Inference of geometric modeling operations using generalized maps

Romain Pascual, Hakim Belhaouari, Agnès Arnould, Pascale Le Gall

June 16th 2022

Demo

- 📵 Generalized maps
 - Generalized maps
 - Embedded G-maps
- Graph rewriting
 - Graph Rewriting
 - G-map rewriting

- Topological inference
 - Main objective
 - Method
 - Examples and results
- Geometric inference
 - Main objective
 - Method
 - Examples and results

Generalized maps

▶ Geometric objects are represented with embedded generalize maps.

R. Pascual

G-maps built as graphs.

b identifies the green vertex, the purple edge and the blue face.

G-maps built as graphs.

0-arc :

- distinct vertices.
- same edges and faces.

G-maps built as graphs.

1-arc :

- distinct edges.
- same vertices and faces.

G-maps built as graphs.

2-arc:

- distinct faces.
- same vertices and edges.

G-maps built as graphs.

n-G-map (union of the graphs)

Undirected graph labeled on the arcs with dimensions from [0, n] such that :

G-maps built as graphs.

n-G-map (union of the graphs)

Undirected graph labeled on the arcs with dimensions from [0, n] such that :

 Incidence: every dart (node) if the source of a unique arc per dimension.

G-maps built as graphs.

n-G-map (union of the graphs)

Undirected graph labeled on the arcs with dimensions from [0, n] such that :

- Incidence: every dart (node) if the source of a unique arc per dimension.
- Cycles : any *ijij*-path is a cycle whenever $i + 2 \le j$

Topological cells correspond to subgraphs.

Orbit

Graph induced by a subset $\langle o \rangle \subseteq \llbracket 0, n \rrbracket$ of dimensions.

Topological cells correspond to subgraphs.

b belongs to the green vertex.

• $\langle 1, 2 \rangle$ -orbit .

Topological cells correspond to subgraphs.

b belongs to the purple edge.

• $\langle 0, 2 \rangle$ -orbit .

Topological cells correspond to subgraphs.

b belongs to the blue face.

• $\langle 0, 1 \rangle$ -orbit .

Geometry

► An object's display rely on it's geometry.

Geometry

► An object's display rely on it's geometry.

An embedding is defined for an orbit type: position.

8/39

Geometry

► An object's display rely on it's geometry.

An embedding is defined for an orbit type : color.

Embedded G-maps

► Embedding values are defined for each dart, with some consistency constraints.

Embedded G-maps

▶ Embedding values are defined for each dart, with some consistency constraints.

Graph rewriting

▶ Operations on G-maps are designed as graph rewriting rules.

Rewriting

$$n = 4$$

 $\alpha = 25^{\circ}$
 $V = \{S, F\}$
 $T = \{+, -, [,]\}$
 $P = \{F \rightarrow F[+F]F[-F]$
 $S = F$

L-systems ([Santos et Coelho 2009])

Shape grammars ([Di Angelo et al. 2012])

Graph transformation rules

▶ Goal : Generalise from strings to graphs.

Graph transformation rules

► Goal : Generalise from strings to graphs.

- Find in G a graph similar to L,
- Remove it from *G*,
- Reconnect R within the more global context.

G-map rewriting : vertex insertion

R. Pascual Séminaire XLIM June 16th 2022 13 / 39

G-map rewriting : vertex insertion

R. Pascual Séminaire XLIM June 16th 2022

14/39

• Computations in the embedding space

$$\triangleright$$
 $B + V = M$

R. Pascual

- Computations in the embedding space
- Value accessors
 - ightharpoonup a.position = B

R. Pascual Séminai

Need for genericity (1): Topology

Exploit the homogeneity of G-maps.

► Key idea : modeling operation are parameterized by the topology (more precisely orbits).

R. Pascual

Orbit rewriting

Need for genericity (2): Geometry

R. Pascual Séminaire XLIM June 16th 2022 17 / 39

Need for genericity (2): Geometry

- Neighbor operator :
 - ightharpoonup a@0.position = D
 - ightharpoonup a@0@1@0.position = C

Need for genericity (2): Geometry

topological operators :

- Neighbor operator :
- Collect operator :
 - ightharpoonup position $\langle 0,2\rangle$ (a) = {A, D}
 - ightharpoonup position $\langle 0,1\rangle$ (a) = $\{A,B,C,D\}$

R. Pascual Sémi

Séminaire XLIM R. Pascual

18/39

R. Pascual Séminaire XLIM June 16th 2022

18 / 39

R. Pascual Séminaire XLIM

We describe geometric modeling operations with rule schemes.

R. Pascual Séminaire XLIM June 16th 2022 19 / 39

We describe geometric modeling operations with rule schemes.

• Operations described in a domain-specific language

R. Pascual Séminaire XLIM June 16th 2022 19 / 39

We describe geometric modeling operations with rule schemes.

- Operations described in a domain-specific language
- Each node in a pattern of a rule encodes for multiple darts in the G-maps.

We describe geometric modeling operations with rule schemes.

- Operations described in a domain-specific language
- Each node in a pattern of a rule encodes for multiple darts in the G-maps.
- Node names in the embedding expressions are substituted during the instantiation.

R. Pascual Séminaire XLIM June 16th 2022 19 / 39

Topological inference

Graph traversal algorithm to infer the topological part of modeling operations.

Objective

Retrieve a scheme rule from an instance of an object before modification and one after modification.

- ▶ Input : Before G-map, After G-map and some additional information.
- ▶ Output : Rule scheme(s) describing the modeling operation.

- Dart a0
- Orbit type $\langle 1, 2 \rangle$

Reversing the instantiation process

Reversing the instantiation process

R. Pascual, H. Belhaouari, A. Arnould, and P. Le Gall, 'Inferring topological operations on generalized maps: Application to subdivision schemes', Graphics and Visual Computing, 2022.

R. Pascual Séminaire XLIM June 16th 2022 22 / 39

Folding a G-map

Besides a G-map, we whose a dart in the G-map and an orbit type.

Graph traversal algorithm

Iteratively apply two foldings:

- Folding of a node.
- Folding of the arcs.

▶ Illustration on the cube with the orbit type $\langle 1, 2 \rangle$.

Folding of a node (hook case with the orbit type (1,2)).

Folding of the arcs.

Folding of a node.

Folding of the arcs.

Folding of a node.

Folding of the arcs.

Folding of a rule

Partial mapping on darts from the before instance to the after instance.

Build a graph where the preserved darts are linked with κ -arcs (in pink).

25/39

Folding the quad subdivision

 \blacktriangleright Rule scheme with the orbit type $\langle 1,2 \rangle$ on the cube :

R. Pascual Séminaire XLIM June 16th 2022 26 / 39

Folding the quad subdivision

Used rule scheme

► Among the inferred rules, we retrieve the one we used.

- 768 possible schemes
- 14 distinct schemes (cube symmetry).
- 48 schemes tried (marking).
- 14 schemes built (removal of isomorphic rules).

R. Pascual Séminaire XLIM June 16th 2022 26 / 39

Inference time : \sim 3 ms

Before

After

After

Geometric inference

Computing embedding expressions is solved as a constraint solving problem.

Objective

The rule is missing its embedding expressions.

 R. Pascual
 Séminaire XLIM
 June 16th 2022
 29 / 39

▶ Hypothesis : The vertex positions of the target object *C* are obtained as affine combinations of vertex positions in the initial object *O*.

▶ Hypothesis : The vertex positions of the target object *C* are obtained as affine combinations of vertex positions in the initial object *O*.

For each vertex in C, we want a position p expressed as :

$$p = \sum_{i=0}^{k} a_i p_i + t$$

where:

p : target position

(known)

▶ Hypothesis : The vertex positions of the target object *C* are obtained as affine combinations of vertex positions in the initial object *O*.

For each vertex in C, we want a position p expressed as :

$$p = \sum_{i=0}^k a_i p_i + t$$

where:

• p : target position (known)

• p_i : position of the initial vertex i (known)

R. Pascual Séminaire XLIM

▶ Hypothesis : The vertex positions of the target object *C* are obtained as affine combinations of vertex positions in the initial object *O*.

For each vertex in C, we want a position p expressed as :

$$p = \sum_{i=0}^{k} a_i p_i + t$$

where:

p: target position (known)
p_i: position of the initial vertex i (known)
a_i: weight (unknown)

▶ Hypothesis : The vertex positions of the target object *C* are obtained as affine combinations of vertex positions in the initial object *O*.

For each vertex in C, we want a position p expressed as :

$$p = \sum_{i=0}^{k} a_i p_i + t$$

where:

• p : target position	(known)
• p_i : position of the initial vertex i	(known)
• a_i : weight	(unknown)
• t : translation	(unknown)

Need for abstraction on schemes

We want $(a_i)_{0 \le i \le k}$ such that : $p = \sum_{i=0}^{k} a_i p_i + t$

Need for abstraction on schemes

We want $(a_i)_{0 \le i \le k}$ such that : $p = \sum_{i=0}^k a_i p_i + t$

Issue: darts in the G-map will share the same expression.

► Because rule schemes abstract topological cells.

Need for abstraction on schemes

We want $(a_i)_{0 \le i \le k}$ such that : $p = \sum_{i=0}^k a_i p_i + t$

Issue: darts in the G-map will share the same expression.

► Because rule schemes abstract topological cells.

Solution: Exploit the topology.

► Use points of interests that share the same expression.

avec

• p_s : vertex

$$p_s = middle(position_{\langle 1,2,3 \rangle}(b))$$

avec

• p_s : vertex

• p_a : edge midpoint

$$p_a = middle(position_{(0,2,3)}(b))$$

avec

• p_s : vertex

• p_a : edge midpoint

p_f: face barycenter

$$p_f = middle(position_{(0,1,3)}(b))$$

avec

• p_s : vertex

• p_a : edge midpoint

p_f: face barycenter

• p_{ν} : volume barycenter

$$p_{\nu} = middle(position_{(0,1,2)}(b))$$

avec

• p_s : vertex

• p_a : edge midpoint

p_f: face barycenter

• p_{ν} : volume barycenter

• p_{cc} : CC barycenter

$$p_{cc} = middle(position_{(0,1,2,3)}(b))$$

avec

• p_s : vertex

• pa : edge midpoint

p_f : face barycenter

• p_{ν} : volume barycenter

• p_{cc} : CC barycenter

Thanks to the points of interests, the systems is rewritten as :

$$p = a_s p_s + a_a p_a + a_f p_f + a_v p_v + a_{cc} p_{cc} + t$$

R. Pascual Séminaire XLIM

The position expression of n2 only depends of n0.

The position expression of n2 only depends of n0.

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

The position expression of n2 only depends of n0.

 One equation per dart (8 darts.)

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

The position expression of n2 only depends of n0.

- One equation per dart (8 darts.)
- Split per coordinate (on x, y, z).

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

The position expression of n2 only depends of n0.

- One equation per dart (8 darts.)
- Split per coordinate (on x, y, z).
- 24 equations and 8 variables.

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

The position expression of n2 only depends of n0.

- One equation per dart (8 darts.)
- Split per coordinate (on x, y, z).
- 24 equations and 8 variables.

33 / 39

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

► Solved as a CSP (OR-Tools, Z3)

Solving the barycentric triangulation

► Global equation :

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

Solving the barycentric triangulation

► Global equation :

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

▶ Generated system (only on x and y)

```
 \begin{cases} (0.5;0.5) = a_s * (0;0) + a_a * (0.5;0) + a_f * (0.5;0.5) + a_V * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (1;0) + a_a * (0.5;0) + a_f * (0.5;0.5) + a_V * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (1;0) + a_a * (1;0.5) + a_f * (0.5;0.5) + a_V * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (1;1) + a_a * (1;0.5) + a_f * (0.5;0.5) + a_V * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (1;1) + a_a * (0.5;1) + a_f * (0.5;0.5) + a_V * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (0;1) + a_a * (0.5;1) + a_f * (0.5;0.5) + a_V * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (0;1) + a_a * (0;0.5) + a_f * (0.5;0.5) + a_V * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (0;0) + a_a * (0;0.5) + a_f * (0.5;0.5) + a_V * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \end{cases}
```

Solving the barycentric triangulation

► Global equation :

$$n2.position = a_s n0.p_s + a_a n0.p_a + a_f n0.p_f + a_v n0.p_v + a_{cc} n0.p_{cc} + t$$

▶ Generated system (only on x and y)

```
 \begin{cases} (0.5;0.5) = a_s * (0;0) + a_a * (0.5;0) + a_f * (0.5;0.5) + a_v * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (1;0) + a_a * (0.5;0) + a_f * (0.5;0.5) + a_v * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (1;0) + a_a * (1;0.5) + a_f * (0.5;0.5) + a_v * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (1;1) + a_a * (1;0.5) + a_f * (0.5;0.5) + a_v * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (1;1) + a_a * (0.5;1) + a_f * (0.5;0.5) + a_v * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (0;1) + a_a * (0.5;1) + a_f * (0.5;0.5) + a_v * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (0;1) + a_a * (0;0.5) + a_f * (0.5;0.5) + a_v * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \\ (0.5;0.5) = a_s * (0;0) + a_a * (0;0.5) + a_f * (0.5;0.5) + a_v * (0.5;0.5) + a_{cc} * (0.5;0.5) + (tx;ty) \end{cases}
```

► Solution found :

•
$$a_s = -6.601425600620388E - 17$$

•
$$a_a = 0.0$$

•
$$a_f = 1.0$$

•
$$a_v = 0.0$$

•
$$a_{cc} = 0.0$$

•
$$t = (0.0, 0.0)$$

R. Pascual

Before

After

Operation

Inference time : \sim 26 ms for the topology, \sim 549 ms for the embedding expressions

Before

After

After

R. Pascual

• 1. The solution does not admit any solution.

R. Pascual Séminaire XLIM June 16th 2022 36 / 39

- 1. The solution does not admit any solution.
- 2. We do not find the desired solution.

- 1. The solution does not admit any solution.
- 2. We do not find the desired solution.

- 1. The solution does not admit any solution.
- 2. We do not find the desired solution.

Conclusion

- ▶ We presented a method to infer a geometric modeling operation from two instances of an object before and after modification.
- ► Topology : Graph traversal algorithm.
- ► Geometry : Affine combinations of points of interests.

Future works

- ► Geometric inference :
 - Other points of interest (exploiting the neighboring operator).
 - Other kind of functions (instead of affine combinations).
 - Other embeddings.
- ► Support in the design of operations
 - Automated generation of instances for a given operation.

Jerboa's architecture

How to preserve the consistency of the model?

- ► Topological constraints : structure,
 - E.g., vertices are incident to edges thats are incident to faces.
- Embedding constraints : geometry,
 - E.g., all elements defining the same vertex should share the same position.

Goal: The modification of a well-formed object should provide a well-formed object.

String rewriting :

- ullet an alphabet Σ
- a set of rewriting rules $u \to v$ (u and v are words on Σ^*)

String rewriting:

- \bullet an alphabet Σ
- a set of rewriting rules $u \to v$ (u and v are words on Σ^*)

 $\mathsf{sleep} \to \mathsf{follow}$

String rewriting:

- ullet an alphabet Σ
- a set of rewriting rules $u \to v$ (u and v are words on Σ^*)

$$\mathsf{sleep} \to \mathsf{follow}$$

You_are_all_sleeping_!

String rewriting:

- \bullet an alphabet Σ
- a set of rewriting rules $u \to v$ (u and v are words on Σ^*)

 $You_{\square}are_{\square}all_{\square}sleeping_{\square}! \rightarrow You_{\square}are_{\square}all_{\square}following_{\square}!$

How to rewrite graphs?

How to rewrite graphs? (based on [Ehrig 1979])

How to rewrite graphs? (based on [Ehrig 1979])

How to rewrite graphs? (based on [Ehrig 1979])

- ▶ No notion of beginning and end in a graph.
- → Identify the "gluing" elements.

How to map graphs? (from [König 18])

Graph morphism:

$$G = \left[\begin{array}{c} A & \bullet & B \\ 1 & 2 & B \\ 1 & 3 & 4 \end{array} \right] \qquad \begin{array}{c} \varphi \\ 1 & 3,4 \end{array} \right] = H$$

▶ Functions on nodes ands arcs that preserve structure.

How to glue graphs? (from [König 18])

Graph gluing:

ightharpoonup ~ Quotiented disjoint union.

How to glue graphs? (from [König 18])

Graph gluing:

ightharpoonup ~ Quotiented disjoint union.

- ightharpoonup L, K, R, G, D, H are graphs.
- ► Arrows are graph morphismses.
- ► Squares are graph gluings.

- ightharpoonup L, K, R, G, D, H are graphs.
- ► Arrows are graph morphismses.
- ► Squares are graph gluings.

- ► L, K, R, G, D, H are graphs.
- ► Arrows are graph morphismses.
- ► Squares are graph gluings.

- ► L, K, R, G, D, H are graphs.
- ► Arrows are graph morphismses.
- ► Squares are graph gluings.

Why does it has to be so complicated?

Rewriting G-maps

▶ Most conservative framework (all morphisms are injectives).

