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1. Problematic and motivating context

Conceiving an operation can be a difficult ask even though it may be easily described from an
example. We propose a new paradigm exploiting a domain specific language as a guideline
to retrieve an operation from an object before and after modification.
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2. Object representation: embedded generalized maps

Topology-based geometric modeling uses combinatorial structures to encode the decomposition
of an object’s topological cells (vertices, edges, faces . . . ) which is embedded in a geometric
space to store additional informations.
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Color legend: 0, 1, 2.

Generalized maps (Gmaps) [2] built as graphs:
• graph: incidence relations between the cells
• node attributes: geometric embedding values

Orbits encode the object’s topological cells as
subgraphs:

• positions on vertices (orbits ⟨1, 2⟩).
• colors on faces (orbits ⟨0, 1⟩).

3. Modeling operations formalized as graph transformation [5, 1]

Graph transformation [3] extends rewriting to non-linear structures, allowing to formalize
modifications of embedded Gmaps: a graph product extends rules to abstract over the underlying
topology while algebraic data types and algebra morphisms describe geometric modifications.
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rule

pos(n2) = mid(pos⟨0,1⟩(n0))

pos(a2) = mid(pos⟨0,1⟩(a))

pos(a2) = mid({E,H,I,J,K,L})
           = M
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4. Method and global workflow

General idea: reverse the instantiation and application process.
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5. Topological folding algorithm [4]

Input: two partial Gmaps with preservation relation (arcs κ), an orbit type ⟨o⟩ and a dart a.
Output: a graph S encoding the rule on ⟨o⟩, given that the operation is applied to a.
General idea: quotiented graph traversal algorithm iteratively folding nodes and arcs.
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Color legend: 0, 1, 2, κ. Before instance in blue, after instance in green.

6. Retrieving geometric expressions: linear hypothesis

The output of the topological folding algorithm lacks expressions for the geometric computation.
Problem: Rules abstract topological cells meaning darts will share the same expression.
Solution: Values of interest that exploit the topology to express computations independently
from the actual structure.

connected component barycenter

edge midpoint

face barycenter

volume barycenter

vertex position

pcc(d) = mid(pos⟨0,1,2,3⟩(d))

pe(d) = mid(pos⟨0⟩(d))

d

pf(d) = mid(pos⟨0,1⟩(d))

ps(d) = mid(pos⟨0,1,2⟩(d))

pv(d) = pos(d)

Triangulation operation: <1, 2>

n2

<0, _>

n0
1 0

<0, 1>

n0

<_, 2>

n1

!

We obtain the following equation, which we solve as a constraint satisfaction problem.

pos(n2) = wvpv(n0)︸ ︷︷ ︸
vertex

+ wepe(n0)︸ ︷︷ ︸
edge

+ wf pf (n0)︸ ︷︷ ︸
face

+ wsps(n0)︸ ︷︷ ︸
volume

+ wccpcc(n0)︸ ︷︷ ︸
cc

+ t

Solution found: wf = 1.0 with all other variables being zero.

7. JerboaStudio

The viewer tab (left) contains both instances used for the inference while the editor tab (right)
allows visualizing (and modifying) the inferred operations.

8. Results and conclusion

Main results : proof of correctness for topological folding algorithm [4], but some operations
cannot be expressed directly in the language ; retrieve computations with any embedding in a
vectorial space by many cases remains out of the linear hypothesis.
Application to layering: Menger (2, 2, 2) sponge [6]:
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