigation strategies: diversify samples, randomize, pilot test.
- Always ask: Who or what is missing from this data? Why?
- 5 If cannot mitigate them, at least document them!

"Bias in data collection is like a shadow – it follows you everywhere, but you can shine a light on it!"

# Takeaways: Provenance & Documentation

- FAIR principles make data Findable, Accessible, Interoperable, and Reusable.
- 2 Always document who, how, what, and why for your data.
- Use tools like DOIs, standard formats, and licenses to improve reusability.
- 4 Poor documentation = wasted time, incorrect conclusions, or ethical risks.

"Data without documentation is like a book without a title – hard to find, use, or trust!"



# T-test Computation

Compute whether coffee improves reaction time:

$$\bar{X}_c = 0.566, \quad \bar{X}_t = 0.504$$

$$s_c^2 = 0.00013, \quad s_t^2 = 0.00006$$

$$t = \frac{\bar{X}_c - \bar{X}_t}{\sqrt{\frac{s_c^2}{n_c} + \frac{s_t^2}{n_t}}} = \frac{0.566 - 0.504}{\sqrt{\frac{0.00013}{5} + \frac{0.00006}{5}}} = \frac{0.062}{0.0061} \approx 10.16$$

- Degrees of freedom:  $n_c + n_t 2 = 8$
- Critical t-value (lpha=0.05, two-tailed) pprox 2.306
- Conclusion:  $t = 10.16 > 2.306 \rightarrow \text{significant difference}$