

Formal Foundations of Consistency in Model-Driven Development

ISoLA 2024

R. Pascual, B. Beckert, M. Ulbrich, M. Kirsten, W. Pfeifer | October 29, 2024

Convide - Consistency in the View-Based Development of Cyber-Physical Systems

Convide¹

Consistency in the View-Based Development of Cyber-Physical Systems

- Software engineering
- Mechanical engineering
- Electrical engineering
- Formal methods

¹Sonderforschungsbereich (SFB) financed by the Deutsche Forschungsgemeinschaft (DFG)

Image: RobGreen, © () () 2.0

Contribution

Observations

- Multiple approaches and definitions
- Lack of a common understanding

Contribution

Observations

- Multiple approaches and definitions
- Lack of a common understanding

Common terminology for the project

Contribution

Observations

- Multiple approaches and definitions
- Lack of a common understanding

Common terminology for the project

Contribution: a formal framework of consistency in model-driven development

Formalizing the V-SUM approach

A set-theoretic approach to V-SUM consistency

Definitions

Models are atomic entities, belonging to a meta-model and related by consistency

Models are atomic entities, belonging to a meta-model and related by consistency

- A **meta-model** M_i is the set of its well-formed models $m_i \in M_i$
- A consistency relation is a relation on a (finite) number of meta-models: $CR \subseteq \prod_{i \le n} M_i$
- A V-SUM meta-model is a pair $\mathcal{V} = (V, CR)$ where $V = \prod_{i \leq n} M_i$ and $CR \subseteq V$
- A V-SUM model v of a V-SUM meta-model \mathcal{V} is a tuple $v = (m_1, \ldots, m_n)$ of models $m_i \in M_i$
- A V-SUM model v is **consistent** wrt. CR if $v \in CR$, written CR(v)

Rule-based description of consistency

The Vitruvius approach

Consistency preservation with Vitruvius [Klare et al. 2021]

Consistency is defined at the meta-level by the methodologist

Consistency from semantics

Semantical V-SUM

Semantics with Java programs as models

trace semantics

- trace semantics
- pre and post conditions

- trace semantics
- pre and post conditions
- result of tests

- trace semantics
- pre and post conditions
- result of tests
- termination property

- trace semantics
- pre and post conditions
- result of tests
- termination property
- number of methods or attributes of a class

Semantics with Java programs as models

- trace semantics
- pre and post conditions
- result of tests
- termination property
- number of methods or attributes of a class

Abstract semantics

 $\llbracket \cdot \rrbracket : M \to S$

M meta-model and S semantic space

Semantics with Java programs as models

- trace semantics
- pre and post conditions
- result of tests
- termination property
- number of methods or attributes of a class

Abstract semantics

 $\llbracket \cdot \rrbracket : M \to S$

M meta-model and S semantic space

It is purpose-dependent

How can we use semantics to define consistency?

Impose conditions on the semantic spaces!

How can we use semantics to define consistency?

Impose conditions on the semantic spaces!

A semantic consistency relation is a relation $SCR \subseteq \prod_{i \le n} S_i$

• $v = (m_1, ..., m_n)$ in $V = \prod_{i \le n} M_i$ is semantically consistent wrt. SCR if

 $SCR([[m_1]]_1, ..., [[m_n]]_n)$

How can we use semantics to define consistency?

Impose conditions on the semantic spaces!

A semantic consistency relation is a relation $SCR \subseteq \prod_{i \le n} S_i$

• $v = (m_1, ..., m_n)$ in $V = \prod_{i \le n} M_i$ is semantically consistent wrt. SCR if

 $SCR([[m_1]]_1, ..., [[m_n]]_n)$

We obtain a consistency relation CR_{SCR} on V

Reasoning on semantics

A little bit of lattice theory

Main findings

For any meta-model and any consistency relation, there is a **natural semantics** that captures exactly the information needed to evaluate consistency of models

Main findings

For any meta-model and any consistency relation, there is a **natural semantics** that captures exactly the information needed to evaluate consistency of models

 1. Semantics that contain enough information to distinguish between consistent and inconsistent models form a bounded lattice

Main findings

For any meta-model and any consistency relation, there is a **natural semantics** that captures exactly the information needed to evaluate consistency of models

- 1. Semantics that contain enough information to distinguish between consistent and inconsistent models form a bounded lattice
- 2. The natural semantics is the bottom element of the lattice

 m_1 and m_2 in *M* are equal modulo $\llbracket \cdot \rrbracket$:

$$m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$$

 m_1 and m_2 in *M* are equal modulo $\llbracket \cdot \rrbracket$:

$$m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$$

Factor out these equalities

 m_1 and m_2 in *M* are equal modulo $\llbracket \cdot \rrbracket$:

$$m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$$

Factor out these equalities

 m_1 and m_2 in *M* are equal modulo $\llbracket \cdot \rrbracket$:

$$m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$$

Factor out these equalities

S and M/\equiv made isomorphic by formal restricting *S* to the image of $\llbracket \cdot \rrbracket$

 m_1 and m_2 in *M* are equal modulo $\llbracket \cdot \rrbracket$:

$$m_1 \equiv m_2 \iff \llbracket m_1 \rrbracket = \llbracket m_2 \rrbracket$$

Factor out these equalities

S and M/\equiv made isomorphic by formal restricting *S* to the image of $\llbracket \cdot \rrbracket$

Study to the quotient sets M/R for the equivalence relations $R \subseteq M \times M$

Theorem ([Crawley and Dilworth 1973, Chap. 12] or [Grätzer 2003, Sect. IV.4])

The set of all equivalence relations on a set form a complete lattice called the **equivalence lattice** with set-inclusion as order

- Meet (infimum): $\bigwedge R = \bigcap R$
- Join (supremum): $\bigvee R = (\bigcup R)^*$

Theorem ([Crawley and Dilworth 1973, Chap. 12] or [Grätzer 2003, Sect. IV.4])

The set of all equivalence relations on a set form a complete lattice called the **equivalence lattice** with set-inclusion as order

- Meet (infimum): $\bigwedge R = \bigcap R$
- Join (supremum): $\bigvee R = (\bigcup R)^*$

The isomorphism transfers the lattice structure from the equivalence relations to the abstract semantics, reserving the order:

$$M/R_1 \sqsubseteq M/R_2 \iff R_2 \subseteq R_1$$

Intuitions

Given two semantics $\llbracket \cdot \rrbracket_1$ and $\llbracket \cdot \rrbracket_2$, $\llbracket \cdot \rrbracket_1 \sqsubseteq \llbracket \cdot \rrbracket_2$ iff $\llbracket \cdot \rrbracket_2$ allows distinguishing between the same model as $\llbracket \cdot \rrbracket_1$ and possibly more

Intuitions

Given two semantics $\llbracket \cdot \rrbracket_1$ and $\llbracket \cdot \rrbracket_2$, $\llbracket \cdot \rrbracket_1 \sqsubseteq \llbracket \cdot \rrbracket_2$ iff $\llbracket \cdot \rrbracket_2$ allows distinguishing between the same model as $\llbracket \cdot \rrbracket_1$ and possibly more

Bottom element: $\llbracket \cdot \rrbracket_{\perp} : M \to M/M^2 \simeq \{\star\}$

• All models have the same semantics $\llbracket m \rrbracket_{\perp} = \star$

Intuitions

Given two semantics $\llbracket \cdot \rrbracket_1$ and $\llbracket \cdot \rrbracket_2$, $\llbracket \cdot \rrbracket_1 \sqsubseteq \llbracket \cdot \rrbracket_2$ iff $\llbracket \cdot \rrbracket_2$ allows distinguishing between the same model as $\llbracket \cdot \rrbracket_1$ and possibly more

Bottom element: $\llbracket \cdot \rrbracket_{\perp} : M \to M/M^2 \simeq \{\star\}$

• All models have the same semantics $\llbracket m \rrbracket_{\perp} = \star$

Top element $\llbracket \cdot \rrbracket_{\top} \colon M \to M/\mathrm{id}_M \simeq M$

• Every model $m \in M$ is its own semantic value $\llbracket m \rrbracket_{\top} = m$

Karlsruhe Institute of Technology

Compatibility with CR

A family of abstract semantics $(\llbracket \cdot \rrbracket_i : M_i \to S_i)_{i \le n}$ is **compatible** with *CR* iff there is a semantic consistency relation $SCR \subseteq \prod_{i \le n} S_i$ st.

$$CR = CR_{SCR}$$

Compatible semantics encode enough information to determine if models are consistent

Karlsruhe Institute of Technology

Natural semantics

For a metamodel M_i , m_a , $m_b \in M_i$,

 $m_a \sim_i m_b \iff CR$ cannot distinguish them

The semantics $(\llbracket \cdot \rrbracket_i^{\text{nat}} : M_i \to M_i / \sim_i)_{i \le n}$ are called the **natural semantics** for *CR*

Example

Suppose that $M = \prod_{i \le n} M_i$ describe **components** of a car The models are **consistent** if the total weight is \le **1000** kg What are the natural semantics?

Example

Suppose that $M = \prod_{i \le n} M_i$ describe **components** of a car The models are **consistent** if the total weight is \le **1000** kg What are the natural semantics?

 $\llbracket \cdot \rrbracket_i^{\text{nat}} \colon M_i \to [0, 1000] \cup \{\text{too much}\}$

Results

Proposition 1

The natural semantics are compatible with CR

Proposition 2

The semantics compatible with CR form complete lattices

Proposition 3

The natural semantics are the bottom elements of these lattices

Proof idea: By considering $SCR^{nat} = \{(\llbracket m_1 \rrbracket_1^{nat}, \dots, \llbracket m_n \rrbracket_n^{nat}) \mid CR(m_1, \dots, m_n)\}$ and the quotient sublattice (see [Crawley and Dilworth 1973, Chap. 2])

Conclusion

A formal framework of consistency in model-driven development

Conclusion

A formal framework of consistency in model-driven development

Current and future works

- Add structure to the models (in a meta-model-agnostic way)
- Model slicing
- A (formal) language that can be used to define specific consistency relations

References I

- [1] Peter Crawley and Robert P. Dilworth. Algebraic theory of lattices. Prentice-Hall, 1973. 201 pp.
- [2] George Grätzer. General Lattice Theory. Second edition. Birkhäuser Verlag, 2003. ISBN: 978-3-7643-6996-5.
- [3] Heiko Klare et al. "Enabling consistency in view-based system development The Vitruvius approach". In: Journal of Systems and Software 171 (Jan. 1, 2021), p. 110815. ISSN: 0164-1212. DOI: 10.1016/j.jss.2020.110815.