

Formal Foundations of Consistency in Model-Driven Development

KeY Symposium 2024

R. Pascual, B. Beckert, M. Ulbrich, M. Kirsten, W. Pfeifer | July 31, 2024

Convide¹

Consistency in the **Vi**ew-Based **De**velopment of Cyber-Physical Systems

- Software engineering
- **Mechanical engineering**
- Electrical engineering
- Formal methods

¹Sonderforschungsbereiche (SFB) financed by the Deutsche Forschungsgemeinschaft (DFG)

with Battery Management

Recalls 360.000 Cars in the US

Models?

Models?

An abstract representation of an original entity (for a given purpose)

- **Anything you may write with UML**
- **An automaton**
- A Petri net
- A differential equation
- A drawing on a napkin

Models?

An abstract representation of an original entity (for a given purpose)

- **Anything you may write with UML**
- **An automaton**
- A Petri net
- A differential equation
- A drawing on a napkin

Hypothesis: models are atomic entities (we do not care about model elements)

An abstract representation of an original entity (for a given purpose)

- **Anything you may write with UML**
- **An automaton**
- A Petri net
- A differential equation
- A drawing on a napkin

Hypothesis: models are atomic entities (we do not care about model elements)

The set of syntactically admissible models is described by a **meta-model**, e.g., a formal grammar

Consistency is . . .

From logic: co-satisfiability of formulae

Consistency is . . .

- **From logic:** co-satisfiability of formulae
- **From distributed development workflows:** the absence of merge conflict

Consistency is . . .

- **From logic: co-satisfiability of formulae**
- **From distributed development workflows:** the absence of merge conflict
- **Fig. 2** From **model transformations**: obtained via rule computation

Consistency is . . .

- **From logic:** co-satisfiability of formulae
- **From distributed development workflows:** the absence of merge conflict
- **Fig. 2** From **model transformations**: obtained via rule computation

Understand different notions of consistency and their properties and the induced complexity for V-SUM design, with a focus on specific aspects of CPS

Consistency is . . .

- **From logic:** co-satisfiability of formulae
- **From distributed development workflows:** the absence of merge conflict
- **Fig. 2** From **model transformations**: obtained via rule computation

Understand different notions of consistency and their properties and the induced complexity for V-SUM design, with a focus on specific aspects of CPS

We abstract **consistency** as a relation between models

Formalizing the V-SUM approach

■ A set-theoretic approach to V-SUM consistency

A **meta-model** M_i is the set of its well-formed models $m_i \in M_i$

- A **meta-model** M_i is the set of its well-formed models $m_i \in M_i$
- A **consistency relation** is a relation on a (finite) number of meta-models: $\textit{CR} \subseteq \prod_{i \leq n} M_i$

- A **meta-model** M_i is the set of its well-formed models $m_i \in M_i$
- A **consistency relation** is a relation on a (finite) number of meta-models: $\textit{CR} \subseteq \prod_{i \leq n} M_i$
- A **V-SUM meta-model** is a pair $\mathcal{M} = (M, CR)$ where $M = \prod_{i \leq n} M_i$ and $CR \subseteq M$

- A **meta-model** M_i is the set of its well-formed models $m_i \in M_i$
- A **consistency relation** is a relation on a (finite) number of meta-models: $\textit{CR} \subseteq \prod_{i \leq n} M_i$
- A **V-SUM meta-model** is a pair $\mathcal{M} = (M, CR)$ where $M = \prod_{i \leq n} M_i$ and $CR \subseteq M$
- A V-SUM model *m* of a V-SUM meta-model *M* is a tuple $m = (m_1, \ldots, m_n)$ of models $m_i \in M_i$

- A **meta-model** M_i is the set of its well-formed models $m_i \in M_i$
- A **consistency relation** is a relation on a (finite) number of meta-models: $\textit{CR} \subseteq \prod_{i \leq n} M_i$
- A **V-SUM meta-model** is a pair $\mathcal{M} = (M, CR)$ where $M = \prod_{i \leq n} M_i$ and $CR \subseteq M$
- A V-SUM model *m* of a V-SUM meta-model *M* is a tuple $m = (m_1, \ldots, m_n)$ of models $m_i \in M_i$
- A V-SUM model *m* is **consistent** wrt. *CR* if *m* ∈ *CR*, written *CR*(*m*)

How is consistency specified?

• The Vitruvius approach

Consistency Preservation with Vitruvius

Consistency from semantics

■ Semantical V-SUM

Examples of semantics

- **Satisfying structures** in Tarskian approach to logic,
- **Denotational** or **operational semantics** of programming languages \blacksquare
- **Output of a tool** as an implicit semantics for engineering models

Examples of semantics

- **Satisfying structures** in Tarskian approach to logic,
- \mathcal{L} **Denotational** or **operational semantics** of programming languages
- **Output of a tool** as an implicit semantics for engineering models

Abstract semantics:

$$
[\![\cdot]\!]:M\to S
$$

Examples of semantics

- **Satisfying structures** in Tarskian approach to logic,
- \blacksquare **Denotational** or **operational semantics** of programming languages
- **Output of a tool** as an implicit semantics for engineering models

Abstract semantics:

$$
[\![\cdot]\!]:M\to S
$$

- What is the codomain S?
- What is the intended meaning of $\llbracket \cdot \rrbracket$?

Examples of semantics

- **Satisfying structures** in Tarskian approach to logic,
- **Denotational** or **operational semantics** of programming languages
- **Quiput of a tool** as an implicit semantics for engineering models

Abstract semantics:

$$
[\![\cdot]\!]:M\to S
$$

- What is the codomain S?
- What is the intended meaning of $\llbracket \cdot \rrbracket$?

It is purpose-dependent, but the choice of *S* does not matter

Impose conditions on the semantic spaces

Impose conditions on the semantic spaces

Assume each meta-models M_i is equipped with an abstract semantics $\llbracket \cdot \rrbracket_i \colon M_i \to S_i,$ a **semantic consistency relation** is a relation $\mathit{SCR} \subseteq \prod_{i \le n} \mathit{S}_i$

■ The model $m \in M$ is semantically consistent wrt. *SCR* if

 $SCR([\![m_1]\!]_1, \ldots [\![m_n]\!]_n)$

Impose conditions on the semantic spaces

Assume each meta-models M_i is equipped with an abstract semantics $\llbracket \cdot \rrbracket_i \colon M_i \to S_i,$ a **semantic consistency relation** is a relation $\mathit{SCR} \subseteq \prod_{i \le n} \mathit{S}_i$

■ The model $m \in M$ is semantically consistent wrt. *SCR* if

 $SCR([\![m_1]\!]_1, \ldots [\![m_n]\!]_n)$

We obtain a consistency relation $\mathit{CR_{SCR}}$ on $\prod_{i\le n}M_i$ (and therefore a V-SUM meta-model)

Examples

for [[·]]*ⁱ and Sⁱ*

- **the set of satisfying structures** (Tarskian approach to logic)
- the **result of some tests** on a mechanical part
- the **number of methods** or **attributes** of a java class
- **the termination property** of a program

Examples

for [[·]]*ⁱ and Sⁱ*

- **the set of satisfying structures** (Tarskian approach to logic)
- the **result of some tests** on a mechanical part
- the **number of methods** or **attributes** of a java class
- **the termination property** of a program

for SCR if $S_1 = S_2$

- **■** $SCR(s_1, s_2) \iff s_1 \cap s_2 \neq \emptyset$
- *SCR*(s_1, s_2) $\iff s_1 \subseteq s_2$
- *SCR*(s_1, s_2) $\iff s_1 = s_2$

Examples

for [[·]]*ⁱ and Sⁱ*

- **the set of satisfying structures** (Tarskian approach to logic)
- the **result of some tests** on a mechanical part
- the **number of methods** or **attributes** of a java class
- **the termination property** of a program

for SCR if $S_1 = S_2$

- \bullet *SCR*(*s*₁, *s*₂) \iff *s*₁ ∩ *s*₂ \neq \emptyset
- *SCR*(s_1, s_2) $\iff s_1 \subseteq s_2$
- *SCR*(s_1, s_2) $\iff s_1 = s_2$

Allows for user-defined semantics and relations

Reasoning on semantics

• A little bit of lattice theory

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$ Factor out these equalities by reasoning on *M*/≡

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$ Factor out these equalities by reasoning on *M*/≡

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$ Factor out these equalities by reasoning on *M*/≡

Restricting each S_i to the image of the function $\{\llbracket m_i \rrbracket_i \mid m_i \in M_i\}$ ensures that M_i/ \equiv_i and *Sⁱ* are isomorphic

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$ Factor out these equalities by reasoning on *M*/≡

Restricting each S_i to the image of the function $\{\llbracket m_i \rrbracket_i \mid m_i \in M_i\}$ ensures that M_i/ \equiv_i and *Sⁱ* are isomorphic

Reduces the study to the quotient set M/R for the equivalence relations $R \subseteq M \times M$

Let $\llbracket \cdot \rrbracket_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

Let $\llbracket \cdot \rrbracket_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ is entirely characterized by which models get the same truth value

Let $\llbracket \cdot \rrbracket_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ is entirely characterized by which models get the same truth value

B = {0, 1}, {⊥, ⊤}, or {⊥, ⊤} **does not matter**

Let $\llbracket \cdot \rrbracket_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ is entirely characterized by which models get the same truth value

B = {0, 1}, {⊥, ⊤}, or {⊥, ⊤} **does not matter**

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ partitions M into two equivalence classes

Let $\llbracket \cdot \rrbracket_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ is entirely characterized by which models get the same truth value

 $\mathbb{B} = \{0, 1\}, \{\perp, \top\}, \text{ or } \{\perp, \top\} \text{ does not matter}$

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ partitions M into two equivalence classes

For practical purposes, it **does** matter whether the binary semantics space B is encoded as $\{0, 1\}, \{\perp, \top\}, \text{or } \{\perp, \top\}$

Let $\llbracket \cdot \rrbracket_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ is entirely characterized by which models get the same truth value

 $\mathbb{B} = \{0, 1\}, \{\perp, \top\}, \text{ or } \{\perp, \top\} \text{ does not matter}$

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ partitions M into two equivalence classes

For practical purposes, it **does** matter whether the binary semantics space B is encoded as $\{0, 1\}, \{\perp, \top\}, \text{or } \{\perp, \top\}$

> The choice of representatives (or names) is irrelevant to compare the amount of information kept by the abstract semantics

The lattice of semantics

Theorem (Crawley and Dilworth [1973,](#page-67-0) Chap. 12 or Grätzer [2003,](#page-67-1) Sect. IV.4)

The set of all equivalence relations on a set form a complete lattice called the **equivalence lattice** with set-inclusion as order

- Meet (infimum): $\bigwedge R = \bigcap R$
- Join (supremum): $\bigvee R = (\bigcup R)^*$

The lattice of semantics

Theorem (Crawley and Dilworth [1973,](#page-67-0) Chap. 12 or Grätzer [2003,](#page-67-1) Sect. IV.4)

The set of all equivalence relations on a set form a complete lattice called the **equivalence lattice** with set-inclusion as order

- Meet (infimum): $\bigwedge R = \bigcap R$
- Join (supremum): $\bigvee R = (\bigcup R)^*$

The isomorphism transfers the lattice structure from the equivalence relations to the abstract semantics, reserving the order:

$$
M/R_1 \sqsubseteq M/R_2 \iff R_2 \subseteq R_1
$$

We write $\mathcal{L}^M_{\mathrm{sem}}$ for the lattice of semantics on M

Intuitions

Given two semantics $[\![\cdot]\!]_1$ and $[\![\cdot]\!]_2$, $[\![\cdot]\!]_1\sqsubseteq [\![\cdot]\!]_2$ if and only if $[\![\cdot]\!]_2$ allows distinguishing between the same model as $\llbracket \cdot \rrbracket_1$ and possibly more

Intuitions

Given two semantics $[\![\cdot]\!]_1$ and $[\![\cdot]\!]_2$, $[\![\cdot]\!]_1\sqsubseteq [\![\cdot]\!]_2$ if and only if $[\![\cdot]\!]_2$ allows distinguishing between the same model as $\llbracket \cdot \rrbracket_1$ and possibly more

The **bottom element** $\llbracket \cdot \rrbracket$: $M \to M/M^2 \simeq \{ \star \}$ in the lattice of semantics corresponds to the trivial relation \mathcal{M}^2 that relates any two elements

All models have the same semantics $\llbracket m \rrbracket_{\perp} = \star$

Intuitions

Given two semantics $[\![\cdot]\!]_1$ and $[\![\cdot]\!]_2$, $[\![\cdot]\!]_1\sqsubseteq [\![\cdot]\!]_2$ if and only if $[\![\cdot]\!]_2$ allows distinguishing between the same model as $\llbracket \cdot \rrbracket_1$ and possibly more

The **bottom element** $\llbracket \cdot \rrbracket$: $M \to M/M^2 \simeq {\star}$ in the lattice of semantics corresponds to the trivial relation \mathcal{M}^2 that relates any two elements

All models have the same semantics $[m]_+ = \star$

The **top element** $\llbracket \cdot \rrbracket$ ⊤ : $M \to M/\text{id}_M \simeq M$ corresponds to the identity relation that relates every element only to itself

■ Every model $m \in M$ is its own semantic value $\llbracket m \rrbracket_{\top} = m$

Compatible semantics

A family of abstract semantics $([\![\cdot]\!]_i\colon M_i\to S_i)_{i\leq n}$ is $\sf{compatible}$ with \emph{CR} if and only if there is a semantic consistency relation $\mathit{SCR} \subseteq \prod_{i \le n} \mathcal{S}_i$ st.

CR = *CRSCR*

Compatible semantics encode enough information to determine if models are consistent

Natural semantics

We consider the relation ∼*ⁱ* st. models are related if and only if the sets of tuples that extend them to consistent V-SUM models are the same:

$$
m_a \sim_i m_b \iff CR^{\nabla i}(m_a) = CR^{\nabla i}(m_b)
$$

with

$$
CR^{\nabla i}(\nu) = \left\{ (m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_n) \in \prod_{j \neq i} M_j \mid CR(m_1, \ldots, m_{i-1}, \nu, m_{i+1}, \ldots, m_n) \right\}
$$

The semantics $\llbracket \cdot \rrbracket^{\text{nat}}_i \colon M_i \to M_i / {\sim}_i$ are called the **natural semantics** for C R

Natural semantics

We consider the relation ∼*ⁱ* st. models are related if and only if the sets of tuples that extend them to consistent V-SUM models are the same:

$$
m_a \sim_i m_b \iff CR^{\nabla i}(m_a) = CR^{\nabla i}(m_b)
$$

with

$$
CR^{\nabla i}(\nu) = \left\{ (m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_n) \in \prod_{j \neq i} M_j \mid CR(m_1, \ldots, m_{i-1}, \nu, m_{i+1}, \ldots, m_n) \right\}
$$

The semantics $\llbracket \cdot \rrbracket^{\text{nat}}_i \colon M_i \to M_i / {\sim}_i$ are called the **natural semantics** for C R

Natural semantics contains just the information needed to compute *CR*

Results

Proposition 1

The natural semantics are compatible with *CR*

Proposition 2

Semantics compatible with *CR* form complete lattices with the natural semantics as bottom elements

Proof: By considering $SCR^\text{nat} = \{([\![m_1]\!]_1^\text{nat}, \ldots, [\![m_n]\!]_n^\text{nat}) \mid \textit{CR}(m_1, \ldots, m_n)\}$ and the quotient sublattice (see Crawley and Dilworth [1973,](#page-67-0) Chap. 2)

References I

- [1] Peter Crawley and Robert P. Dilworth. *Algebraic theory of lattices*. Prentice-Hall, 1973.
- [2] George Grätzer. General Lattice Theory. Second edition. Birkhäuser Verlag, 2003.