Data, Data Storage, Data Collection Lecture 2: Data Lifecycle

Romain Pascual

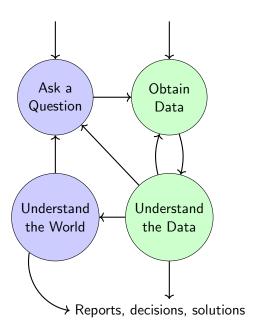
MICS, CentraleSupélec, Université Paris-Saclay

Recap

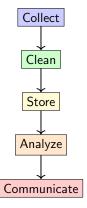
What is data?

Data are raw, context-free elements. With context and meaning, data they become **information**. Used for decision-making, information becomes **knowledge**.

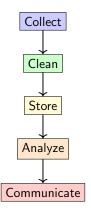
Where does data come from?


Sources include sensors, surveys, logs, APIs, and human input. The origin of data strongly influences its trustworthiness and applicability.

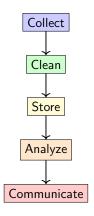
How is data represented? Unstructured (text, media), semi-structured (JSON, XML), and structured (tables, databases).



Understanding data's **nature**, **sources**, **representations**, **and lifecycle** is the foundation of modern data science.


Data Lifecycle

The Data Lifecycle



The Data Lifecycle

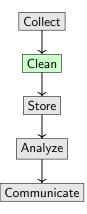
Which step do you think takes the most time in a real project?

The Data Lifecycle

Which step do you think takes the most time in a real project?

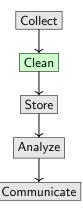
Cleaning and Preprocessing (up to 80% of project time)

Gil Press. "Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says". In: Forbes (2016)


Lifecycle Step - Collection

Sources of data: sensors, surveys, logs, APIs

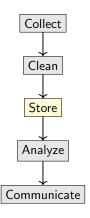
Implication for data quality: representativity, missing data, reliability


Lifecycle Step – Cleaning

How would you fix the following?

ID	Age	Email
1	25	test@example.com
2	?	user@sample.com
3	30	(missing)
4	29	user2.fr

Lifecycle Step – Cleaning

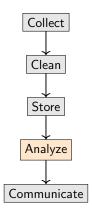

How would you fix the following?

ID	Age	Email
1	25	test@example.com
2	?	user@sample.com
3	30	(missing)
4	29	user2.fr

Handling missing values, errors, duplicates

Data formatting / standardization

Lifecycle Step – Storage



From files (CSV, JSON) to databases (SQL, NoSQL)

Tradeoffs between scalability, cost, accessibility

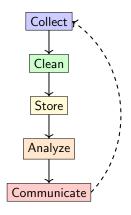
Short-term vs long-term storage

Lifecycle Step – Analysis

Descriptive vs inferential analysis

Tools: database queries, statistics, ML (see resp. lectures)

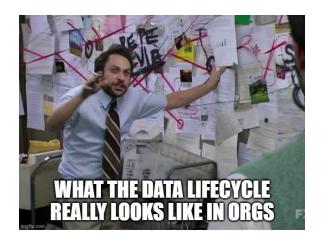
▲ Data Sciences is sometimes (often) reduced to this step


Lifecycle Step – Communicating

Often forgotten, but crucial: without it, all previous steps are wasted

At this point we have **information**, not just data

The Lifecycle is a Loop


The process is **iterative**

Communicating results may highlight new data needs.

Remark: In reality, each of these steps include sub-activities like ingestion, integration, or deletion

Takeaways: Data and its Lifecycle

- 1 Always start with a clear question or objective
- 2 The data lifecycle is iterative and interconnected
- 3 Cleaning and preprocessing are often the most time-consuming task
- 4 Without communication, the work is wasted

Data lifecycle in the wild:

Master the process, embrace the chaos, and always document your steps!