

Formal Foundations of Consistency in Model-Driven Development

KeY Symposium 2024

R. Pascual, B. Beckert, M. Ulbrich, M. Kirsten, W. Pfeifer | July 31, 2024

www.kit.edu

Convide¹

Consistency in the View-Based Development of Cyber-Physical Systems

- Software engineering
- Mechanical engineering
- Electrical engineering
- Formal methods

¹Sonderforschungsbereiche (SFB) financed by the Deutsche Forschungsgemeinschaft (DFG)

Models?

An abstract representation of an original entity (for a given purpose)

- Anything you may write with UML
- An automaton
- A Petri net
- A differential equation
- A drawing on a napkin

An abstract representation of an original entity (for a given purpose)

- Anything you may write with UML
- An automaton
- A Petri net
- A differential equation
- A drawing on a napkin

Hypothesis: models are atomic entities (we do not care about model elements)

An abstract representation of an original entity (for a given purpose)

- Anything you may write with UML
- An automaton
- A Petri net
- A differential equation
- A drawing on a napkin

Hypothesis: models are atomic entities (we do not care about model elements)

The set of syntactically admissible models is described by a **meta-model**, e.g., a formal grammar

Consistency is ...

From logic: co-satisfiability of formulae

Consistency is ...

- From logic: co-satisfiability of formulae
- From distributed development workflows: the absence of merge conflict

Consistency is ...

- From logic: co-satisfiability of formulae
- From distributed development workflows: the absence of merge conflict
- From model transformations: obtained via rule computation

Consistency is ...

- From logic: co-satisfiability of formulae
- From distributed development workflows: the absence of merge conflict
- From model transformations: obtained via rule computation

Understand different notions of consistency and their properties and the induced complexity for V-SUM design, with a focus on specific aspects of CPS

Consistency is ...

- From logic: co-satisfiability of formulae
- From distributed development workflows: the absence of merge conflict
- From model transformations: obtained via rule computation

Understand different notions of consistency and their properties and the induced complexity for V-SUM design, with a focus on specific aspects of CPS

We abstract **consistency** as a relation between models

Formalizing the V-SUM approach

A set-theoretic approach to V-SUM consistency

• A meta-model M_i is the set of its well-formed models $m_i \in M_i$

- A meta-model M_i is the set of its well-formed models $m_i \in M_i$
- A consistency relation is a relation on a (finite) number of meta-models: $CR \subseteq \prod_{i \le n} M_i$

- A **meta-model** M_i is the set of its well-formed models $m_i \in M_i$
- A consistency relation is a relation on a (finite) number of meta-models: $CR \subseteq \prod_{i \le n} M_i$
- A V-SUM meta-model is a pair $\mathcal{M} = (M, CR)$ where $M = \prod_{i \leq n} M_i$ and $CR \subseteq M$

- A **meta-model** M_i is the set of its well-formed models $m_i \in M_i$
- A consistency relation is a relation on a (finite) number of meta-models: $CR \subseteq \prod_{i \le n} M_i$
- A V-SUM meta-model is a pair $\mathcal{M} = (M, CR)$ where $M = \prod_{i \leq n} M_i$ and $CR \subseteq M$
- A V-SUM model *m* of a V-SUM meta-model *M* is a tuple *m* = (*m*₁,...,*m_n*) of models *m_i* ∈ *M_i*

- A **meta-model** M_i is the set of its well-formed models $m_i \in M_i$
- A consistency relation is a relation on a (finite) number of meta-models: $CR \subseteq \prod_{i \le n} M_i$
- A V-SUM meta-model is a pair $\mathcal{M} = (M, CR)$ where $M = \prod_{i \leq n} M_i$ and $CR \subseteq M$
- A V-SUM model *m* of a V-SUM meta-model *M* is a tuple *m* = (*m*₁,...,*m_n*) of models *m_i* ∈ *M_i*
- A V-SUM model *m* is **consistent** wrt. *CR* if $m \in CR$, written CR(m)

How is consistency specified?

The Vitruvius approach

Consistency Preservation with Vitruvius

Consistency from semantics

Semantical V-SUM

Examples of semantics

- Satisfying structures in Tarskian approach to logic,
- Denotational or operational semantics of programming languages
- Output of a tool as an implicit semantics for engineering models

Examples of semantics

- Satisfying structures in Tarskian approach to logic,
- Denotational or operational semantics of programming languages
- Output of a tool as an implicit semantics for engineering models

Abstract semantics:

$$\llbracket \cdot \rrbracket : M \to S$$

Examples of semantics

- Satisfying structures in Tarskian approach to logic,
- Denotational or operational semantics of programming languages
- Output of a tool as an implicit semantics for engineering models

Abstract semantics:

$$\llbracket \cdot \rrbracket : M \to S$$

- What is the codomain *S*?
- What is the intended meaning of [[·]]?

Examples of semantics

- Satisfying structures in Tarskian approach to logic,
- Denotational or operational semantics of programming languages
- Output of a tool as an implicit semantics for engineering models

Abstract semantics:

$$\llbracket \cdot \rrbracket : M \to S$$

- What is the codomain *S*?
- What is the intended meaning of [[·]]?

It is purpose-dependent, but the choice of S does not matter

Impose conditions on the semantic spaces

Impose conditions on the semantic spaces

Assume each meta-models M_i is equipped with an abstract semantics $\llbracket \cdot \rrbracket_i : M_i \to S_i$, a **semantic consistency relation** is a relation $SCR \subseteq \prod_{i < n} S_i$

• The model $m \in M$ is semantically consistent wrt. SCR if

 $SCR([[m_1]]_1, \dots [[m_n]]_n)$

Impose conditions on the semantic spaces

Assume each meta-models M_i is equipped with an abstract semantics $\llbracket \cdot \rrbracket_i : M_i \to S_i$, a **semantic consistency relation** is a relation $SCR \subseteq \prod_{i < n} S_i$

• The model $m \in M$ is semantically consistent wrt. SCR if

 $SCR(\llbracket m_1 \rrbracket_1, \dots \llbracket m_n \rrbracket_n)$

We obtain a consistency relation CR_{SCR} on $\prod_{i < n} M_i$ (and therefore a V-SUM meta-model)

Examples

for $\llbracket \cdot \rrbracket_i$ and S_i

- the set of satisfying structures (Tarskian approach to logic)
- the result of some tests on a mechanical part
- the number of methods or attributes of a java class
- the termination property of a program

Examples

for $\llbracket \cdot \rrbracket_i$ and S_i

- the set of satisfying structures (Tarskian approach to logic)
- the result of some tests on a mechanical part
- the number of methods or attributes of a java class
- the termination property of a program

for SCR if $S_1 = S_2$

- $SCR(s_1, s_2) \iff s_1 \cap s_2 \neq \emptyset$
- $SCR(s_1, s_2) \iff s_1 \subseteq s_2$
- $SCR(s_1, s_2) \iff s_1 = s_2$

Examples

for $\llbracket \cdot \rrbracket_i$ and S_i

- the set of satisfying structures (Tarskian approach to logic)
- the result of some tests on a mechanical part
- the number of methods or attributes of a java class
- the termination property of a program

for SCR if $S_1 = S_2$

- $SCR(s_1, s_2) \iff s_1 \cap s_2 \neq \emptyset$
- $SCR(s_1, s_2) \iff s_1 \subseteq s_2$
- $SCR(s_1, s_2) \iff s_1 = s_2$

Allows for user-defined semantics and relations

Reasoning on semantics

A little bit of lattice theory

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$ Factor out these equalities by reasoning on M/\equiv

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$ Factor out these equalities by reasoning on M/\equiv

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$ Factor out these equalities by reasoning on M/\equiv

Restricting each S_i to the image of the function $\{\llbracket m_i \rrbracket_i \mid m_i \in M_i\}$ ensures that M_i / \equiv_i and S_i are isomorphic

The models m_1 and m_2 are equal modulo $\llbracket \cdot \rrbracket$: $m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$ Factor out these equalities by reasoning on M/\equiv

Restricting each S_i to the image of the function $\{\llbracket m_i \rrbracket_i \mid m_i \in M_i\}$ ensures that M_i / \equiv_i and S_i are isomorphic

Reduces the study to the quotient set M/R for the equivalence relations $R \subseteq M \times M$

Let $[\![\cdot]\!]_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

Let $[\![\cdot]\!]_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\llbracket \cdot \rrbracket_{\mathbb{R}}$ is entirely characterized by which models get the same truth value

Let $[\![\cdot]\!]_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\left\| \cdot \right\|_{\mathbb{R}}$ is entirely characterized by which models get the same truth value

 $\mathbb{B} = \{0,1\}, \{\bot,\top\},$ or $\{\bot,\top\}$ does not matter

Let $\llbracket \cdot \rrbracket_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\left\| \cdot \right\|_{\mathbb{R}}$ is entirely characterized by which models get the same truth value

 $\mathbb{B} = \{0,1\}, \{\bot,\top\},$ or $\{\bot,\top\}$ does not matter

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ partitions *M* into two equivalence classes

Let $[\![\cdot]\!]_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\llbracket \cdot \rrbracket_{\mathbb{R}}$ is entirely characterized by which models get the same truth value

 $\mathbb{B} = \{0,1\}, \{\bot,\top\},$ or $\{\bot,\top\}$ does not matter

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ partitions *M* into two equivalence classes

For practical purposes, it **does** matter whether the binary semantics space \mathbb{B} is encoded as $\{0, 1\}, \{\bot, \top\}$, or $\{\bot, \top\}$

Let $[\![\cdot]\!]_{\mathbb{B}}$ be the Boolean semantics, stating whether a model (formula) is either semantically true or false (for some logic)

 $\left\| \cdot \right\|_{\mathbb{R}}$ is entirely characterized by which models get the same truth value

 $\mathbb{B} = \{0,1\}, \{\bot,\top\},$ or $\{\bot,\top\}$ does not matter

 $\llbracket \cdot \rrbracket_{\mathbb{B}}$ partitions *M* into two equivalence classes

For practical purposes, it **does** matter whether the binary semantics space \mathbb{B} is encoded as $\{0, 1\}, \{\bot, \top\}$, or $\{\bot, \top\}$

The choice of representatives (or names) is irrelevant to compare the amount of information kept by the abstract semantics

The lattice of semantics

Theorem (Crawley and Dilworth 1973, Chap. 12 or Grätzer 2003, Sect. IV.4)

The set of all equivalence relations on a set form a complete lattice called the **equivalence lattice** with set-inclusion as order

- Meet (infimum): $\bigwedge R = \bigcap R$
- Join (supremum): $\bigvee R = (\bigcup R)^*$

The lattice of semantics

Theorem (Crawley and Dilworth 1973, Chap. 12 or Grätzer 2003, Sect. IV.4)

The set of all equivalence relations on a set form a complete lattice called the **equivalence lattice** with set-inclusion as order

- Meet (infimum): $\bigwedge R = \bigcap R$
- Join (supremum): $\bigvee R = (\bigcup R)^*$

The isomorphism transfers the lattice structure from the equivalence relations to the abstract semantics, reserving the order:

$$M/R_1 \sqsubseteq M/R_2 \iff R_2 \subseteq R_1$$

We write \mathcal{L}^M_{sem} for the lattice of semantics on M

Intuitions

Given two semantics $\llbracket \cdot \rrbracket_1$ and $\llbracket \cdot \rrbracket_2$, $\llbracket \cdot \rrbracket_1 \sqsubseteq \llbracket \cdot \rrbracket_2$ if and only if $\llbracket \cdot \rrbracket_2$ allows distinguishing between the same model as $\llbracket \cdot \rrbracket_1$ and possibly more

Intuitions

Given two semantics $\llbracket\cdot\rrbracket_1$ and $\llbracket\cdot\rrbracket_2$, $\llbracket\cdot\rrbracket_1 \sqsubseteq \llbracket\cdot\rrbracket_2$ if and only if $\llbracket\cdot\rrbracket_2$ allows distinguishing between the same model as $\llbracket\cdot\rrbracket_1$ and possibly more

The **bottom element** $\llbracket \cdot \rrbracket_{\perp} : M \to M/M^2 \simeq \{\star\}$ in the lattice of semantics corresponds to the trivial relation M^2 that relates any two elements

All models have the same semantics [[m]] = *

Intuitions

Given two semantics $\llbracket \cdot \rrbracket_1$ and $\llbracket \cdot \rrbracket_2$, $\llbracket \cdot \rrbracket_1 \sqsubseteq \llbracket \cdot \rrbracket_2$ if and only if $\llbracket \cdot \rrbracket_2$ allows distinguishing between the same model as $\llbracket \cdot \rrbracket_1$ and possibly more

The **bottom element** $\llbracket \cdot \rrbracket_{\perp} : M \to M/M^2 \simeq \{\star\}$ in the lattice of semantics corresponds to the trivial relation M^2 that relates any two elements

• All models have the same semantics $\llbracket m \rrbracket_{\perp} = \star$

The **top element** $\llbracket \cdot \rrbracket_{\top} : M \to M/\mathrm{id}_M \simeq M$ corresponds to the identity relation that relates every element only to itself

• Every model $m \in M$ is its own semantic value $\llbracket m \rrbracket_{\top} = m$

Compatible semantics

A family of abstract semantics $(\llbracket \cdot \rrbracket_i : M_i \to S_i)_{i \le n}$ is **compatible** with *CR* if and only if there is a semantic consistency relation $SCR \subseteq \prod_{i < n} S_i$ st.

 $CR = CR_{SCR}$

Compatible semantics encode enough information to determine if models are consistent

Natural semantics

.

We consider the relation \sim_i st. models are related if and only if the sets of tuples that extend them to consistent V-SUM models are the same:

$$m_a \sim_i m_b \iff CR^{\nabla i}(m_a) = CR^{\nabla i}(m_b)$$

with

$$CR^{\nabla i}(\nu) = \left\{ (m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_n) \in \prod_{j \neq i} M_j \mid CR(m_1, \ldots, m_{i-1}, \nu, m_{i+1}, \ldots, m_n) \right\}$$

The semantics $\llbracket \cdot \rrbracket_i^{\text{nat}} : M_i \to M_i / \sim_i$ are called the **natural semantics** for *CR*

Natural semantics

We consider the relation \sim_i st. models are related if and only if the sets of tuples that extend them to consistent V-SUM models are the same:

$$m_a \sim_i m_b \iff CR^{\nabla i}(m_a) = CR^{\nabla i}(m_b)$$

with

$$CR^{\nabla i}(\nu) = \left\{ (m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_n) \in \prod_{j \neq i} M_j \mid CR(m_1, \ldots, m_{i-1}, \nu, m_{i+1}, \ldots, m_n) \right\}$$

The semantics $\llbracket \cdot \rrbracket_i^{\text{nat}} : M_i \to M_i / \sim_i$ are called the **natural semantics** for *CR*

Natural semantics contains just the information needed to compute CR

Results

Proposition 1

The natural semantics are compatible with CR

Proposition 2

Semantics compatible with *CR* form complete lattices with the natural semantics as bottom elements

Proof: By considering $SCR^{nat} = \{(\llbracket m_1 \rrbracket_1^{nat}, \dots, \llbracket m_n \rrbracket_n^{nat}) \mid CR(m_1, \dots, m_n)\}$ and the quotient sublattice (see Crawley and Dilworth 1973, Chap. 2)

References I

- [1] Peter Crawley and Robert P. Dilworth. *Algebraic theory of lattices*. Prentice-Hall, 1973.
- [2] George Grätzer. General Lattice Theory. Second edition. Birkhäuser Verlag, 2003.