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The Virtual Single Underlying Model methodology (V-SUM)
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The Virtual Single Underlying Model methodology (V-SUM)



An abstract representation of an original entity (for a given purpose)

Anything you may write with UML

An automaton
A Petri net
A differential equation

A drawing on a napkin

Hypothesis: models are atomic entities (we do not care about model elements)

The set of syntactically admissible models is described by a meta-model, e.g., a formal
grammar
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Consistency is . . .

From logic: co-satisfiability of formulae

From distributed development workflows: the absence of merge conflict

From model transformations: obtained via rule computation

Understand different notions of consistency and their properties and the induced
complexity for V-SUM design, with a focus on specific aspects of CPS

We abstract consistency as a relation between models
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Formalizing the V-SUM approach
A set-theoretic approach to V-SUM consistency



A meta-model Mi is the set of its well-formed models mi ∈ Mi

A consistency relation is a relation on a (finite) number of meta-models:
CR ⊆

∏
i≤n Mi

A V-SUM meta-model is a pair M = (M,CR) where M =
∏

i≤n Mi and CR ⊆ M

A V-SUM model m of a V-SUM meta-model M is a tuple m = (m1, . . . ,mn) of
models mi ∈ Mi

A V-SUM model m is consistent wrt. CR if m ∈ CR, written CR(m)

8
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How is consistency specified?
The Vitruvius approach



10

Consistency Preservation with Vitruvius



Consistency from semantics
Semantical V-SUM



Examples of semantics

Satisfying structures in Tarskian approach to logic,

Denotational or operational semantics of programming languages

Output of a tool as an implicit semantics for engineering models

Abstract semantics:
[[·]] : M → S

What is the codomain S?
What is the intended meaning of [[·]]?

It is purpose-dependent, but the choice of S does not matter

12

An abstract notion of semantics



Examples of semantics

Satisfying structures in Tarskian approach to logic,

Denotational or operational semantics of programming languages

Output of a tool as an implicit semantics for engineering models

Abstract semantics:
[[·]] : M → S

What is the codomain S?
What is the intended meaning of [[·]]?

It is purpose-dependent, but the choice of S does not matter

12

An abstract notion of semantics



Examples of semantics

Satisfying structures in Tarskian approach to logic,

Denotational or operational semantics of programming languages

Output of a tool as an implicit semantics for engineering models

Abstract semantics:
[[·]] : M → S

What is the codomain S?
What is the intended meaning of [[·]]?

It is purpose-dependent, but the choice of S does not matter

12

An abstract notion of semantics



Examples of semantics

Satisfying structures in Tarskian approach to logic,

Denotational or operational semantics of programming languages

Output of a tool as an implicit semantics for engineering models

Abstract semantics:
[[·]] : M → S

What is the codomain S?
What is the intended meaning of [[·]]?

It is purpose-dependent, but the choice of S does not matter

12

An abstract notion of semantics



Impose conditions on the semantic spaces

Assume each meta-models Mi is equipped with an abstract semantics [[·]]i : Mi → Si ,
a semantic consistency relation is a relation SCR ⊆

∏
i≤n Si

The model m ∈ M is semantically consistent wrt. SCR if

SCR([[m1]]1, . . . [[mn]]n)

We obtain a consistency relation CRSCR on
∏

i≤n Mi (and therefore a V-SUM meta-model)

13

How can we use semantics to define consistency?
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for [[·]]i and Si

the set of satisfying structures (Tarskian approach to logic)

the result of some tests on a mechanical part

the number of methods or attributes of a java class

the termination property of a program

for SCR if S1 = S2

SCR(s1, s2) ⇐⇒ s1 ∩ s2 ̸= ∅
SCR(s1, s2) ⇐⇒ s1 ⊆ s2

SCR(s1, s2) ⇐⇒ s1 = s2

Allows for user-defined semantics and relations
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Reasoning on semantics
A little bit of lattice theory



The models m1 and m2 are equal modulo [[·]]: m1 ≡ m2 ⇐⇒ [[m1]] = [[m2]]

Factor out these equalities by reasoning on M/≡

M S

M/≡

[[·]]

s i

Restricting each Si to the image of the function {[[mi ]]i | mi ∈ Mi} ensures that Mi/≡i and
Si are isomorphic

Reduces the study to the quotient set M/R for the equivalence relations R ⊆ M × M

16
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Let [[·]]B be the Boolean semantics, stating whether a model (formula) is either
semantically true or false (for some logic)

[[·]]B is entirely characterized by which models get the same truth value

B = {0, 1}, {⊥,⊤}, or {⊥,⊤} does not matter

[[·]]B partitions M into two equivalence classes

For practical purposes, it does matter whether the binary semantics space B is encoded
as {0, 1}, {⊥,⊤}, or {⊥,⊤}

The choice of representatives (or names) is irrelevant to compare
the amount of information kept by the abstract semantics

17
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Theorem (Crawley and Dilworth 1973, Chap. 12 or Grätzer 2003, Sect. IV.4)
The set of all equivalence relations on a set form a complete lattice called the equivalence
lattice with set-inclusion as order

Meet (infimum):
∧

R =
⋂

R

Join (supremum):
∨

R = (
⋃

R)∗

The isomorphism transfers the lattice structure from the equivalence relations to the
abstract semantics, reserving the order:

M/R1 ⊑ M/R2 ⇐⇒ R2 ⊆ R1

We write LM
sem for the lattice of semantics on M

18
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Given two semantics [[·]]1 and [[·]]2, [[·]]1 ⊑ [[·]]2 if and only if [[·]]2 allows distinguishing
between the same model as [[·]]1 and possibly more

The bottom element [[·]]⊥ : M → M/M2 ≃ {⋆} in the lattice of semantics corresponds to
the trivial relation M2 that relates any two elements

All models have the same semantics [[m]]⊥ = ⋆

The top element [[·]]⊤ : M → M/idM ≃ M corresponds to the identity relation that relates
every element only to itself

Every model m ∈ M is its own semantic value [[m]]⊤ = m

19
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A family of abstract semantics ([[·]]i : Mi → Si)i≤n is compatible with CR if and only if
there is a semantic consistency relation SCR ⊆

∏
i≤n Si st.

CR = CRSCR

Compatible semantics encode enough information to determine if models are consistent

20

Compatible semantics



We consider the relation ∼i st. models are related if and only if the sets of tuples that
extend them to consistent V-SUM models are the same:

ma ∼i mb ⇐⇒ CR∇i(ma) = CR∇i(mb)

with

CR∇i(ν) =

(m1, . . . ,mi−1,mi+1, . . .mn) ∈
∏
j ̸=i

Mj | CR(m1, . . . ,mi−1, ν,mi+1, . . .mn)


The semantics [[·]]nati : Mi → Mi/∼i are called the natural semantics for CR

Natural semantics contains just the information needed to compute CR

21
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Proposition 1
The natural semantics are compatible with CR

Proposition 2
Semantics compatible with CR form complete lattices with the natural semantics as bottom
elements

Proof: By considering SCRnat =
{
([[m1]]

nat
1 , . . . , [[mn]]

nat
n ) | CR(m1, . . . ,mn)

}
and the

quotient sublattice (see Crawley and Dilworth 1973, Chap. 2)
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