
Formal Foundations of Consistency in Model-Driven Development

KeY Symposium 2024

R. Pascual, B. Beckert, M. Ulbrich, M. Kirsten, W. Pfeifer | July 31, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Convide1

Consistency in the View-Based Development of Cyber-Physical Systems

Software engineering

Mechanical engineering

Electrical engineering

Formal methods

1Sonderforschungsbereiche (SFB) financed by the Deutsche Forschungsgemeinschaft (DFG)

2



3



3



4

The Virtual Single Underlying Model methodology (V-SUM)



4

The Virtual Single Underlying Model methodology (V-SUM)



V1

V2

V3

V4

V5

V6

V7

V8

4

The Virtual Single Underlying Model methodology (V-SUM)



V1

V2

V3

V4

V5

V6

V7

V8

4

The Virtual Single Underlying Model methodology (V-SUM)



Model B

Model A

Model C

V1

V2

V3

V4

V5

V6

V7

V8

4

The Virtual Single Underlying Model methodology (V-SUM)



An abstract representation of an original entity (for a given purpose)

Anything you may write with UML

An automaton
A Petri net
A differential equation

A drawing on a napkin

Hypothesis: models are atomic entities (we do not care about model elements)

The set of syntactically admissible models is described by a meta-model, e.g., a formal
grammar

5

Models?



An abstract representation of an original entity (for a given purpose)

Anything you may write with UML

An automaton
A Petri net
A differential equation

A drawing on a napkin

Hypothesis: models are atomic entities (we do not care about model elements)

The set of syntactically admissible models is described by a meta-model, e.g., a formal
grammar

5

Models?



An abstract representation of an original entity (for a given purpose)

Anything you may write with UML

An automaton
A Petri net
A differential equation

A drawing on a napkin

Hypothesis: models are atomic entities (we do not care about model elements)

The set of syntactically admissible models is described by a meta-model, e.g., a formal
grammar

5

Models?



An abstract representation of an original entity (for a given purpose)

Anything you may write with UML

An automaton
A Petri net
A differential equation

A drawing on a napkin

Hypothesis: models are atomic entities (we do not care about model elements)

The set of syntactically admissible models is described by a meta-model, e.g., a formal
grammar

5

Models?



Consistency is . . .

From logic: co-satisfiability of formulae

From distributed development workflows: the absence of merge conflict

From model transformations: obtained via rule computation

Understand different notions of consistency and their properties and the induced
complexity for V-SUM design, with a focus on specific aspects of CPS

We abstract consistency as a relation between models

6

What is even consistency?



Consistency is . . .

From logic: co-satisfiability of formulae

From distributed development workflows: the absence of merge conflict

From model transformations: obtained via rule computation

Understand different notions of consistency and their properties and the induced
complexity for V-SUM design, with a focus on specific aspects of CPS

We abstract consistency as a relation between models

6

What is even consistency?



Consistency is . . .

From logic: co-satisfiability of formulae

From distributed development workflows: the absence of merge conflict

From model transformations: obtained via rule computation

Understand different notions of consistency and their properties and the induced
complexity for V-SUM design, with a focus on specific aspects of CPS

We abstract consistency as a relation between models

6

What is even consistency?



Consistency is . . .

From logic: co-satisfiability of formulae

From distributed development workflows: the absence of merge conflict

From model transformations: obtained via rule computation

Understand different notions of consistency and their properties and the induced
complexity for V-SUM design, with a focus on specific aspects of CPS

We abstract consistency as a relation between models

6

What is even consistency?



Consistency is . . .

From logic: co-satisfiability of formulae

From distributed development workflows: the absence of merge conflict

From model transformations: obtained via rule computation

Understand different notions of consistency and their properties and the induced
complexity for V-SUM design, with a focus on specific aspects of CPS

We abstract consistency as a relation between models

6

What is even consistency?



Consistency is . . .

From logic: co-satisfiability of formulae

From distributed development workflows: the absence of merge conflict

From model transformations: obtained via rule computation

Understand different notions of consistency and their properties and the induced
complexity for V-SUM design, with a focus on specific aspects of CPS

We abstract consistency as a relation between models

6

What is even consistency?



Formalizing the V-SUM approach
A set-theoretic approach to V-SUM consistency



A meta-model Mi is the set of its well-formed models mi ∈ Mi

A consistency relation is a relation on a (finite) number of meta-models:
CR ⊆

∏
i≤n Mi

A V-SUM meta-model is a pair M = (M,CR) where M =
∏

i≤n Mi and CR ⊆ M

A V-SUM model m of a V-SUM meta-model M is a tuple m = (m1, . . . ,mn) of
models mi ∈ Mi

A V-SUM model m is consistent wrt. CR if m ∈ CR, written CR(m)

8

Definitions



A meta-model Mi is the set of its well-formed models mi ∈ Mi

A consistency relation is a relation on a (finite) number of meta-models:
CR ⊆

∏
i≤n Mi

A V-SUM meta-model is a pair M = (M,CR) where M =
∏

i≤n Mi and CR ⊆ M

A V-SUM model m of a V-SUM meta-model M is a tuple m = (m1, . . . ,mn) of
models mi ∈ Mi

A V-SUM model m is consistent wrt. CR if m ∈ CR, written CR(m)

8

Definitions



A meta-model Mi is the set of its well-formed models mi ∈ Mi

A consistency relation is a relation on a (finite) number of meta-models:
CR ⊆

∏
i≤n Mi

A V-SUM meta-model is a pair M = (M,CR) where M =
∏

i≤n Mi and CR ⊆ M

A V-SUM model m of a V-SUM meta-model M is a tuple m = (m1, . . . ,mn) of
models mi ∈ Mi

A V-SUM model m is consistent wrt. CR if m ∈ CR, written CR(m)

8

Definitions



A meta-model Mi is the set of its well-formed models mi ∈ Mi

A consistency relation is a relation on a (finite) number of meta-models:
CR ⊆

∏
i≤n Mi

A V-SUM meta-model is a pair M = (M,CR) where M =
∏

i≤n Mi and CR ⊆ M

A V-SUM model m of a V-SUM meta-model M is a tuple m = (m1, . . . ,mn) of
models mi ∈ Mi

A V-SUM model m is consistent wrt. CR if m ∈ CR, written CR(m)

8

Definitions



A meta-model Mi is the set of its well-formed models mi ∈ Mi

A consistency relation is a relation on a (finite) number of meta-models:
CR ⊆

∏
i≤n Mi

A V-SUM meta-model is a pair M = (M,CR) where M =
∏

i≤n Mi and CR ⊆ M

A V-SUM model m of a V-SUM meta-model M is a tuple m = (m1, . . . ,mn) of
models mi ∈ Mi

A V-SUM model m is consistent wrt. CR if m ∈ CR, written CR(m)

8

Definitions



How is consistency specified?
The Vitruvius approach



10

Consistency Preservation with Vitruvius



Consistency from semantics
Semantical V-SUM



Examples of semantics

Satisfying structures in Tarskian approach to logic,

Denotational or operational semantics of programming languages

Output of a tool as an implicit semantics for engineering models

Abstract semantics:
[[·]] : M → S

What is the codomain S?
What is the intended meaning of [[·]]?

It is purpose-dependent, but the choice of S does not matter

12

An abstract notion of semantics



Examples of semantics

Satisfying structures in Tarskian approach to logic,

Denotational or operational semantics of programming languages

Output of a tool as an implicit semantics for engineering models

Abstract semantics:
[[·]] : M → S

What is the codomain S?
What is the intended meaning of [[·]]?

It is purpose-dependent, but the choice of S does not matter

12

An abstract notion of semantics



Examples of semantics

Satisfying structures in Tarskian approach to logic,

Denotational or operational semantics of programming languages

Output of a tool as an implicit semantics for engineering models

Abstract semantics:
[[·]] : M → S

What is the codomain S?
What is the intended meaning of [[·]]?

It is purpose-dependent, but the choice of S does not matter

12

An abstract notion of semantics



Examples of semantics

Satisfying structures in Tarskian approach to logic,

Denotational or operational semantics of programming languages

Output of a tool as an implicit semantics for engineering models

Abstract semantics:
[[·]] : M → S

What is the codomain S?
What is the intended meaning of [[·]]?

It is purpose-dependent, but the choice of S does not matter

12

An abstract notion of semantics



Impose conditions on the semantic spaces

Assume each meta-models Mi is equipped with an abstract semantics [[·]]i : Mi → Si ,
a semantic consistency relation is a relation SCR ⊆

∏
i≤n Si

The model m ∈ M is semantically consistent wrt. SCR if

SCR([[m1]]1, . . . [[mn]]n)

We obtain a consistency relation CRSCR on
∏

i≤n Mi (and therefore a V-SUM meta-model)

13

How can we use semantics to define consistency?



Impose conditions on the semantic spaces

Assume each meta-models Mi is equipped with an abstract semantics [[·]]i : Mi → Si ,
a semantic consistency relation is a relation SCR ⊆

∏
i≤n Si

The model m ∈ M is semantically consistent wrt. SCR if

SCR([[m1]]1, . . . [[mn]]n)

We obtain a consistency relation CRSCR on
∏

i≤n Mi (and therefore a V-SUM meta-model)

13

How can we use semantics to define consistency?



Impose conditions on the semantic spaces

Assume each meta-models Mi is equipped with an abstract semantics [[·]]i : Mi → Si ,
a semantic consistency relation is a relation SCR ⊆

∏
i≤n Si

The model m ∈ M is semantically consistent wrt. SCR if

SCR([[m1]]1, . . . [[mn]]n)

We obtain a consistency relation CRSCR on
∏

i≤n Mi (and therefore a V-SUM meta-model)

13

How can we use semantics to define consistency?



Impose conditions on the semantic spaces

Assume each meta-models Mi is equipped with an abstract semantics [[·]]i : Mi → Si ,
a semantic consistency relation is a relation SCR ⊆

∏
i≤n Si

The model m ∈ M is semantically consistent wrt. SCR if

SCR([[m1]]1, . . . [[mn]]n)

We obtain a consistency relation CRSCR on
∏

i≤n Mi (and therefore a V-SUM meta-model)

13

How can we use semantics to define consistency?



for [[·]]i and Si

the set of satisfying structures (Tarskian approach to logic)

the result of some tests on a mechanical part

the number of methods or attributes of a java class

the termination property of a program

for SCR if S1 = S2

SCR(s1, s2) ⇐⇒ s1 ∩ s2 ̸= ∅
SCR(s1, s2) ⇐⇒ s1 ⊆ s2

SCR(s1, s2) ⇐⇒ s1 = s2

Allows for user-defined semantics and relations

14

Examples



for [[·]]i and Si

the set of satisfying structures (Tarskian approach to logic)

the result of some tests on a mechanical part

the number of methods or attributes of a java class

the termination property of a program

for SCR if S1 = S2

SCR(s1, s2) ⇐⇒ s1 ∩ s2 ̸= ∅
SCR(s1, s2) ⇐⇒ s1 ⊆ s2

SCR(s1, s2) ⇐⇒ s1 = s2

Allows for user-defined semantics and relations

14

Examples



for [[·]]i and Si

the set of satisfying structures (Tarskian approach to logic)

the result of some tests on a mechanical part

the number of methods or attributes of a java class

the termination property of a program

for SCR if S1 = S2

SCR(s1, s2) ⇐⇒ s1 ∩ s2 ̸= ∅
SCR(s1, s2) ⇐⇒ s1 ⊆ s2

SCR(s1, s2) ⇐⇒ s1 = s2

Allows for user-defined semantics and relations

14

Examples



Reasoning on semantics
A little bit of lattice theory



The models m1 and m2 are equal modulo [[·]]: m1 ≡ m2 ⇐⇒ [[m1]] = [[m2]]

Factor out these equalities by reasoning on M/≡

M S

M/≡

[[·]]

s i

Restricting each Si to the image of the function {[[mi ]]i | mi ∈ Mi} ensures that Mi/≡i and
Si are isomorphic

Reduces the study to the quotient set M/R for the equivalence relations R ⊆ M × M

16

Comparing semantics



The models m1 and m2 are equal modulo [[·]]: m1 ≡ m2 ⇐⇒ [[m1]] = [[m2]]
Factor out these equalities by reasoning on M/≡

M S

M/≡

[[·]]

s i

Restricting each Si to the image of the function {[[mi ]]i | mi ∈ Mi} ensures that Mi/≡i and
Si are isomorphic

Reduces the study to the quotient set M/R for the equivalence relations R ⊆ M × M

16

Comparing semantics



The models m1 and m2 are equal modulo [[·]]: m1 ≡ m2 ⇐⇒ [[m1]] = [[m2]]
Factor out these equalities by reasoning on M/≡

M S

M/≡

[[·]]

s i

Restricting each Si to the image of the function {[[mi ]]i | mi ∈ Mi} ensures that Mi/≡i and
Si are isomorphic

Reduces the study to the quotient set M/R for the equivalence relations R ⊆ M × M

16

Comparing semantics



The models m1 and m2 are equal modulo [[·]]: m1 ≡ m2 ⇐⇒ [[m1]] = [[m2]]
Factor out these equalities by reasoning on M/≡

M S

M/≡

[[·]]

s i

Restricting each Si to the image of the function {[[mi ]]i | mi ∈ Mi} ensures that Mi/≡i and
Si are isomorphic

Reduces the study to the quotient set M/R for the equivalence relations R ⊆ M × M

16

Comparing semantics



The models m1 and m2 are equal modulo [[·]]: m1 ≡ m2 ⇐⇒ [[m1]] = [[m2]]
Factor out these equalities by reasoning on M/≡

M S

M/≡

[[·]]

s i

Restricting each Si to the image of the function {[[mi ]]i | mi ∈ Mi} ensures that Mi/≡i and
Si are isomorphic

Reduces the study to the quotient set M/R for the equivalence relations R ⊆ M × M

16

Comparing semantics



Let [[·]]B be the Boolean semantics, stating whether a model (formula) is either
semantically true or false (for some logic)

[[·]]B is entirely characterized by which models get the same truth value

B = {0, 1}, {⊥,⊤}, or {⊥,⊤} does not matter

[[·]]B partitions M into two equivalence classes

For practical purposes, it does matter whether the binary semantics space B is encoded
as {0, 1}, {⊥,⊤}, or {⊥,⊤}

The choice of representatives (or names) is irrelevant to compare
the amount of information kept by the abstract semantics

17

The example of Boolean semantics



Let [[·]]B be the Boolean semantics, stating whether a model (formula) is either
semantically true or false (for some logic)

[[·]]B is entirely characterized by which models get the same truth value

B = {0, 1}, {⊥,⊤}, or {⊥,⊤} does not matter

[[·]]B partitions M into two equivalence classes

For practical purposes, it does matter whether the binary semantics space B is encoded
as {0, 1}, {⊥,⊤}, or {⊥,⊤}

The choice of representatives (or names) is irrelevant to compare
the amount of information kept by the abstract semantics

17

The example of Boolean semantics



Let [[·]]B be the Boolean semantics, stating whether a model (formula) is either
semantically true or false (for some logic)

[[·]]B is entirely characterized by which models get the same truth value

B = {0, 1}, {⊥,⊤}, or {⊥,⊤} does not matter

[[·]]B partitions M into two equivalence classes

For practical purposes, it does matter whether the binary semantics space B is encoded
as {0, 1}, {⊥,⊤}, or {⊥,⊤}

The choice of representatives (or names) is irrelevant to compare
the amount of information kept by the abstract semantics

17

The example of Boolean semantics



Let [[·]]B be the Boolean semantics, stating whether a model (formula) is either
semantically true or false (for some logic)

[[·]]B is entirely characterized by which models get the same truth value

B = {0, 1}, {⊥,⊤}, or {⊥,⊤} does not matter

[[·]]B partitions M into two equivalence classes

For practical purposes, it does matter whether the binary semantics space B is encoded
as {0, 1}, {⊥,⊤}, or {⊥,⊤}

The choice of representatives (or names) is irrelevant to compare
the amount of information kept by the abstract semantics

17

The example of Boolean semantics



Let [[·]]B be the Boolean semantics, stating whether a model (formula) is either
semantically true or false (for some logic)

[[·]]B is entirely characterized by which models get the same truth value

B = {0, 1}, {⊥,⊤}, or {⊥,⊤} does not matter

[[·]]B partitions M into two equivalence classes

For practical purposes, it does matter whether the binary semantics space B is encoded
as {0, 1}, {⊥,⊤}, or {⊥,⊤}

The choice of representatives (or names) is irrelevant to compare
the amount of information kept by the abstract semantics

17

The example of Boolean semantics



Let [[·]]B be the Boolean semantics, stating whether a model (formula) is either
semantically true or false (for some logic)

[[·]]B is entirely characterized by which models get the same truth value

B = {0, 1}, {⊥,⊤}, or {⊥,⊤} does not matter

[[·]]B partitions M into two equivalence classes

For practical purposes, it does matter whether the binary semantics space B is encoded
as {0, 1}, {⊥,⊤}, or {⊥,⊤}

The choice of representatives (or names) is irrelevant to compare
the amount of information kept by the abstract semantics

17

The example of Boolean semantics



Theorem (Crawley and Dilworth 1973, Chap. 12 or Grätzer 2003, Sect. IV.4)
The set of all equivalence relations on a set form a complete lattice called the equivalence
lattice with set-inclusion as order

Meet (infimum):
∧

R =
⋂

R

Join (supremum):
∨

R = (
⋃

R)∗

The isomorphism transfers the lattice structure from the equivalence relations to the
abstract semantics, reserving the order:

M/R1 ⊑ M/R2 ⇐⇒ R2 ⊆ R1

We write LM
sem for the lattice of semantics on M

18

The lattice of semantics



Theorem (Crawley and Dilworth 1973, Chap. 12 or Grätzer 2003, Sect. IV.4)
The set of all equivalence relations on a set form a complete lattice called the equivalence
lattice with set-inclusion as order

Meet (infimum):
∧

R =
⋂

R

Join (supremum):
∨

R = (
⋃

R)∗

The isomorphism transfers the lattice structure from the equivalence relations to the
abstract semantics, reserving the order:

M/R1 ⊑ M/R2 ⇐⇒ R2 ⊆ R1

We write LM
sem for the lattice of semantics on M

18

The lattice of semantics



Given two semantics [[·]]1 and [[·]]2, [[·]]1 ⊑ [[·]]2 if and only if [[·]]2 allows distinguishing
between the same model as [[·]]1 and possibly more

The bottom element [[·]]⊥ : M → M/M2 ≃ {⋆} in the lattice of semantics corresponds to
the trivial relation M2 that relates any two elements

All models have the same semantics [[m]]⊥ = ⋆

The top element [[·]]⊤ : M → M/idM ≃ M corresponds to the identity relation that relates
every element only to itself

Every model m ∈ M is its own semantic value [[m]]⊤ = m

19

Intuitions



Given two semantics [[·]]1 and [[·]]2, [[·]]1 ⊑ [[·]]2 if and only if [[·]]2 allows distinguishing
between the same model as [[·]]1 and possibly more

The bottom element [[·]]⊥ : M → M/M2 ≃ {⋆} in the lattice of semantics corresponds to
the trivial relation M2 that relates any two elements

All models have the same semantics [[m]]⊥ = ⋆

The top element [[·]]⊤ : M → M/idM ≃ M corresponds to the identity relation that relates
every element only to itself

Every model m ∈ M is its own semantic value [[m]]⊤ = m

19

Intuitions



Given two semantics [[·]]1 and [[·]]2, [[·]]1 ⊑ [[·]]2 if and only if [[·]]2 allows distinguishing
between the same model as [[·]]1 and possibly more

The bottom element [[·]]⊥ : M → M/M2 ≃ {⋆} in the lattice of semantics corresponds to
the trivial relation M2 that relates any two elements

All models have the same semantics [[m]]⊥ = ⋆

The top element [[·]]⊤ : M → M/idM ≃ M corresponds to the identity relation that relates
every element only to itself

Every model m ∈ M is its own semantic value [[m]]⊤ = m

19

Intuitions



A family of abstract semantics ([[·]]i : Mi → Si)i≤n is compatible with CR if and only if
there is a semantic consistency relation SCR ⊆

∏
i≤n Si st.

CR = CRSCR

Compatible semantics encode enough information to determine if models are consistent

20

Compatible semantics



We consider the relation ∼i st. models are related if and only if the sets of tuples that
extend them to consistent V-SUM models are the same:

ma ∼i mb ⇐⇒ CR∇i(ma) = CR∇i(mb)

with

CR∇i(ν) =

(m1, . . . ,mi−1,mi+1, . . .mn) ∈
∏
j ̸=i

Mj | CR(m1, . . . ,mi−1, ν,mi+1, . . .mn)


The semantics [[·]]nati : Mi → Mi/∼i are called the natural semantics for CR

Natural semantics contains just the information needed to compute CR

21

Natural semantics



We consider the relation ∼i st. models are related if and only if the sets of tuples that
extend them to consistent V-SUM models are the same:

ma ∼i mb ⇐⇒ CR∇i(ma) = CR∇i(mb)

with

CR∇i(ν) =

(m1, . . . ,mi−1,mi+1, . . .mn) ∈
∏
j ̸=i

Mj | CR(m1, . . . ,mi−1, ν,mi+1, . . .mn)


The semantics [[·]]nati : Mi → Mi/∼i are called the natural semantics for CR

Natural semantics contains just the information needed to compute CR

21

Natural semantics



Proposition 1
The natural semantics are compatible with CR

Proposition 2
Semantics compatible with CR form complete lattices with the natural semantics as bottom
elements

Proof: By considering SCRnat =
{
([[m1]]

nat
1 , . . . , [[mn]]

nat
n ) | CR(m1, . . . ,mn)

}
and the

quotient sublattice (see Crawley and Dilworth 1973, Chap. 2)

22

Results



23

Conclusion



23

Conclusion



23

Conclusion



23

Conclusion



23

Conclusion



24



24



[1] Peter Crawley and Robert P. Dilworth. Algebraic theory of lattices. Prentice-Hall,
1973.

[2] George Grätzer. General Lattice Theory. Second edition. Birkhäuser Verlag, 2003.

References I


	Formalizing the V-SUM approach
	 How is consistency specified? 
	 Consistency from semantics 
	 Reasoning on semantics 
	Appendix
	References

	References

