Combinatorial maps: transformations and application to
geometric modeling

Romain Pascual®

Agnés Arnould?, Hakim Belhaouari?,
and Pascale Le Gallt

1 MICS University Paris-Saclay, 2 XLIM, University of Poitiers

Sept. 24, 2021

nic universite xlim I'm%;‘!ﬁin(-

PARIS-SACLAY vitiers

GRETA Seminar Y



Geometric Modeling

Geometric Modeling, or how to
create and edit nD virtual objets.
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|
Topology-Based Geometric Modeling

Combinatorial maps represente objects
through their subdivision into topological
cells (volumes, faces, edges, vertices) by
decreasing dimension.

The result is a graph, labeled

» on the arcs by dimensions (i.e., integers)
to describe neighboring relations,

» on the nodes by embedding values
(position, color, etc.) to describe the
geometry.

Modeling operation defined as graph
transformations.
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Graph transformations : specific needs from geometric
modeling

Requirements :
e Standard operations (sewing, triangulation, etc.) should be expressible
as rules
e Operations should be parametrized by cells regardless of the cell size.

e Rules should preverse the model consistency

e Performance
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Graph transformations : specific needs from geometric
modeling

Requirements : Solution within the Jerboa platform.

e Standard operations (sewing, triangulation, etc.) should be expressible
as rules
» Benchmark

e Operations should be parametrized by cells regardless of the cell size.
» Rules schemes abstract cells.

e Rules should preverse the model consistency
» Syntactic verification of set-theoric constraints.

e Performance
» Compilation of rule schemes with optimized data structures.
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Several models

Previous works (and Jerboa) exploits generalized maps, a homoneneously
defined model, easier to reason about and manipulate.

There are other models. For instance, oriented maps are more popular
(supported by the CGoGN library) because of the lighter memory footprint.

» Extension of previous work on topological operations to englobe both
generalized and oriented maps.
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Generalizing topological operations : plan

» 1/ (Embedded) Combinatorial » 2/ Geometric modeling
maps as data structure. operations via rewriting.
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Combinatorial maps

Combinatorial maps

» A graph-based approach to define topological models.
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Combinatorial maps

Decomposition into cells (G-maps and O-maps)

B
H
u v
A/l T \cC
¥4 g X
Yy
E D

Obtained by recurvise subdivision into topological cells of decreasing
dimension.
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Combinatorial maps

Decomposition into cells (G-maps and O-maps)

H
u v
A F\ C
¥4 g X
Yy
E D

Obtained by recurvise subdivision into topological cells of decreasing
dimension.
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Combinatorial maps

Decomposition into cells (G-maps and O-maps)

Obtained by recurvise subdivision into topological cells of decreasing
dimension.
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Combinatorial maps

Decomposition into cells (G-maps and O-maps)

H
u v
A F O\ C
¥4 g X
Yy
E D

Obtained by recurvise subdivision into topological cells of decreasing
dimension.

Exploiting the orientation of the edges to orient the 1D arcs yields an
oriented maps.
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Combinatorial maps

Decomposition into cells (G-maps and O-maps)

D

Obtained by recurvise subdivision into topological cells of decreasing
dimension.

Splitting the vertices into two nodes yields a generalized map.
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Combinatorial maps

Decomposition into cells (G-maps and O-maps)

B B
H
(TR (TR
A C A C
I 2 G
Y Y
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Obtained by recurvise subdivision into topological cells of decreasing
dimension.

Splitting the vertices into two nodes yields a generalized map.
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Combinatorial maps

Combinatorial maps

G-map of dimension n > 0

A graph G = (V,E,s, t, /) labeled on
arcs by | : E — [0, n] such that :

__ 2-arc
_ l-arc

— O-arc
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Combinatorial maps

Combinatorial maps

G-map of dimension n > 0

A graph G = (V,E,s, t, /) labeled on
arcs by | : E — [0, n] such that :

» incident arcs : each node is the
source (resp. target) of a unique j-arc
for i > 0.
’ ____ 2-arc
_ l-arc
— O-arc
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Combinatorial maps

Combinatorial maps

G-map of dimension n > 0

A graph G = (V,E,s, t, /) labeled on
arcs by | : E — [0, n] such that :

» incident arcs : each node is the
source (resp. target) of a unique j-arc

for i > 0.

» non orientation : each j-arc — 2-arc
admits a reverse i-arc for i > 0 (G is — laarc
undirected). ) _ Oearc
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Combinatorial maps

Combinatorial maps

G-map of dimension n > 0

A graph G = (V,E,s, t, /) labeled on
arcs by | : E — [0, n] such that :

» incident arcs : each node is the

source (resp. target) of a unique j-arc I:I

for i > 0.

» non orientation : each j-arc — 2-arc
admits a reverse j-arc for i > 0 (G is — laarc
undirected). _ Oearc

» cycles : each jjij-path is a cycle

(for dimensions i 4 2 < j). 0
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Combinatorial maps

Combinatorial maps

O-map of dimension n > 1

A graph G = (V,E,s, t, /) labeled on
arcs by I : E — [1, n] such that :

» incident arcs : each node is the
source (resp. target) of a unique j-arc

for i > 1.
» non orientation : each j-arc — 2-arc
admits a reverse i-arc for i > 2 (G is — larc
directed).

» cycles : each jjij-path is a cycle
(for dimensions i 4 2 < j).

Notation : D (= [0, n] or [1, n]) is the set of dimensions (i.e., the labeling alphabet).

GRETA Seminar Y



Cells and Orbits

Face ¥
B
H
(T)
A €
lz G «
Y
E D

We can retrieve the object's cells using words of dimensions.
» G-map : (0+1)*. » O-map : 1%
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Cells and Orbits

Edge w
B
H
v v
A ‘ 1 —
"4 g X
¥
E D

We can retrieve the object's cells using words of dimensions.
» G-map : (0+2)*. » O-map : 2*%.
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Combinatorial maps

Cells and Orbits

Vertex A
B
H
(T)
A/ T \C
w
lz G x
Y
E D

We can retrieve the object's cells using words of dimensions.
» G-map : (1+ 2)*. » O-map : (21)*.

Notation : W will denote a finite langage on D* (i.e., a finite set of words on the

labeling alphabet).
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Modeling operations

Modeling operations

» Graph rewriting and issues for application in geometric modeling.
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Modeling operations

Topological transformation as DPO rewriting
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Modeling operations

Topological transformation as DPO rewriting
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Modeling operations

Genericity

» A formalization of modeling operations
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Modeling operations

Genericity

» A formalization of modeling operations
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Modeling operations

Genericity

» A formalization of modeling operations
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Orbit rewriting (variables)
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Genericity
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Genericity

GRETA Seminar N T



Modeling operations

Some remarks

Orbit variables and orbit type rewriting extends rule to subparts of the
modeled object.

» Issue : not suited to deal with oriented maps (orbits described by words)

The approach with orbit variables implicitely exploits a product
construction that we can formalize and generalize to pathes.
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Modeling operations

Global operations using product : arc deletion

Pullback on the terminal element (i.e., product) allows to model global
modification of graphs :

e Arc deletion based on labels : deletion of 2 while preserving the other
labels.

e
b
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Modeling operations

Global operations using product : relabeling

Pullback on the terminal element (i.e., product) allows to model global
modification of graphs :

e Arc relabeling based on labels : relabeling 2 +— 3 while preserving the
other labels can be described by the relation {(1,1), (2,3), (3,3)}.
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Embedding Functor

Embedding
functor

The embedding functor Eyx : ¥-Graph — (X2)-Graph transforms an i-arc
(i € ) into |X] arcs labeled (/,)) for each j € ¥, making each relabeling
possible.
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Modeling operations

Product simulates fonction application

I ! I

1 ! 1

| ! I

(L1) ! | !

| 1 (2,3) L1

(2,3) | — [

| I

(2,3) I X

1 ! (3,3) 1

(3,3) [ ' [

1 ! 1

I ! |

____________ 7/ \__ -—-— am am = =
E(P) x I n

Construction of the product (pullback on the terminal element).
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Modeling operations

Projecting Functor

Projecting
(1,1 functor 1
(1,1) 1
(2,3) _— 3
(2,3) 3
(3,3) 3

The projecting functor 7y : (£2)-Graph — Y-Graph keeps the second part
of arc labels (i.e., the relabeled part).
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Modeling operations

Summary

The construction is summarized by the following commutative diagram, for

a labeling alphabet ¥ :
WM, P) <== Ex(P) x N —— N
In
P % Es(P) —> 1y
e Es : embedding functor
e 7y : projecting functor

e (MM, P) : instantiation

Sept. 24, 2021 21/34
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Modeling operations

Summary

The construction is summarized by the following commutative diagram, for

a labeling alphabet ¥ :

YN, P) <= Ex(P) x N —— N

PB In
|
p—"— Ey(P) —2 14,

e Es : embedding functor
e 7y : projecting functor
e (MM, P) : instantiation
» Replace M with "any" (W x D)-graph.
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Modeling operations

Pattern Functor

Pattern €
functor

The pattern functor P : D-Graph — W-Graph maps a graph G to the
graph P(G) that has the same nodes as G and, for w € W (path labels), a
w-arc of source v; and target v» whenever there is a w-path vi ~> v, in G.

D is extended to incorporate d for a d dimension d to represent reverse traversal of arcs.
W is extended accordingly.
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Modeling operations

Application of a rule scheme

lwxDp \

Pv]\ )

Ep(P, L K R

S —— w
P, Ep(P,) x L* +—— Ep(P,) x K —— Ep(P,) x R

[ [

P(G) (L P,) «—— (K,P,)) — (R, P,)
S~ I |
g <

> D < > H
» The input consists of a G-map (or O-map) G and a rule scheme
L*+— K—=R.
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Modeling operations

Application of a rule scheme
1WXD\
U r e,
ol T T\T\ |

P, Ep(P,) x L* +—— Ep(P,) x K —— Ep(P,) x R
| [ [ [
P(G) (L P,) «—— (K,P,)) — (R, P,)
R £ £
g < D > H

» The pattern functor builds pathes for the given langage.
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Modeling operations

Application of a rule scheme
1WXD\
e ST
ol T T\T\ T

P, Ep(P,) x L* +—— Ep(P,) x K —— Ep(P,) x R
| [ [ [
P(G) (L P,) «—— (K,P,)) — (R, P,)
e £ £
g « D > H

» The monomorphism p, extract the connected component P, in P(G)
that contains a given node v.
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Modeling operations

Application of a rule scheme
1WXD\
e ST
SN T\T\ T

P, Ep(P,) x L* +—— Ep(P,) x K —— Ep(P,) x R
| [ [ [
P(G) (L P,) «—— (K,P,)) — (R, P,)
e £ £
g « D > H

» The embedding functor adds every possible relabeling.
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Modeling operations

Application of a rule scheme

1W><ID> —
!ED(PV)T ~ 'L- K—
G D Sp——— .,
Elmﬂ ) T I
P, Ep(Py) X L* «—— Eu(P)) x K ——
P H’TD ﬂm ﬂm
P(G) (L% Py) ——— (K, P,) ——— (R, Py)
V\ lm l I
G « D > H

» Pullback/Product constructions
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Modeling operations

Application of a rule scheme

En(P \

>

Ewﬂ \ T\T I

P, Ep(P,) ><L'<—>ED(P)><Kc—>EDPV)

| I [~ b

P(G) P,) «—— K,P,) —— «R,P,)

\£ I

> D <

;E<—)

» The projecting functor keeps only the relabeling of the arc.
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Modeling operations

Application of a rule scheme
lwxp \
PVT \
Ep(P R

D \
Eﬂ \ T 1

Ep(P,) x L’ +—— Ep(P,) x K —— Ep(P,) X R

P(jg L.ﬂm@ ﬂm ﬂm
R

» Standard DPO rewriting.
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Modeling operations

! 1 'L2)
1 1
1 1
: 1 : x 1
N 1 1
1 —_— |
: | 211 :  (&1)) (:,1):
1 1
1 1 1
| Scheme \_‘_IQ_/ oY
e e, Instantiation L R
| ~ ~ e . ¢
1 S St eaa. . iR
1 S

# Choice of
Maximal
Subgraph

-~
Pattern
Functor
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Modeling operations

Examples

Cone operation. : —_

» G-map rule scheme

(1,1) (1,1) (1,1)
(0,0) (2,2) (0,0)@ (0,0) (2,0) %2,0)
L . Q 2
a a (£,2) b (g1) c (g,2) d

GRETA Seminar S gL B



Modeling operations

Examples

Cone operation. : —_

» O-map rule scheme

(1,1) (1,1)

(€,2)
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Modeling operations

Examples

Edge rounding operation. —_

» G-map rule scheme

(1,1) (1,1) (1,1)
(0,0) (2,2) (0.0)@ (0,0) (2,0) %2,0)
L . Q 2
a a (£,2) b (g1) c (g,2) d
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Modeling operations

Examples

Edge rounding operation. $ — @

» O-map rule scheme

(2,2)

",
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Modeling operations

Examples

Face extrusion operation.

» G-map rule scheme

(1,1) (1,1)

(1,1)
(0,0) Q (,3) (0.0)Q (0.0N (0,0) ,

(1,2)
(g,3) (g,3)

a a (£,3) b (52)

(g,2)

c

f

(g,1) d

(g,0)

(5,1) e

(0,0) 6 (e,3) (0, 0)

GRETA Seminar
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Modeling operations

Examples

Face extrusion operation. —_—

» O-map rule scheme

(1,1) (T,1) (1,1 (IT,1)

(g,1),
e
R

a (&3) d (g,2)

a (83) p (52) ¢

GRETA Seminar S 2 L

25 /34



Modeling operations

Consistency preservation

e Constraints on the topological relations : soundness of the structure,
e.g., angles are correctly formed, vertices are incident to edges.

e Constraints on the embedding values : soundness of the geometry, e.g.
all nodes that belong to the same vertex have the same position.

Modifications of a well-formed object should produce an equally
well-formed object. J

» Graph transformations are enriched with conditions to preserve these
consistency properties.

Requirement : Provide feedback to the rule designer.
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Modeling operations

Topological consistency

Topological constraints (incident arcs, non-orientation and cycles) :
first-order logic.

Rule schemes are compiled into optimized code. To be efficient, no

computation about the consistency preservation can be done when
the scheme rule is applied.
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Modeling operations

Topological consistency

Topological constraints (incident arcs, non-orientation and cycles) :
first-order logic.

Rule schemes are compiled into optimized code. To be efficient, no
computation about the consistency preservation can be done when
the scheme rule is applied.

A scheme rule is considered valid whenever all its possible instantiations
preserve the model consistency.

» Set-theoric conditions on rule schemes.
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Modeling operations

Gluing condition

In ‘standard’ DPO-rule application, _———
the gluing condition (existence of a
pushout complement) ensures the
applicability of a rule.

(g,1) (g,1)
Monic matches reduce the gluing

condition to the dangling condition :

. —_—— = —
no node of m(L) \ m(K) is source L R
or target of an arcin G \ m(L).

y

- -

P S U —
PR U U U —

When G satisfies the incident arcs constraint on I, the gluing condition is
equivalent to all deleted nodes of L\ K are deleted with one arc per
dimension.

» This condition extends to scheme rule when considering the first part
of the label.
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Modeling operations

Breaking the geometric consistency

Constraint : all nodes of an orbit supporting an embedding should have the
same value.

c e d \\\‘ ’///
o % O Oc 40 Q¢ 40
~0i 0= 0 0
ot Mo, T .
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Modeling operations

Restoring the geometric consistency

» Topological and geometric extensions (extended to rules with variables
using equivalence on terms.)

=====5 pE=====y FES=S=sS4

@ / Q
i @, Oy 1@ (ol i 8 o
= R SE 3 ) f?}% |
0o o9 Vo ) | o {G
iT0—0 1O 010 O ; 1 o i
e Pio of~ie o —I i Eoﬁ%

(rmvyem
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Modeling operations

Simulating orbit rewriting

Product-based graph transformations subsumes orbit variables.

» Rule scheme (G-map) » Rule with variables
(1,1) (1,2) (1,2) (/<01>>
(0.0)@ (0,0) O 0.1 Q o
— Q
a (001} a  (e1) (£,0) \
<0, >
e
<.2>
|
<12>
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Modeling operations

Simulating orbit rewriting

Product-based graph transformations subsumes orbit variables.

» Rule scheme (G-map) » Rule with variables
(1.1) _ (1,2) (<o, 15)
(0.0@ (0,0) O (0,1@ N
Q
2 (e013 a  (s1) (£,0) \
<0, >

» Rule scheme (O-map)

<, 2>
(1,1) |
Q <125
—_— >
a {&,1,1}
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Doo-Sabin [Doo and Sabin, 1978]
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Menger sponge (2,2,2) [Richaume et al., 2019]

OO0V 000 0000000
O OOOOOOOOOVO HOOO QO
O OO0 O——O 000000
O OO O——O OO, OO0 O

OQOOO(}O

OO
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Modeling operations

Jerboa

http ://xlim-sic.labo.univ-poitiers.fr/jerboa/

ﬁ/erboa)
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Appendix

Doo, D. and Sabin, M. (1978).
Behaviour of recursive division surfaces near extraordinary points.
Computer-Aided Design, 10(6) :356—-360

@ Richaume, L., Largeteau-Skapin, G., Zrour, R., and Andres, E. (2019).

Unfolding Level 1 Menger Polycubes of Arbitrary Size With Help of Outer Faces.
In Discrete Geometry for Computer Imagery (DGCI), Paris, France.




Appendix

Jerboa's architecture

Editor

Modeler Kernel

Rule
Verifications

~———

Jerboa Kernel

Applications

Ud Operations

Generic Viewer

# Load
Save

Apply Operations
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