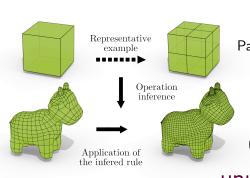
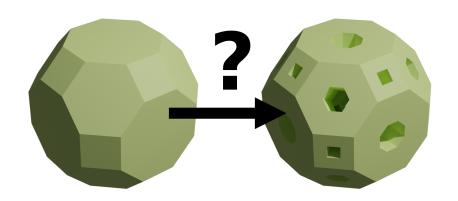
Une approche pour inférer les expressions de calcul géométrique en modélisation à base topologique AFADL 2023

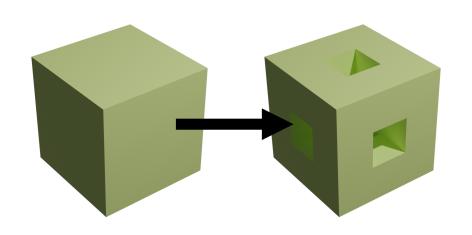


Romain Pascual

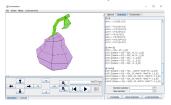
Pascale Le Gall, Hakim Belhaouari, et Agnès Arnould

8 Juin, 2023

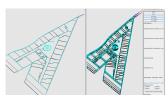




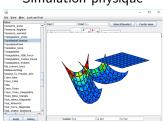
Croissance de plantes



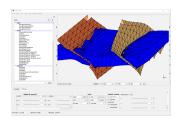
Architecture

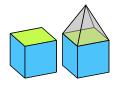


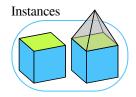
Simulation physique

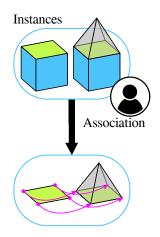


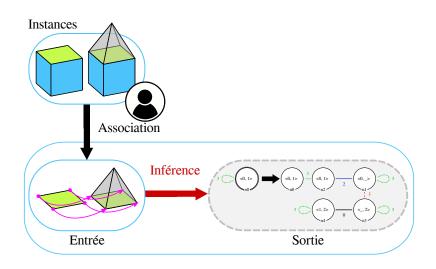
Géologie

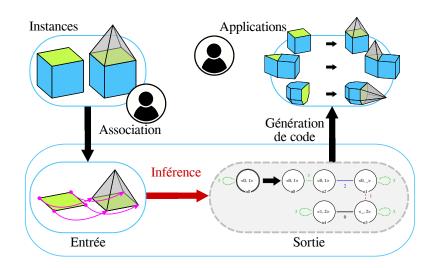








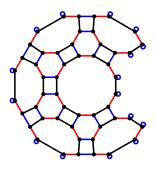




Cartes généralisées plongées

► Comment représenter les objets ?

Cartes généralisées¹ (topologie)

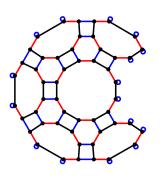


Légende : 0, 1, 2.

2. Cartes généralisées plongées

¹Damiand et al. 2014.

Cartes généralisées¹ (topologie)



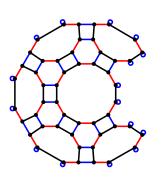
Orbite : Sous-graphe induit par un sous-ensemble $\langle o \rangle$ de dimensions

Légende : 0, 1, 2. Sommets : orbites $\langle 1, 2 \rangle$

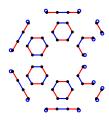
2. Cartes généralisées plongées

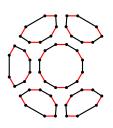
¹Damiand et al. 2014.

Cartes généralisées¹ (topologie)



Orbite : Sous-graphe induit par un sous-ensemble $\langle o \rangle$ de dimensions





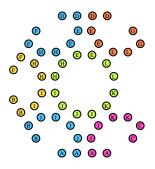
Légende : 0, 1, 2. Sommets : orbites $\langle 1, 2 \rangle$

Faces : orbites $\langle 0, \textcolor{red}{\textbf{1}} \rangle$

¹Damiand et al. 2014.

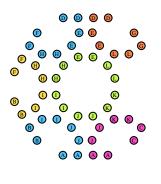
^{2.} Cartes généralisées plongées

Plongements (géométrie)

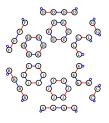


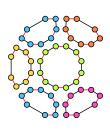
Légende : 0, 1, 2.

Plongements (géométrie)



Plongement : fonction $\pi:\langle o_\pi \rangle \to \tau_\pi$ avec τ un type de données abstrait





 $\text{L\'egende}: \ 0, \ \textcolor{red}{\textbf{1}}, \ 2. \qquad \textit{position}: \ \langle \textcolor{red}{\textbf{1}}, 2 \rangle \rightarrow \texttt{Point3} \quad \textit{color}: \ \langle 0, \textcolor{red}{\textbf{1}} \rangle \rightarrow \texttt{ColorRGB}$

2. Cartes généralisées plongées

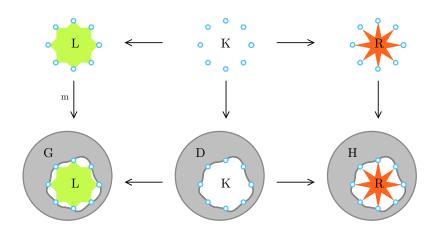
Réécriture de graphes

► Comment formaliser les transformations d'objets ?

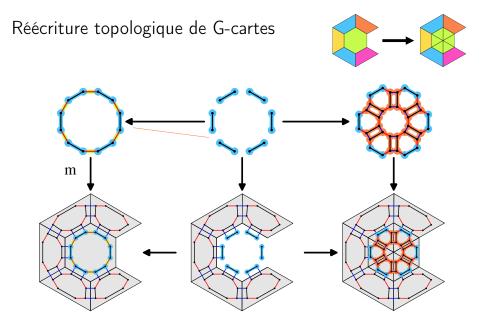
Règles de transformation de graphes¹

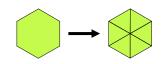
¹Rozenberg 1997; Ehrig et al. 2006; Heckel et al. 2020.

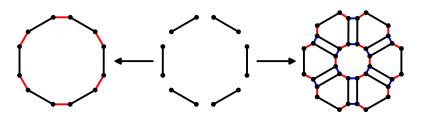
Règles de transformation de graphes¹

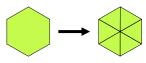


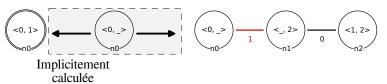
¹Rozenberg 1997; Ehrig et al. 2006; Heckel et al. 2020.

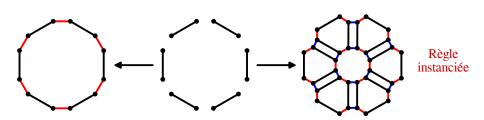


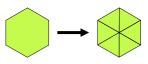


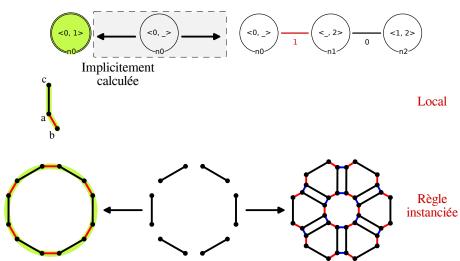


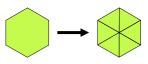


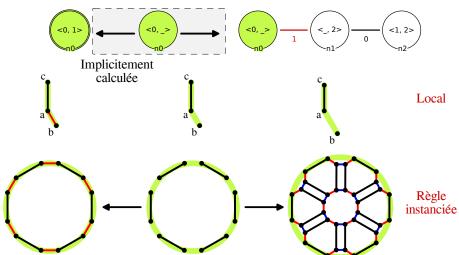


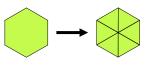


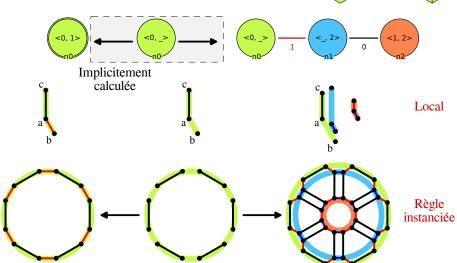


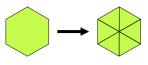


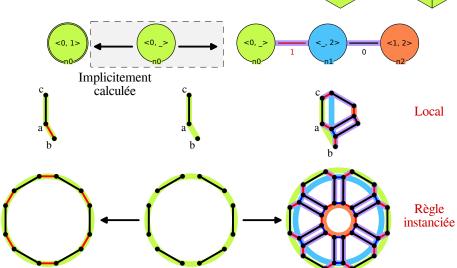


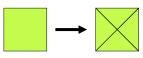


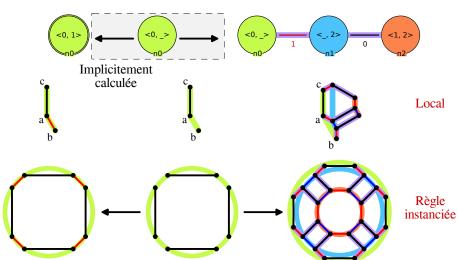




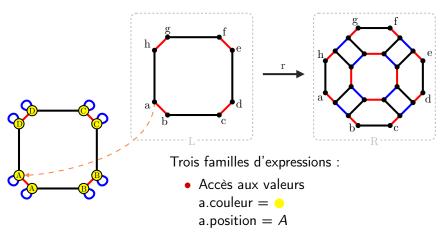






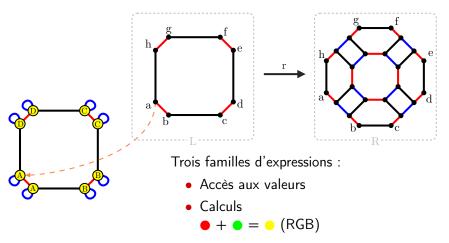


Expressions de plongement¹



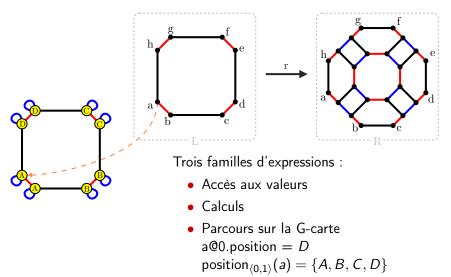
¹Bellet et al. 2017; Arnould et al. 2022.

Expressions de plongement¹

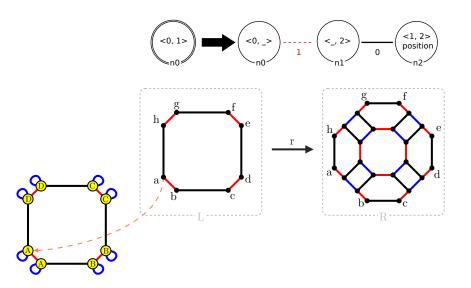


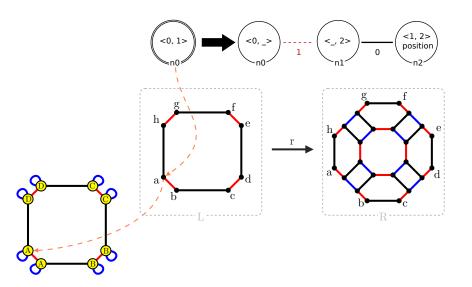
¹Bellet et al. 2017; Arnould et al. 2022.

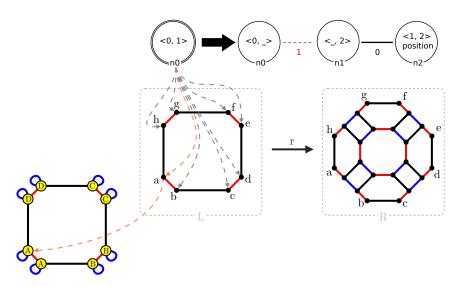
Expressions de plongement¹

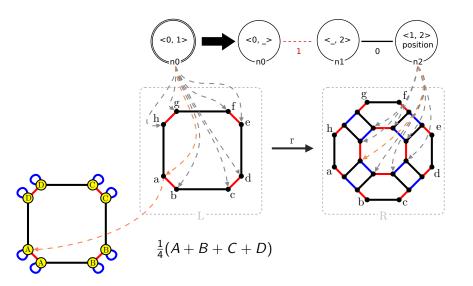


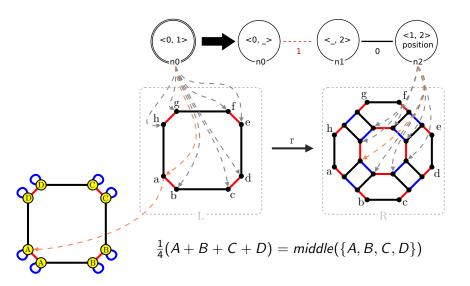
¹Bellet et al. 2017; Arnould et al. 2022.



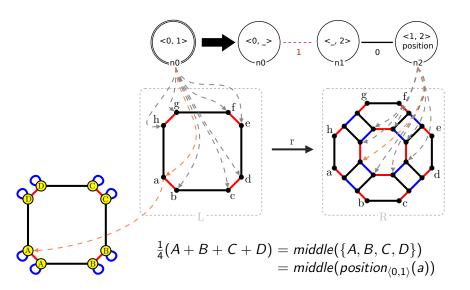






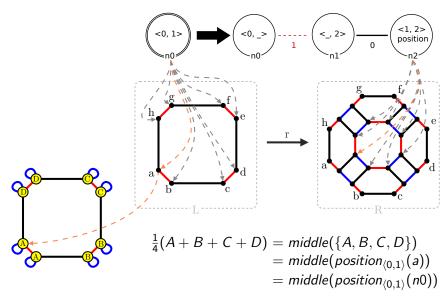


Extension aux schémas



3. Réécriture de graphes

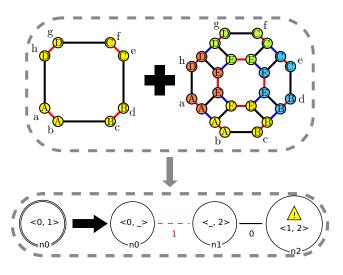
Extension aux schémas



3. Réécriture de graphes

Équations symboliques

► Comment retrouver les expressions de calcul géométrique ?



Il manque les calculs des plongements

Hypothèse : combinaisons affines de points |

Hypothèse : combinaisons affines de points

Pour chaque sommet de la cible, on cherche une position exprimée comme

$$p = \sum_{i=0}^{k} a_i p_i + t$$

avec

p : position cible

(connu)

Hypothèse : combinaisons affines de points

Pour chaque sommet de la cible, on cherche une position exprimée comme

$$p = \sum_{i=0}^{k} a_i p_i + t$$

avec

p: position cible (connu) p_i : position du sommet d'origine i (connu)

Hypothèse : combinaisons affines de points

Pour chaque sommet de la cible, on cherche une position exprimée comme

$$p = \sum_{i=0}^{k} a_i p_i + t$$

avec

p: position cible (connu) p_i : position du sommet d'origine i (connu) a_i : coefficient (inconnu)

Hypothèse : combinaisons affines de points

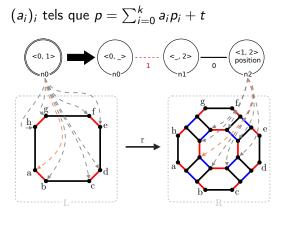
Pour chaque sommet de la cible, on cherche une position exprimée comme

$$p = \sum_{i=0}^{k} a_i p_i + t$$

avec

p: position cible (connu) p_i : position du sommet d'origine i (connu) a_i : coefficient (inconnu) t: translation intrinsèque (inconnu)

$$(a_i)_i$$
 tels que $p = \sum_{i=0}^k a_i p_i + t$

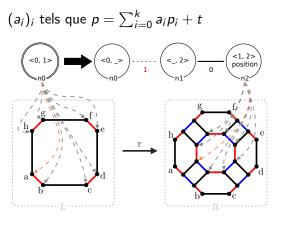


Abstraction topologique dans les schémas



Abstraction topologique dans les schémas

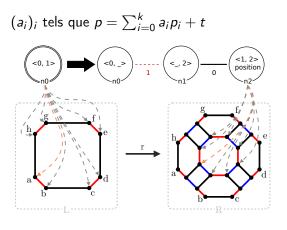
Problème : partage d'expressions entre les brins



Abstraction topologique dans les schémas

Problème : partage d'expressions entre les brins

Solution : Exploiter la topologie

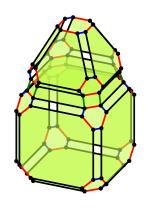


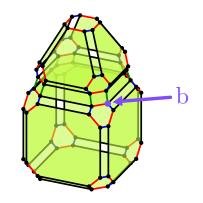
Abstraction topologique dans les schémas

Problème : partage d'expressions entre les brins

Solution : Exploiter la topologie

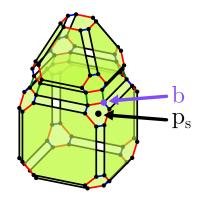
Points d'intérêt





avec

 \bullet p_s : position du sommet

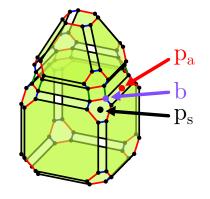


$$p_s = middle(position_{\langle \rangle}(b))$$

avec

• p_s : position du sommet

• pa : milieu de l'arête



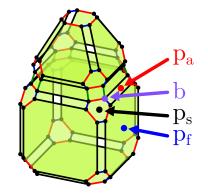
$$p_a = middle(position_{\langle 0 \rangle}(b))$$

avec

• p_s : position du sommet

• p_a : milieu de l'arête

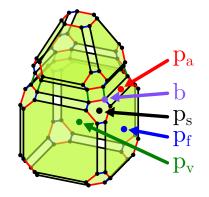
 \bullet p_f : milieu de la face



$$p_f = middle(position_{\langle 0,1\rangle}(b))$$

avec

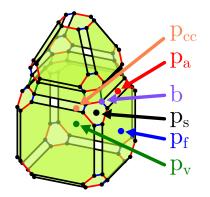
- p_s : position du sommet
- p_a : milieu de l'arête
- p_f : milieu de la face
- ullet p_{v} : milieu du volume



$$p_{v} = middle(position_{(0,1,2)}(b))$$

avec

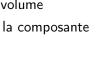
- p_s : position du sommet
- p_a : milieu de l'arête
- p_f : milieu de la face
- p_v : milieu du volume
- pcc : milieu de la composante connexe

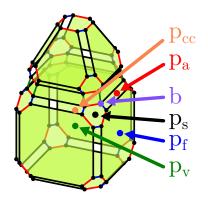


$$p_{cc} = middle(position_{\langle 0,1,2,3\rangle}(b))$$

avec

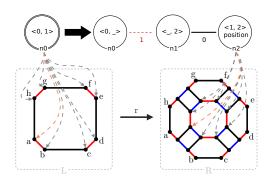
- *p_s* : position du sommet
- p_a : milieu de l'arête
- p_f : milieu de la face
- p_{ν} : milieu du volume
- pcc : milieu de la composante connexe



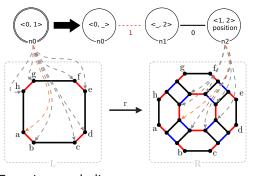


Via les points d'intérêt, le système se réécrit

$$p = a_s p_s + a_a p_a + a_f p_f + a_v p_v + a_{cc} p_{cc} + t$$



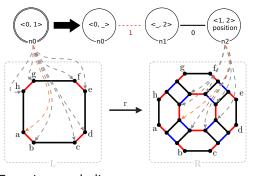
Position de *n*2 dépend uniquement de *n*0



Position de *n*2 dépend uniquement de *n*0

Equation symbolique

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

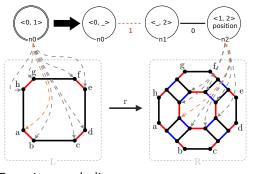


Position de *n*2 dépend uniquement de *n*0

 Une équation par brin de n0 (8 brins)

Equation symbolique

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

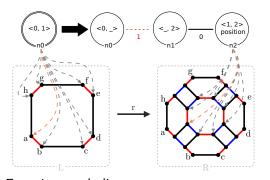


Position de *n*2 dépend uniquement de *n*0

- Une équation par brin de n0 (8 brins)
- Séparation sur x, y, z

Equation symbolique

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

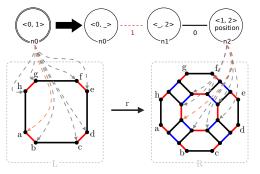


Equation symbolique

Position de *n*2 dépend uniquement de *n*0

- Une équation par brin de n0 (8 brins)
- Séparation sur x, y, z
- Système de 24 équations avec 8 variables

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$



Position de *n*2 dépend uniquement de *n*0

- Une équation par brin de n0 (8 brins)
- Séparation sur x, y, z
- Système de 24 équations avec 8 variables

Equation symbolique

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

Résolution par CSP (Z3, OR-Tools)

Résolution

Equation symbolique

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

Résolution

Equation symbolique

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

Système généré

```
 \begin{pmatrix} (0.5;0.5) = w_{V} * (0;0) + w_{e} * (0.5;0) + w_{f} * (0.5;0.5) + w_{s} * (0.5;0.5) + w_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = w_{V} * (1;0) + w_{e} * (0.5;0) + w_{f} * (0.5;0.5) + w_{s} * (0.5;0.5) + w_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = w_{V} * (1;0) + w_{e} * (1;0.5) + w_{f} * (0.5;0.5) + w_{s} * (0.5;0.5) + w_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = w_{V} * (1;1) + w_{e} * (1;0.5) + w_{f} * (0.5;0.5) + w_{s} * (0.5;0.5) + w_{cc} * (0.5;0.5) + (tx;ty) \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots
```

Résolution

Equation symbolique

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

Système généré

```
 \begin{cases} (0.5;0.5) = w_{v} * (0;0) + w_{e} * (0.5;0) + w_{f} * (0.5;0.5) + w_{s} * (0.5;0.5) + w_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = w_{v} * (1;0) + w_{e} * (0.5;0) + w_{f} * (0.5;0.5) + w_{s} * (0.5;0.5) + w_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = w_{v} * (1;0) + w_{e} * (1;0.5) + w_{f} * (0.5;0.5) + w_{s} * (0.5;0.5) + w_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = w_{v} * (1;1) + w_{e} * (1;0.5) + w_{f} * (0.5;0.5) + w_{s} * (0.5;0.5) + w_{cc} * (0.5;0.5) + (tx;ty) \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots
```

Solution trouvée

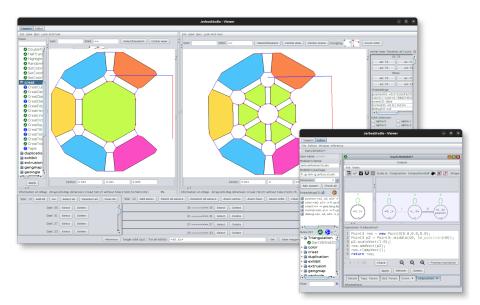
- $a_s = 0.0$
- $a_a = 0.0$
- $a_f = 1.0$

- $a_v = 0.0$
- $a_{cc} = 0.0$
- t = (0.0, 0.0)

JerboaStudio et applications

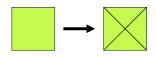
► Mise en œuvre dans Jerboa

JerboaStudio



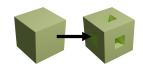
5. JerboaStudio et applications

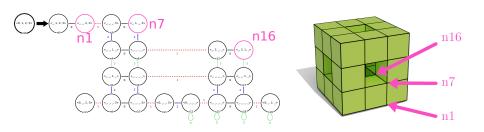
Code généré pour la triangulation



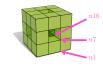
```
// translation nulle
Point3 res = new Point3 (0.0,0.0,0.0);
// face
Point3 p2 = Point3 :: middle(<0,1> position(n0));
// poids
p2.scale(1.0);
// ajout au resultat
res.addVect(p2);
// retour de la valeur
return res;
```

Éponge de Menger





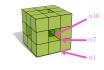
Éponge de Menger



Nœud n1

```
Point3 res = new Point3(0.0,0.0,0.0);
Point3 p0 = Point3::middle(<> _ position(n0));
p0.scale(0.3333333334651184);
res.addVect(p0);
Point3 p1 = Point3::middle(<0> _ position(n0));
p1.scale(0.6666666865348816);
res.addVect(p1);
return res;
```

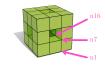
Éponge de Menger



Nœud n7

```
Point3 res = new Point3(0.0,0.0,0.0);
Point3 p0 = Point3::middle(<> _ position(n0));
p0.scale(0.3333333134651184);
res.addVect(p0);
Point3 p2 = Point3::middle(<0,1> _ position(n0));
p2.scale(0.6666666865348816);
res.addVect(p2);
return res;
```

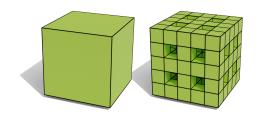
Éponge de Menger



Nœud n16

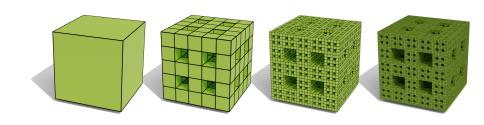
```
Point3 res = new Point3(0.0,0.0,0.0);
Point3 p0 = Point3::middle(<> _ position(n0));
p0.scale(0.3333333334651184);
res.addVect(p0);
Point3 p3 = Point3::middle(<0,1,2> _ position(n0));
p3.scale(0.6666666865348816);
res.addVect(p3);
return res;
```

Polycube de Menger $(2, 2, 2)^1$



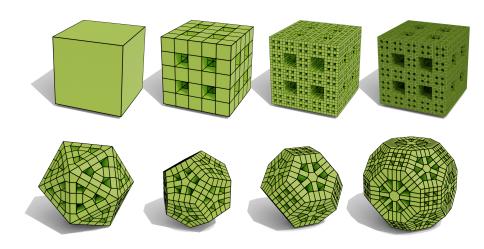
¹Richaume et al. 2019.

Polycube de Menger $(2, 2, 2)^1$



¹Richaume et al. 2019.

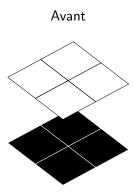
Polycube de Menger $(2, 2, 2)^1$



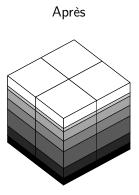
¹Richaume et al. 2019.

^{5.} JerboaStudio et applications

Exemple inspiré de la géologie

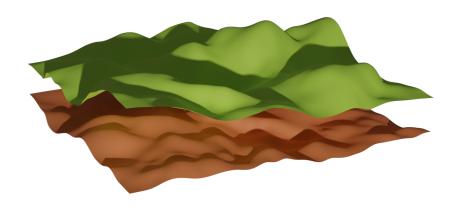


Positions et couleurs



Exemple inspiré de la géologie

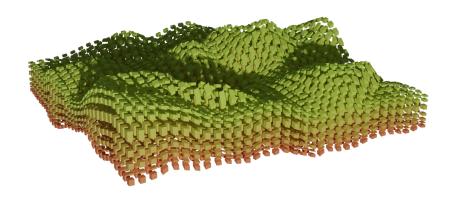
Avant



5. JerboaStudio et applications

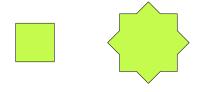
Exemple inspiré de la géologie

Après



Limites

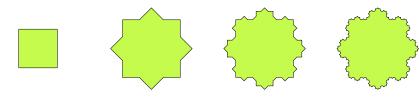
Flocon de von Koch's généré par L-systèmes



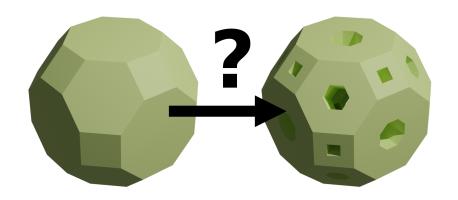
Inféré

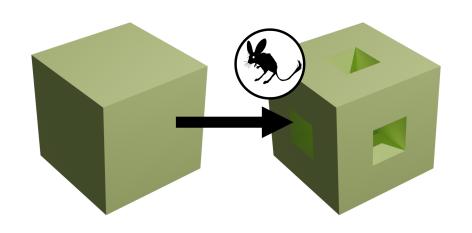
Limites

Flocon de von Koch's généré par L-systèmes



Inféré





References I

- Arnould, Agnès et al. (2022). "Preserving consistency in geometric modeling with graph transformations". In: Mathematical Structures in Computer Science. DOI: 10.1017/S0960129522000226.
- Bellet, Thomas et al. (2017). "Geometric Modeling: Consistency Preservation Using Two-Layered Variable Substitutions". In: Graph Transformation (ICGT 2017). Ed. by Juan de Lara et al. Vol. 10373. Lecture Notes in Computer Science. Cham: Springer International Publishing, pp. 36–53. ISBN: 978-3-319-61470-0. DOI: 10.1007/978-3-319-61470-0_3.
 - Damiand, Guillaume et al. (Sept. 19, 2014). Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing. CRC Press. 407 pp. ISBN: 978-1-4822-0652-4.

References II

- Ehrig, Hartmut et al. (2006). Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Berlin Heidelberg: Springer-Verlag. ISBN: 978-3-540-31187-4. DOI: 10.1007/3-540-31188-2.
- Heckel, Reiko et al. (2020). Graph Transformation for Software Engineers: With Applications to Model-Based Development and Domain-Specific Language Engineering. Cham: Springer International Publishing. ISBN: 978-3-030-43915-6. DOI:
 - 10.1007/978-3-030-43916-3.

References III

Rozenberg, Grzegorz, ed. (Feb. 1, 1997). Handbook of Graph Grammars and Computing by Graph Transformation: Volume I. Foundations. Vol. Foundations. 1 vols. USA: World Scientific Publishing Co., Inc. 545 pp. ISBN: 978-981-02-2884-2.