
Topological Consistency Preservation with Graph Transformation Schemes

Romain Pascuala,∗, Pascale Le Galla, Agnès Arnouldb, Hakim Belhaouarib

aLaboratory Mathematics in Interaction with Computer Science (MICS), CentraleSupélec, Université Paris Saclay, France
bLaboratory XLIM UMR CNRS 7252, University of Poitiers, France

Abstract

Topology-based geometric modeling tackles the issue of representing objects with data structures that encode
the topological subdivision of modeled objects in vertices, edges, faces, and volumes. Such subdivisions can be
represented with graphs labeled by dimensions on arcs, while modeling operations used to edit the objects can be
formalized as graph transformations.

Among the existing topological models, we consider generalized and oriented maps, defined as constrained
labeled graphs, to ensure the well-formedness of the represented objects. Since a modeling operation should
provide a correct object when applied to a correct object, graph transformations are provided with conditions to
ensure the model consistency.

Our approach exploits the firmly established framework of DPO graph transformations to implement modeling
operations. We enrich standard DPO graph transformations with a product construction to ease the operation
design, enabling generic modeling operations as rule schemes. We lift conditions from DPO rules to this enriched
framework, ensuring the preservation of the topological consistency via static analysis of syntactic conditions on
rule schemes.

Keywords: DPO graph transformation, Rule schemes, Combinatorial maps, Consistency preservation,
Topology-based geometric modeling.

1. Introduction

Graphs are widely used for modeling issues, for instance, as data structures for geometric modeling. Geomet-
ric modeling allows for the creation and manipulation of n-dimensional objects. When geometric objects are
represented with graphs, their modifications can be formalized with graph transformations. This paper focuses
on the double-pushout approach to graph transformations [1] to specify topology-based geometric modeling
operations.

Geometric modeling encompasses computer-aided design and manufacturing with applications across me-
chanical engineering, animated movies, video games, geology, and architecture. Numerous methods for the
representation of geometric objects use a subdivided representation of objects. Objects can be divided according
to application-domain properties, e.g., a segmentation based on a field value, or topological properties, i.e., a
subdivision of a polyhedron into faces, edges, and vertices. Optimized data structures can be conceived depending
on the subdivision structural properties (e.g., all faces are triangles) and the domain-related computations. For
instance, triangle soup is a commonly used model for rendering virtual views because graphic processors are
optimized to render triangular primitives [2, Chapter 12]. In animation, articulated objects are represented using
a hierarchical structure of the object parts (called skeleton or rig) and a surface (typically a mesh) associated with
each bone of the skeleton. To animate an articulated object, one can animate the skeleton and render the surface
mesh on a set of poses [3].

∗Corresponding author (romain.pascual@centralesupelec.fr)

Preprint submitted to Science of Computer Programming October 15, 2021

In topology-based geometric modeling, information is added to a polygonal representation of objects to
encode the topological relations between object sub-parts. These topological relations describe adjacency and
incidence between the topological cells (vertices, edges, faces, and volumes). Constraints on the topological
relations ensure the soundness of the object’s geometry, e.g., angles are correctly formed, vertices are incident to
edges that are, in turn, incident to faces. Since modifications of a well-formed object should produce an equally
well-formed object, graph transformations should preserve these consistency properties. In graph transformations,
property preservation is a commonly studied problem; here, we study it for graphs related to a specific application
domain, geometric modeling.

Polygon soups and meshes of animated rigs emphasize the external surface to ease rendering. In topological-
based geometric modeling, we are interested in both the outer and the complete internal structure of objects.
Indeed, inner parts play a key role in applications where volumetric properties are essential: geology [4],
architectural buildings [5], or physical simulation [6, 7]. Edge-based data structure [8] is undoubtedly the most
widely used model in topology-based geometric modeling, exploited in the open-source modeler Blender [9].
These models are equivalent to the more formal n-dimensional maps [10]. In the literature, n-dimensional maps
are called combinatorial maps. In this article, we follow the terminology given in [11] and call them oriented
maps. We will use the expression ‘combinatorial maps’ as a generic term that encapsulates several models (such
as oriented maps, generalized maps, hypermaps, chains of maps).

Combinatorial maps are often considered, from an algebraic perspective, as a collection of permutations on a
set of atomic elements. The study of combinatorial maps comes from the field of combinatorics to represent cell
decompositions of a surface [12]. These maps are also used to draw graphs on a given surface, exploiting the
combinatorial properties of the underlying graph, e.g., Euler’s formula, and topological maps have been defined
as graphs embedded in a surface [13]. Among combinatorial map models, generalized maps and oriented maps
are the most popular [14].

In a graph-based fashion, both generalized maps and oriented maps are encoded as graphs whose arcs are
labeled on an alphabet of dimensions that describes topological relations between the object cells. Previous
works [15] have already represented generalized maps as graphs and formalized geometric operations as DPO
rewriting. DPO rules were extended to meta-rules [16] in a generator of geometric modelers called Jerboa [17].
Traditionally, geometric modeling operations are defined generically to modify cells regardless of their size (e.g.,
number of faces constituting a volume). Meta-rules abstract topological cells thanks to variables. These variables
can be instantiated with a particular cell to give rise to classical DPO graph transformations. In [16], sufficient
conditions for consistency preservation of generalized maps were given for DPO transformations and meta-rules.
Thus, the instantiation of a meta-rule with a given cell provides a graph transformation preserving the object
consistency.

These pioneering works have demonstrated that graph transformations can be used advantageously to design
topology-based geometric modelers in the context of generalized maps. This well-established model is highly
regular, allowing for reasoning on the manipulation of subdivided objects. For instance, formal proofs with
the Coq system have been studied in [18] with the help of generalized maps. Compared to generalized maps,
oriented maps present the main advantage of a compact representation of objects to the detriment of regularity in
dimension, making reasoning more difficult. Oriented maps are supported by efficient implementations such as
the CGoGN library [19] and are usually favored for industrial applications.

In this paper, we explore both generalized maps and oriented maps to promote graph transformations in the
geometric modeling community. Compared with our previous work [15, 16], we no longer use variables and
fully formulate rule schemes in terms of graph theory. We also study the constraint on the topological relations in
a broader way so that the rules are no longer tuned for the generalized map model. To offer a unified framework,
we have identified three topological constraints which, combined in different ways, define both generalized maps
and oriented maps. As a consequence, the graphs under study are graphs subject to simple constraints.

Since DPO rewriting describes local modifications, we consider local definitions of the topological constraints,
namely at the scale of nodes and arcs. Moreover, we split the constraints to study their preservation independently.
Nonetheless, as a generic expression of topological operations is still required, we enrich the standard DPO
approach with a pullback construction. More precisely, rule schemes depict transformations duplicated for each

2

node of a graph, called pattern graph. Rule schemes and their instantiation with pattern graphs via the categorical
product provide a framework to design generic operations. From a graph transformation perspective, we turn
local DPO-based transformations into global product-based transformations.

The main contribution of this paper is the first framework based on graph transformations to express classical
topological operations on both generalized and oriented maps. This framework results from the following
realizations:

• Generalized maps and oriented maps are defined via three topological constraints: the incident arcs
constraint, the non-orientation constraint, and the cycle constraint.

• Preservation of topological constraints in the context of DPO graph transformations is ensured by necessary
and sufficient conditions.

• DPO graph transformations are generalized with rule schemes. Modifications expressed by rule schemes
are essentially substitutions of successive arcs selected by their labeling. Rule scheme instantiation is
defined using a product with a pattern graph extracted from the graph to be modified.

• Instantiation of rule schemes is guaranteed to result in DPO rules satisfying conditions for preserving
topological constraints. This guarantee is obtained by sufficient conditions.

The article is organized as follows. The theoretical background of labeled graphs and their transformations
is presented in Sections 2. We recall the DPO approach to graph transformations as a mechanism for local
operations and show how the categorical product can express global operations. We provide contextualization
elements in Section 3, introducing formal issues arising from the use of graph transformations in geometric
modeling. In particular, we give graph-based definitions of generalized and oriented maps. We develop, in
Section 4, the condition for preserving the incident arcs constraint in the DPO framework. The discussion is
broadened to encompass the other two constraints (non-orientation and cycles) in Section 5. The results presented
in Sections 4 and 5 ensure consistent rewriting of G-maps and O-maps with DPO transformations. In Section 6,
we introduce rule schemes to facilitate the design of generic topological operations, as well as the instantiation
mechanism using a product with a pattern graph extracted from the combinatorial graph under modification.
The preservation of each of the topological constraints is successively studied in the three following sections
(Sections 7, 8, and 9) by referring to the conditions of preservation on the DPO graph transformations resulting
from their instantiation on a combinatorial graph. Application to topological-based geometric modeling is the
subject of Section 10 with illustration on generalized and oriented maps. We also provide algorithms for the static
verification of O-map and G-map consistency. In Section 11, we compare our approach to other constructions
that preserve properties in graph transformations. Finally, concluding remarks are given in Section 12.

2. Graph transformations in the category of labeled graphs

In this section, we recall the main constructions of the category of edge-labeled graphs and the semantics of
DPO rewriting. We show how the categorical product can generalize DPO rewriting.

2.1. Category of labeled graphs

We assume that the main notions from the category Graph are known. We advise the reading of [20]
for an introduction to graph transformations and [1] for the complete construction of this category, with the
corresponding constructions of pullbacks, pushouts, and pushout complements.

A graph is a collection of nodes and arcs that link two nodes, and information is added using labels. Such
graphs are called labeled graphs. For our needs, we only consider labels on arcs and use totally labeled graphs.

3

Definition 1 (Labeled Graphs and Labeled Graph Morphisms). Let Σ be a finite set of labels. A graph labeled
on Σ, or Σ-graph, G = (VG,EG,sG, tG, lG) is defined by two finite sets VG of nodes and EG of arcs, source and
target functions sG, tG : EG→VG and a label function lG : EG→ Σ.

A Σ-graph morphism m : G→ H consists of two functions mV : VG→VH and mE : EG→ EH that preserve
sources, targets and labels, i.e., such that sH ◦mE = mv ◦ sG, tH ◦mE = mv ◦ tG, and lH ◦mE = lG.

A Σ-graph morphism is a mono if both mV and mE are injective and it is an inclusion if mV (x) = x for all
x ∈VG, and mE(x) = x for all x ∈ EG. If m is a mono, it is written m : G ↪→ H. The category having Σ-labeled
graphs as objects and Σ-graph morphisms as arrows is written Σ-Graph.

We will use the following notation simplifications throughout the paper. When there is no ambiguity on
the graph, the index G is omitted and G is denoted by G = (V,E,s, t, l). We identify arcs in the graph using
their labels: an arc e labeled by i in Σ is an i-arc. We identify a morphism m = (mV ,mE) : G→ H with its
component-wise functions and omit the subscripts V and E: we write m(x) regardless of whether x is a node or
an arc of G.

The category Σ-Graph is an elementary topos [21] meaning it behaves essentially like the category of sets
and functions. Weaker properties, such as adhesivity [22] and the existence of initial and terminal graphs are
enough for our needs.

The terminal element 1Σ of the category Σ-Graph is the graph with a single node and an i-loop for every
possible label i in Σ. The universal property of terminal elements ensures that given a Σ-graph P the morphism
!P : P→ 1Σ is uniquely defined. The morphism sends all nodes of P onto the single node of 1Σ. Similarly, it
sends all arcs of P onto the loop of 1Σ with the same label.

Because Σ-Graph is an adhesive category, it admits pullbacks and pushouts along monomorphisms. In
particular, pullbacks on the terminal element are uniquely defined (by the universal property of terminal elements)

and yield products. For any two Σ-graphs P and Π, the pullback of the cospan P
!P−→ 1Σ

!Π←−Π is the product of P
and Π in the category Σ-Graph:

P×Σ Π Π

P 1Σ

!Π

!P

In the following, Σ will be viewed as an alphabet, i.e., as a set of atomic elements called letters. A word on
Σ is a finite sequence of letters from Σ. The empty word ε is the word with no letter. The set of words on Σ is
denoted by Σ∗. A word w on an alphabet Σ is of length n in N, denoted by |w|= n, if it is a sequence of n letters.
The k-th (0 < k ≤ |w|) letter of w is denoted by w(k). The concatenation of two words u and v from Σ∗ is the
word uv of length |u|+ |v| such that (uv)(k) = u(k) for all 0 < k ≤ |u| and (uv)(|u|+k) = v(k) for all 0 < k ≤ |v|.

Let G = (VG,EG,sG, tG, lG) be a Σ-graph. A path is a sequence e1 . . .en of arcs such that tG(ek) = sG(ek+1)
for all 1 ≤ k < n. If sG(e1) = tG(en) then the path is a cycle. A path e1 . . .en is a w-path if ek is a w(k)-arc for
every 1≤ k≤ n. If the path is a cycle, then it is a w-cycle. A w-path p = e1 . . .en can be denoted by s(e1)

w
 t(en)

when we are only interested in the source, target and label of the path. An arc e ∈ E is said to be incident to the
nodes s(e) and t(e). The arc e is non-oriented if it has a reverse arc e′ ∈ E, i.e., there exists an arc e′ such that
s(e′) = t(e), t(e′) = s(e) and l(e) = l(e′). When the reverse arc is unique, we write e′ = e−1.

2.2. Graph transformations using double pushouts

In an adhesive category, DPO rewriting exploits spans of monomorphisms as rules to ensure determinism and
reversibility of the transformations [22].

Definition 2 (Rule). A rule r is a span L←↩ K ↪→ R of monomorphisms.

4

L, R, and K are respectively called the left-hand side, right-hand side, and interface (or kernel) of the rule.
The application of a rule r to a graph G consists of three steps: match L within G, delete the matched elements
that do not belong to K, and add elements of R not in K. Matching the left-hand side of a rule within a graph is
subject to the gluing condition [22] that states the existence of a pushout complement.

Definition 3 (Match). Let r = L←↩ K ↪→ R be a rule. A match for r is a morphism m : L→ G. The match
m : L→ G satisfies the gluing condition for r if there exists a pushout complement of K→ L→ G.

Monic matches do not lessen the expressiveness of the rewriting system [23] but allow for explicit counting
when deleting nodes or edges. Such matches also reduce the gluing condition to the dangling condition [24]: no
node of m(L)\m(K) is source or target of an arc in G\m(L). In the sequel, we will assume that the following
assumption holds.

Assumption 1. Matches are monomorphisms.

Matching the left-hand side L of a rule in a graph G is the first step towards the transformation of G. Still, we
need to explain how to disconnect and reconnect graphs.

Definition 4 (Direct Derivation). Let G and H be two graphs, r = L←↩ K ↪→ R and m : L ↪→ G a match for r.
The rule r transforms G into H, if there is a diagram

L K R

G D H

m (PO) (PO) m′

where both squares are pushouts. The direct derivation G⇒r,m H exists and is unique (up to isomorphism) if m
satisfies the gluing condition. The morphism m′ : R ↪→ H is called the comatch of the derivation.

Example 1 (Direct Derivation). Relabeling an i-arc into a j-arc can be achieved by the rule depicted in the top
span of Figure 1. The rule has two nodes in its left-hand side, right-hand side, and interface, an arc with the
label to be modified in L, the relabeled arc in R, and no arc in K. The rule application is obtained via the match
sending the node a to the node v, the node b to the node x and the i-arc between a and b to the i-arc between v
and x. The i-arc is relabeled by j.

a bi a b a bj

L K R

w
x

v

zy

i

k
j

d

w
x

v

zy

i

k
j

d

w
x

v

zy

i

k
j

d

i j

G D H

Figure 1: DPO transformation for relabeling.

We will study the preservation of constraints related to the graphs of geometric modeling. To simplify
notations in the verification process, we use rules where the monomorphisms are inclusions. The interface K

5

contains all elements common to L and R. For such rules, we only specify L and R because K can be retrieved as
the (component-wise set) intersection of L and R. From now on, we will consider rules satisfying the following
hypothesis.

Assumption 2. The interface K of the rule is the (component-wise set) intersection L∩R. Such rules are written
L� R, and their two monomorphisms are inclusions.

Graph transformations using DPO rewriting are helpful when trying to apply local transformations. Such
transformations require isolating a part of the graph in order to modify it. This isolation forbids the application
of the same modification uniformly to a subgraph. For instance, DPO rewriting does not provide a way to
relabel all arcs of a given dimension for a cell without specifying its topology (e.g., the size of the cell). We
aim at generalizing transformations to encode modeling operations regardless of the underlying topology. For
this purpose, we need special operations such as relabeling or deleting all arcs sharing the same label. These
operations can be designed using products.

2.3. Graph modifications using products

DPO rewriting models transformations based on deletion and creation of structure, allowing for a straight-
forward definition of graph modifications in a preservative framework. However, DPO rewriting is ill-suited
should the initial graph elements be cloned or specifications on their incident arcs be made. On the other hand,
Node-Labeled-Controlled grammars [25] inherently allow copying, merging, or deleting parts of the graph.
Bauderon provided a categorical definition of this approach [26] to simultaneously apply various modifications
at different spots in a graph with a single mathematical operation, defined by a pullback.

This paper will use the DPO rewriting to transform geometric objects (represented as graphs) and a pullback-
based generalization to express cloning and transformations on a global scale. This construction offers a simple
yet sufficient construction for our invariant-preserving framework.

Example 2 (Product Construction). Consider the transformation depicted in Figure 2 where Σ = {1,2}. In
this example, Π has two nodes, x and y and three arcs. The 2-loop on x in Π and the 2-loop on a in P yield a
2-loop on (x,a) in P×Σ Π. Similarly, the 1-arc from y to x in Π and the 1-arc from b to c in P produce a 1-arc
from (y,b) to (x,c) in P×Σ Π. Note that the 2-arc in P can not be matched with an arc of source y in Π. Thus,
there is no 2-arc of source (y,a), (y,b) or (y,c) in P×Σ Π.

Arc deletion. We will consider the nodes of Π as different copies of the graph P. Thus, loops on the nodes of Π

define the operation to be carried out on the arcs of P. We can use a product construction similar to Example 2 to
delete all the i-arcs for a label i ∈ Σ. This deletion is achieved as the product of P with Π = ∆i, the graph having
only one node and |Σ|− 1 loops labeled d for every d in Σ \ {i}. Such an operation is illustrated in Figure 3
where all the 2-arcs of P are deleted.

Arc relabeling. In the case of relabeling, P is the graph in which we want to relabel arcs, whereas Π stores the
relabeling. Let us consider Σ = {i, i′, j, j′, k, d} and assume we want to systematically relabel i into j, i′ into j′,
keep k unchanged and delete d, meaning carry out these operations on all arcs of the corresponding labels. This
global operation can be encoded with a relabeling function defined by the set of pairs {(i, j),(i′, j′),(k,k)}. More
generally, a relabeling operation is defined by a set of pairs R= {(i, j) | i ∈ Σ, j ∈ Σ} such that for any i in Σ,
there is at most one j in Σ satisfying (i, j) ∈R. Such a set will be called a relabeling set. A letter i in Σ such that
(i, i) is in R is a label left unchanged by the relabeling. Conversely, a letter i in Σ such that for all j in Σ, (i, j) is
not in R is a label deleted by the relabeling. As R is a subset of Σ2, the product is expressed in the category
Σ2-Graph. The Σ-graph P to be renamed must be converted into a labeled graph with labels in Σ2. We will
consider all the possible renamings, i.e., for each arc i, we will replace it with as many arcs as possible labeled
with pairs of the form (i, j) with j in Σ. Moving back and forth between the two categories is achieved with

6

Figure 2: Pullback using a terminal graph.

Figure 3: Deletion of 2-arcs using a product in the category [[1,3]]-Graph.

functors. The embedding functor EΣ : Σ-Graph→ (Σ2)-Graph transforms an i-arc (i ∈ Σ) into |Σ| arcs labeled
(i, j) for each j ∈ Σ, making each relabeling possible. The projecting functor πΣ : (Σ2)-Graph→ Σ-Graph
keeps the relabeled part of arc labels. Formally, the embedding and projecting functors are defined as follows:

Definition 5 (Embedding and Projecting Functors). Let us consider a finite alphabet Σ.

The embedding functor EΣ : Σ-Graph→ (Σ2)-Graph transforms:

• A graph G = (V,EG,sG, tG, lG) into a graph G′ = (V,EG′ ,sG′ , tG′ , lG′) such that for every i-arc e of EG with
i in Σ, for all j ∈ Σ, there exists an (i, j)-arc in EG′ with the same source and target, written e(j).

• A morphism m = (mV ,mE) : F → G into a morphism m′ = (mV ,m′E) : F ′→ G′ such that for every eF in
EF , for every j in Σ, m′E(e

(j)
F) is the arc mE(eF)

(j).

The projecting functor πΣ : (Σ2)-Graph→ Σ-Graph transforms:

• A graph G = (V,E,s, t, lG) into a graph G′ = (V,E,s, t, lG′) such that lG′ only keeps the second part of the
label from lG.

• A morphism m = (mV ,mE) : F→G into a morphism m′ = (mV ,m′E) : F ′→G′ such that if an (i, j)-arc eF
is sent to eG by mE then the j-arc eF ′ built on eF is sent to the j-arc eG′ built on eG.

7

The projecting functor πΣ is the projection inherited from π2 on the product Set×Set. Let us consider the
relabeling defined by relabeling set R. The construction works as follows :

1. Embed P in the category Σ2-Graph to get EΣ(P).
2. Construct the product EΣ(P)×Σ2 ΠR, where ΠR is the relabeling graph having only one node, and a loop

labeled (i, j) for each pair (i, j) in the relabeling set R.
3. Apply the projecting functor πΣ to EΣ(P)×Σ2 ΠR.

Figure 4: Global relabeling with a product.

Example 3 (Relabeling with Products). Assume we want to relabel all the 2-arcs of a graph into 3-arcs, as
shown in Figure 4. First, we apply the embedding functor from {1,2,3}-Graph to {1,2,3}2-Graph : from each
arc, three arcs are built, having 1, 2 and 3 as second label. Then, we construct the product with the relabeling
graph (written Π in the figure). Arcs in red will give rise to relabeled arcs at the end of the transformation.
Arcs in blue are the arcs left unchanged. Arcs in black are unused in the product. The relabeling set is
R(1,3) = {(1,1), (2,3), (3,3)} and yields the graph that consists of a single node and three arcs, each specifying
the relabeling of one letter: 2 is relabeled 3 whereas 1 and 3 are left unchanged. The product construction only
keeps the arcs that match the relabeling. Lastly, the projecting functor erases the first label on the arcs, and we
obtain the desired relabeling.

Before providing details on the graph formalism used in geometric modeling, we want to point out that DPO-
and product-based transformations are intended to serve different purposes. We will exploit DPO rewriting as
a generic tool to carry out modifications on the underlying object. We will utilize the product mechanism as
a general construction to achieve modifications as higher-level rules. Graph transformations using products
provide a framework for the parallel generalization of rewriting rules without postponing the parallelization to
the application time. In particular, we will use the product construction to generalize relabeling. By definition,
the product construction is symmetrical in P and Π. However, we will distinguish between P and Π in the
transformation. P will serve as a pattern to embed the graph structure, whereas Π will sketch the desired
modifications. The generalization of transformations with pullbacks (see Section 6) will appear as the cornerstone
of our approach, satisfying our need for static verification at rule-design time.

8

3. Geometric modeling

In this section, we will introduce G-maps and O-maps as edge-labeled graphs with constraints and use these
denominations in the remaining part of the paper. We first introduce geometrical modeling and its formal issues.
In this context, we use the terminology given in [11] and call combinatorial maps the family that encompasses
oriented and generalized maps, among other models. In the literature, the term ‘combinatorial maps’ has mostly
been used to refer to the specific model of oriented maps.

In solid modeling and computer-aided design, many modelers rely on a boundary representation of objects,
or B-rep. This method represents a solid as a collection of connected surface elements. These elements define
the boundary between the interior of the volume and its exterior. B-rep modelers use different data structures
to encode the topological relations of the surface elements, such as winged-edges, half-edges, or quad-edges.
In [10], the author shows that such data structures can be formalized as oriented maps. In [27], the authors
provide a complete conversion from half-edges to 2D oriented maps.

Combinatorial maps present two main advantages. The formalism allows defining objects in any dimension
(1D, 2D, 3D, etc.). The definition of a generalized (resp. oriented) map is only parametrized by the maximal
dimension. The aforementioned topological data structures are dedicated to specific dimensions and target
application domains. The formal definition of combinatorial maps allows us to consider objects from any
application domain thanks to its cell decomposition. The atomic elements of the decomposition are called darts
and encoded by the nodes in a graph-based approach. Nodes are linked by arcs that describe neighboring relations
between two cells.

The second main asset comes from the explicit expression of consistency constraints. These constraints
state how the darts can be linked so that the modeled object is a quasi-manifold. Compared to the edges
data structures, these constraints are defined within the model rather than hard-coded in the data structure and
associated operations. Therefore, we can reason on these constraints. For this exact justification, combinatorial
maps have proven fruitful to structure knowledge in [28, 29, 7, 30]. Hypermaps, a generalization of oriented
maps with hypergraphs, were used to derive a Coq proof of the discrete form of the Jordan Curve theorem in [31].

The algebraic definition of oriented maps is not homogeneous in dimension. A new model, called generalized
maps, was defined handling the 0 dimension to bypass this limitation [14]. As a result, orientation is lost,
and the number of darts is doubled. From the algebraic definitions given in [11], G-maps correspond to open
generalized maps, whereas O-maps correspond to closed oriented maps. Combinatorial maps are usually defined
as topological relations on a set of darts. Considering the darts as graph nodes and the topological relations as
graph arcs, we derive graph-based definitions of generalized maps and oriented maps. Consistency properties
of the topological relations yield constraints on the graph that have been studied for the model of generalized
maps [16]. We aim at extending this study to the more popular model of oriented maps. Once oriented and
generalized maps are defined from a graph perspective, their transformations can be designed using graph
transformations. In DPO rewriting, the rule interface contains the parts matched and preserved by the rule, which
encodes some neighborhood of the modified part of the graph. Conditions on rules for consistency preservation
were provided in [16] for the restricted case of generalized maps. These conditions led to the definition of a
generic topological-based geometric modeler in [32] based on G-maps. Although the modeler can be used to
apply modification on an object, its foremost interest is the rule editor. Geometric modeling operations can be
conceived and written as a simple rule. Orbit variables were introduced to generalize rules to an orbit. Intuitively,
an orbit is a subgraph induced by a subset of arc labels and allowed to retrieve topological cells in a generalized
map. The orbit variables sanctioned the use in geometric modeling as the operation became independent of the
underlying topology. At that point, the possibility to deal with domain-related information (called embeddings)
was the main bottleneck of the approach. The introduction of I-labeled graph in [33] solved this issue and defined
DPO rewriting for graphs where nodes are labeled by a family of labels. Jerboa [17] offers a graphical rule editor
along with a syntax checker that guarantees the consistency of G-map rules (both for the topological aspect and
the omission of geometric aspect). In [34] we solved geometrical consistency by statically detecting embedding
computation equivalence on nodes of the same orbit.

We recall the topological constraints in Section 3.1 and provide a graph-based definition of generalized maps

9

and oriented maps in Section 3.2. We discuss the formalization of modeling operations as graph transformation
rules in Section 3.3 and the need for consistency preservation in Section 3.4.

3.1. Topological constraints

For our concerns, we will consider three kinds of label sets: dimensions, words, and pairs, which we will
respectively use to model neighboring relations, paths in topological models, and modifications to be applied to
graphs. We give names to each kind of graph to convey their respective usage.

We will use the category D-Graph where D is a finite set of integers, e.g, D = [[1,4]], the set of integers
between 1 and 4 (included). As integers describe the neighboring relations in topological models, we call
topological graph any graph labeled with integers from D.

Definition 6 (Topological Graph). Let D be a finite set of integers, called dimension set. A D-topological graph
is a graph from the category D-Graph.

The set D will also be used as an alphabet for more structured sets. We will consider categories W-Graph
where W is a finite subset of D∗. Intuitively, arc labels in such graphs describe paths in an underlying graph. For
instance, in Figure 5b, the red arc labeled 13 can be interpreted as the 13-path in the graph of Figure 5a. We will
call pattern graph any graph labeled with words from W.

Definition 7 (Pattern Graph). Let D be a finite set of integers, and let W be a finite subset of D∗. A W-pattern
graph is a graph from the category W-Graph.

(a) A [[1,3]]-graph. (b) A {13,2}-graph.

Figure 5: Our main consideration for the label sets.

Since a function f from a set E to a set F can be defined by a set of pairs (x,y) in E×F with f (x) = y, we
will use graphs labeled with pairs in E×F to encode graph transformations involving the use of such functions.
More precisely, we will use functions from path labels to arc labels, that is, functions from W to D. We call
graph scheme any graph labeled with pairs from (W, D).

Definition 8 (Graph Scheme). Let D be a finite set of integers, and let W be a finite subset of D∗. A (W,D)-graph
scheme is a graph from the category (W×D)-Graph.

We consider three properties, also called topological constraints, defined locally on labeled graphs:

Definition 9 (Topological Constraints). Let G = (VG,EG,sG, tG, lG) be a Σ-labeled graph, v be a node of VG, and
i and j be two labels of Σ. The node v satisfies

• The incident arcs constraint IG(i) if v is the source of a unique i-arc and the target of a unique i-arc.

• The non-orientation constraint OG(i) if the i-arcs incident to v are non-oriented.

• The cycle constraint CG(i, j) if v is the source of an i ji j-cycle.

These constraints can be extended to a subset of labels I ⊆ Σ (or pairs of labels J⊆ Σ2 for the cycle constraint)
and a subset of nodes V ′ ⊆V . We say G satisfies the constraint IV ′,G(I), OV ′,G(I), or CV ′,G(J) whenever each
node in V ′ satisfies the corresponding constraint. If V ′ =V , we simply say G satisfies IG(I), OG(I), or CG(J).

10

Figure 6: A [[1,3]]-graph.

When dealing with the cycle constraint, we call the set of exchangeable dimensions the set J ⊆ Σ2 of pairs of
labels.

Example 4 (Topological Constraints). Let G be the graph represented in Figure 6. G is a [[1,3]]-graph. Node b
is the source of a single 2-arc and the target of a single 2-arc, thus node b satisfies the incident arcs constraint
IG(2). On the contrary, node c is not the source of a 3-arc and does satisfy IG(3). Since there is a 3-arc
of source d and target f and a 3-arc of source f and target d, node f satisfies the non-orientation constraint
OG(3). Similarly, since the only 2-arc incident to node f is a loop, it also satisfies OG(2) and therefore satisfies
OG({2,3}). Conversely, node a does not satisfy OG(3) because the 3-arc between nodes a and c does not admit
a reverse arc. Note that no 2-arc is incident to node d, thus node d also satisfies OG(2). Finally, as node c is the
source of a 1313-cycle, node c satisfies the constraint CG(1,3), whereas node a is the source of a 3131-cycle and
satisfies CG(3,1).

Note that the incident arcs constraint guarantees the existence and uniqueness of a path given a sequence
of labels, which will massively simplify the study of consistency for the cycle constraint. Indeed, if a graph
satisfies the incident arcs constraint for two dimensions, then the order of the dimensions does not matter when
considering the cycle constraint at the whole graph scale.

Lemma 1. Let G be a D-topological graph and i, j two dimensions in D. Suppose that G satisfies IG({i, j}),
then G satisfies CG(i, j) if and only if G satisfies CG(j, i).

Proof. The lemma holds trivially from the incident arcs constraint.

3.2. Graph-based definitions of combinatorial maps

The incident arcs constraint allows us to unambiguously consider arcs based on their label and source (or
target). This feature will prove helpful to generalize graph transformations. Therefore, we call a combinatorial
graph any topological graph that satisfies the incident arcs constraint on every dimension. We define O-maps and
G-maps based on combinatorial graphs.

Definition 10 (Combinatorial Graphs, Generalized Maps, and Oriented Maps). Let D be a finite subset of N and
let D+2 denotes the set of pairs (i, j) ∈ D2 such that i+2≤ j.

A D-topological graph is a D-combinatorial graph if it satisfies the incident arcs condition IG(D).

An n-dimensional generalized map, or n-G-map is a [[0,n]]-combinatorial graph satisfying OG([[0,n]]) and
CG([[0,n]]+2).

An n-dimensional oriented map, or n-O-map is a [[1,n]]-combinatorial graph satisfying OG([[2,n]]), and
CG([[1,n]]+2).

It is possible to define other models of [11] by twisting the constraints. For instance, a closed generalized
map can be defined as a G-map where no arc is a loop. An open oriented map can be defined by relaxing the

11

incident arcs condition on the maximal dimension n to “every node v is the source of, at most, one n-arc and the
target of, at most, one n-arc”. Similarly, the dual model of oriented maps (open or closed) can be obtained by
enforcing the non-orientation condition on the minimal dimension 1 but removing it on the maximal dimension n.

The study done in [16] covered G-maps, which is here extended to cover O-maps, and one could extend it to
the other models. We chose to keep the study simple by narrowing the scope to these two models as they are the
more regular ones, which simplifies the automatization of the transformation mechanism.

Figure 7: An object and its representation as a 2-O-map (middle) and a 2-G-map (right).

Example 5 (G-map and O-map). Let us illustrate both models with the example of Figure 7. In this figure, as
it will be in the whole paper, non-oriented arcs are either represented as a line or as a double-oriented arrow.
The modeled object (on the left-hand side) consists of a triangle on top of a square in 2D. The corresponding
2-O-map consists of three cycles of 1-arcs for the two faces plus the outer one. The 1-arcs are oriented according
to the orientation provided, orienting each face. The 2-arcs link faces along edges. The 2-G-map associated with
the same model is given on the right-hand side. In a G-map, a face consists of an alternation of 0-arcs and 1-arcs.
Note that the outer face is not represented in a G-map, and outer nodes are the source of 2-loops.

We can intuitively reconstruct G-maps and O-maps from the object decomposition into cells.

Example 6 (Object Decomposition). The representations of the object of Figure 7 as 2-G-map and 2-O-map
result from the decomposition into decreasing dimensions. In the case of G-maps, we consider the object open,
i.e., as the two faces A and B of Figure 8a. First, the object is split into faces sharing an edge with 2-links, in
blue on Figure 8b. Likewise, the faces are decomposed into edges via 1-links, in red on Figure 8c. Finally,
edges are dissociated with 0-links, in black on Figure 8d. The resulting nodes are the nodes of the Gmap, and
the dimensional relations are the arcs of the G-map. The decomposition is similar for the model of O-maps, as
illustrated in Figure 9. O-maps represent closed-oriented objects. Therefore, in Figure 9a, the faces A and B are
oriented, and the outer face C is added. All faces have the same orientation. Thus, an edge shared between two
faces is oriented in opposite directions in each face. For instance, the edge between faces A and B is oriented from
left to right in the face A and from right to left in the face B. In the decomposition process, we first split the faces
along their joint edges, as illustrated in Figure 9b. Then, edges are separated via 1-links. The decomposition
stops at this step and provides the graph of Figure 9c. The nodes of this graph correspond to darts that intuitively
represent parts of the edges from the initial object.

12

B

A

(a) Two faces sharing an edge.

e1

e2

e3

e4

e5

e6

2-link

(b) Decomposition along dimension 2.

v1

v2 v3

v4 v5

1-link

(c) Decomposition along dimension 1.

d1
d2

d3 d4
d5

d6

d7d8

d9

d10

d11
d12

d13
d14

2-arc

1-arc

0-arc

(d) Decomposition along dimension 0
and resulting 2-G-map.

Figure 8: Decomposition of an object and construction of the underlying G-map.

Orientation

B

A

C

(a) Closed representation of the same object as
three faces.

2-link

e1

e2

e3

e4

e5

e6

(b) Decomposition along dimension 2.

d2

d9

d8

d5

d1

d3

d6 d7

d4

d10

d11d12

1-arc

2-arc

(c) Decomposition along dimension 1.

Figure 9: Decomposition of an object and construction of the underlying O-map.

3.3. Modeling operations as graph transformations

Given that G-maps and O-maps are defined as graphs, the modeling operations can be formalized as graph
transformations. For instance, the operation depicted in Figure 10 subdivides the face on the left to derive the four
faces on the right. This example is a specific instance of quad subdivision dedicated to refining the topological
structure of meshes [35]. This operation adds new vertices at the center of the face and the middle of each edge.
An edge links the face center and the midpoint of the original edges.

The recursive subdivision into decreasing cell dimension yields the operation depicted by the G-maps of
Figure 11a, for the object of Figure 10. The initial square face is represented by 8 nodes that are preserved by the
transformation. The four 1-arcs and 2-arcs are also preserved while the 0-arcs are removed. The midpoints, the
face center, and the linking edges are added. Based on the status of the element (added, preserved, and deleted),

13

Figure 10: Quad subdivision of a face.

we determine possible rules for the operation. The rule in Figure 11b appears inconvenient because it does not
specify that the matched element should be included in the same face. The rule in Figure 11c might seem like the
most general, but it does not match the whole edges of the initial face. If the rule were applied to a non-isolated
face, the half-edges in the surrounding faces would not be split. Finally, the rule in Figure 11d will never break
the model consistency but is only applicable to isolated faces. From a purely algorithmic perspective, the quad
subdivision operation can be defined without restriction to (non-)isolated faces. Besides, the rules presented
here only apply to faces with four vertices, while the geometric modeling operation is applicable on any face
regardless of the number of edges.

a1
a2

a3

a4 a5

a6

a7

a8

a1

a2

a3
a4 a5

a6

a7
a8b1

b2

b3

b4 b5

b6

b7

b8
c1

c2

c3

c4 c5

c6

c7

c8

d1
d2

d3
d4 d5

d6

d7
d8

(a) G-map decomposition of the face subdivided in Figure 10.

a1
a2

a3

a4 a5

a6

a7

a8

a1

a2

a3
a4 a5

a6

a7
a8b1

b2

b3

b4 b5

b6

b7

b8
c1

c2

c3

c4 c5

c6

c7

c8

d1
d2

d3
d4 d5

d6

d7
d8

L R

(b) Minimal rule to obtain the transformation.

a1
a2

a3

a4 a5

a6

a7

a8

a1

a2

a3
a4 a5

a6

a7
a8b1

b2

b3

b4 b5

b6

b7

b8
c1

c2

c3

c4 c5

c6

c7

c8

d1
d2

d3
d4 d5

d6

d7
d8

L R

(c) Intermediate rule to obtain the transformation.

a1
a2

a3

a4 a5

a6

a7

a8

a1

a2

a3
a4 a5

a6

a7
a8b1

b2

b3

b4 b5

b6

b7

b8
c1

c2

c3

c4 c5

c6

c7

c8

d1
d2

d3
d4 d5

d6

d7
d8

L R

(d) Maximal rule to obtain the transformation.

Figure 11: Quad subdivision of a face as a graph transformation.

In previous works, we used topological variables to perform this generalization. The topological variables
allowed matching a subgraph induced by a set of dimensions. This subgraph could be copied, and the arcs could
be relabeled. Arcs could be added between copies, meaning that each node of one copy of the subgraph would be
linked to its alter ego in another copy. Such subgraphs are called orbits [11], and the definition varies between
oriented and generalized maps. From an algebraic perspective, orbits in oriented maps require composing
the underlying permutations on nodes. From a graph perspective, orbits in O-maps require considering paths
in the underlying graph. From this single modification, our approach based on dimension relabeling did not
provide a convenient solution. As illustrated in Figure 12a, the quad subdivision of a face in a G-map setting
can be decomposed into various copies of the initial face where the initial arcs are relabeled. The corresponding
transformation is given in Figure 12b in an O-map setting. In Figure 12, nodes are colored and named based
on the copy of the initial subgraph (from the left-hand side). For instance, in the right-hand side of the rule of

14

Figure 12a, the nodes c1, c2, . . . c8 belong the same copy of the initial subgraph corresponding to the nodes
a1, a2, . . . a8. Similarly, nodes bi and di (1≤ i≤ 8) describe two other copies of the initial subgraph. On the
contrary, nodes b8, c8 and d8 belong to different copies. The number indicates the initial node of a copy node.
As such, nodes b8, c8 and d8 are copies of the node a8. Rules with topological variables allowed arcs that either
link nodes between a single copy, such as nodes c1 and c8 or nodes a5 and a6, or link different copies of the
same node, such as nodes c8 and d8 or nodes a4 and b4. These variables are not expressive enough to generalize
the rule for O-map depicted in Figure 12b because node b1 is linked to node c2. The regularity of the model still
provides ways to describe the operation homogeneously. For example, one can notice that each node bi is linked
to the node c(i+1 mod 4). We will use path labels to encode these links. The extraction of paths to create new
arcs proved challenging and resulted in one of the main novelties presented in this paper.

a1
a2

a3

a4 a5

a6

a7

a8

a1

a2

a3
a4 a5

a6

a7
a8b1

b2

b3

b4 b5

b6

b7

b8
c1

c2

c3

c4 c5

c6

c7

c8

d1
d2

d3
d4 d5

d6

d7
d8

L R
(a) For G-maps.

a1

a2

a3

a4
a1

a2
a3

a4

b1

b2

b3

b4

c1

c2
c3

c4

d1

d2

d3

d4

L R
(b) For O-maps.

Figure 12: Generalization of the quad subdivision using copies and relabeling.

As a final note, we want to highlight the size of graphs used in practice. In Figure 13, the character consists
of 12587 vertices, 12585 faces and a single connected component. The 3D character is represented by its
boundary surface, i.e., a 2D manifold. The G-map decomposition produces 100680 nodes and 302040 arcs in 2D
(Figure 13), while the O-map decomposition yields 50340 nodes and 100680 arcs (not drawn). We will see in
Section 10 that the rule scheme for each model has one node in the left-hand side and four nodes in the right-hand
side, regardless of the object size. The possibility to express operations as rules independent from the object size
is an essential asset in geometric modeling as the objects are usually huge. The quad subdivision depicted in
Figure 13 has been realized with Jerboa [17] with G-maps. We can see two ranges of faces on the detailed views
that correspond to the front and the rear parts of the character since it is cylindrical.

3.4. Consistency preservation in modeling operations

Since G-map and O-map definitions are based on topological constraints, transformations on the underlying
graph need to preserve these constraints. These topological constraints are elementary (incident arcs, non-
orientation, and cycle); thus, we can study the conditions for their preservation sequentially and separately for
DPO-based transformations and product-based transformations. Superimposing the corresponding conditions

15

Figure 13: Quad subdivision of a surface.

will ensure the preservation of the model consistency. In the remaining part of the paper, we will use the
denomination consistency preservation to refer to either constraint, depending on context.

We will give necessary and sufficient conditions to preserve the topological constraints on a local scale in
topological graphs. Note that the non-orientation property was not a concern for generalized maps. Imposing that
all graphs be non-oriented was sufficient to preserve the non-orientation constraint [16]. With the introduction
of combinatorial maps, the study needs to be more general. This study leads us to provide a weaker yet
sufficient condition for preserving the non-orientation constraint. For the incident arcs condition, the proof of the
consistency preservation remains an extrapolation of the one given in [16].

The incident arcs property is the cornerstone of the model. This property provides a framework that is
rich enough to define interesting abstractions of graph transformations via rule schemes using products. Since
the operations are performed using direct transformations from DPO rewriting, conditions on rules need to
be lifted to rule schemes. Lifting the conditions from DPO rules to rule schemes is relatively straightforward
for the conditions of incident arcs (Section 7) and non-orientation (Section 8). However, the extension of the
cycle condition for rules comes with additional constructions to deal with possible orientation for dimensions
(Section 9).

4. Necessary and sufficient condition for incident arcs preservation in DPO rewriting

In Section 3.1, we presented the three topological constraints (incident arcs, non-orientation and cycles). We
now study conditions on rules to explain how a graph can be modified while preserving its consistency. We want
to ensure consistency at the rule level to provide feedback to the rule designer. In particular, our only assumption
on the match morphism concerns its injectivity. We strive to establish conditions that can be statically checked
on the rules without hindering their applicability.

Consistency preservation has been studied in previous work [16, 34], but only sufficient conditions were
given. As a result, the syntax analyzer [32, 17] would raise false negatives and consider valid rules as inconsistent.
In this section, we provide necessary and sufficient conditions for the preservation of the incident arcs constraint.
The approach developed in this section exploits a set-theory formalism and can be used as a reference for the
discussion of Section 11 regarding consistency preservation in other frameworks. Combinatorial graphs play a

16

key role in our framework and will prove essential for the study conducted in Section 5 on the remaining two
constraints.

The weak incident arcs condition states that preserved nodes should retain their incidence to a dimension,
and added nodes should satisfy the incident arcs constraint.

Definition 11 (Weak Incident Arcs Condition). A rule r = L� R satisfies the weak incident arcs condition
Ir(i)-weak if it satisfies the two following sub-conditions :

1. Any preserved node of L∩R is the source (resp. target) of an i-arc in L if and only if it is the source (resp.
target) of an i-arc in R.

2. R satisfies I(VR\VL),R(i), i.e., any added node of VR \VL is the source of a unique i-arc and the target of a
unique i-arc in R.

When this condition is fulfilled, the derivation yields a graph satisfying the incident arcs constraint.

Theorem 1 (Incident Arcs Preservation). Let r = L� R be a rule in the category of D-graphs.

The rule r satisfies the weak incident arcs condition Ir(i)-weak if and only if for all matches m : L ↪→ G
on a D-graph satisfying IG(i), the result graph H of the direct derivation G⇒r,m H satisfies the incident arcs
constraint IH(i).

Proof. The first part of this proof (⇒) has been shown in [16]. Intuitively, regardless of whether preserved nodes
are the source of an arc in L (i.e., whether the arc is matched), sub-condition 1 ensures the same status in R,
yielding an arc in H. Similarly, sub-condition 2 guarantees the property for added nodes.

(⇐). Suppose the result graph H of the direct derivation G⇒r,m H satisfies the incident arcs constraint IH(i),
for all matches m : L ↪→ G on a D-graph satisfying IG(i). Consider such a graph H and m′ the mono R ↪→ H.

Sub-condition 1 of the weak incident arcs condition.

Let v be a preserved node of L∩R that is the source of an i-arc e in L. Then m(v) is the source of m(e) in G.
Suppose this arc is deleted by the application of the rule (otherwise e is in R). However, H satisfies IH(i) so
there exists an i-arc eH in H of source m′(v). This arc is not in G because m(v) is the source of only one i-arc
in G. Thus, an arc e′ exists in R such that m′(e′) = eH . By construction the source of e′ is v. Therefore v is the
source of an i-arc in R. The construction holds when taking v as the target of e or inverting L and R. Hence, any
preserved node of L∩R is the source (resp. target) of an i-arc in L if and only if it is the source (resp. target) of
an i-arc in R.

Sub-condition 2 of the weak incident arcs condition.

Let v be an added node in VR \VL. Then m′(v) is an added node in H. Since H satisfies IH(i), then an i-arc
eH of source m′(v) exists in H. Since v is not in L∩R, any incident arc of v comes from R, i.e., there exists e in R
such that m′(e) = eH and sR(e) = v. Because eH is unique, so is e. Thus, v is the source of a unique i-arc in R.
The proof holds when replacing source by target and R satisfies I(VR\VL),R(i).

Thereafter r satisfies the weak incident arcs condition Ir(i)-weak.

Example 7 (Incident Arcs Preservation). Consider the rule in Figure 14, where the black elements are both in
L and R, thus in the interface. The rule satisfies the weak incident arcs condition for the dimension 2. Indeed,
interface nodes b and d are the source of a unique 2-arc in both sides, whereas nodes a and c are the target of a
unique 2-arc in both sides. The added node e satisfies the incident arcs constraint for the dimension 2 as it is
the source (resp. target) of a unique 2-arc. An example of DPO transformation depicted for this rule is given in
Figure 15. Node names have been removed to simplify the figure. The matched parts are drawn in red, while
non-oriented arcs are marked with two arrows. The graph G in the bottom left corner satisfies the incident arcs

17

L R

1
1

2

3

2

1
32

2

2

3

a a

b b

c c
d d

e

Figure 14: A rule satisfying the incident arcs condition for the dimension 2.

constraint for the dimension 2. As we can see, the nodes in G, not matched by the rule, keep their incident arcs
while matched nodes are held with the same incidences in R. Thus, the direct derivation yields a graph satisfying
the incident arcs constraint for the dimension 2.

L K R

G D H

1
1

2

3

3

1
1

1

1

2

2
2

2

3

1
1

2

3

2

1
323

1

2

2

3

1
2

3

1
1

1

1

2

2
2

3

2

3

1
1

1

1

2

2
2

3

2 3

3

3
1

2

2

2

3
3

3

Figure 15: Incident arcs preservation.

The dangling condition is usually a critical concern [24, 1] in the DPO approach to graph transformations. As
shown in [16], the gluing condition can be statically checked on the rule when applied to combinatorial graphs: a
match m : L ↪→ G for a rule r = L� R, where G is a D-combinatorial graph, satisfies the dangling condition if
and only if L satisfies I(VL\VR),L(D). We extend the weak incident arcs condition to incorporate the dangling
condition aggregating in the incident arcs condition.

Fact 1. For a D-rule applied to a D-combinatorial graph, the dangling condition on the match is equivalent to
the incident arcs constraint on the left-hand side of the rule, restricted to the deleted elements (proved in [16]).

Definition 12 (Combinatorial Rule). A rule r = L� R satisfies the incident arcs condition Ir(D) if it satisfies
the weak incident arcs condition Ir(D)-weak and L satisfies I(VL\VR),L(D). Then, r is called a D-combinatorial
rule.

Combinatorial graphs and rules play a crucial role in our framework as the incident arcs constraint guarantees
the existence and uniqueness of arcs given a label (and a source node). The remaining part of this article relies
heavily on this constraint, and we will consider (unless stated otherwise) that the following assumptions hold.

18

Assumption 3. Graphs under modification belong to the category of combinatorial graphs. This category is
the full subcategory of D-Graph whose objects are the D-combinatorial graphs. Rules are combinatorial rules,
transforming a combinatorial graph into a combinatorial graph.

5. Consistency preservation in DPO rewriting for combinatorial graphs

With the benefit of the incident arcs constraint and condition, we now present necessary and sufficient
conditions to preserve both the non-orientation constraint and the cycle constraint. A watchful reader will
notice that we could impose a less restrictive constraint. Indeed the incident arcs constraint and condition for a
dimension i are enough to deal with the non-orientation property on this same dimension. Similarly, the incident
arcs constraint for the dimensions i and j are sufficient for the cycle property on these same dimensions.

5.1. Non-orientation preservation

The non-orientation preservation boils down to only having oriented arcs in the interface L∩R.

Definition 13 (Non-Orientation Condition). A D-combinatorial rule r = L� R satisfies the non-orientation
condition Or(i) if any deleted (resp. added) i-arc of EL \ER (resp. ER \EL) has a unique reverse i-arc that is
also deleted (resp. added), i.e., in EL \ER (resp. ER \EL).

We now give the corresponding theorem.

Theorem 2 (Non-Orientation Preservation). Let r = L� R be a D-combinatorial rule.

The rule r satisfies the non-orientation condition Or(i) if and only if for all matches m : L ↪→ G on a
D-combinatorial graph satisfying OG(i), the result graph H of the direct derivation G⇒r,m H satisfies the
non-orientation constraint OH(i).

Proof. Let r = L� R be a D-combinatorial rule.

(⇒). Suppose r satisfies the non-orientation condition Or(i).

Let m : L ↪→G be a match on a D-combinatorial graph satisfying OG(i), H be the result of the direct derivation
G⇒r,m H, m′ be the comatch R ↪→ H, and vH be a node in VH .

Suppose eH is an i-arc incident to vH . Let us show that eH has a unique reverse i-arc in H.

1. If eH ∈ H \m′(R) then eH ∈ G\m(L). Thus, there exists eG ∈ G such that eG = e−1
H in G.

(a) If eG ∈ G\m(L), both arcs are left unchanged by r, i.e., eH and eG = e−1
H are in H.

(b) Otherwise, there exists e′ in L such that m(e′) = eG. Because G is a combinatorial graph and eH is in
G\m(L), e′ is oriented in L. Since r satisfies Or(i), e′ is in L∩R. Therefore, m′(e′) = eG = e−1

H in
H, by injectivity of m′.

2. Otherwise, eH ∈ m′(R) and, by injectivity of m′, there exists a unique e ∈ R such that m′(e) = eH .
(a) If e admits a reverse arc e′ in R, then m′(e′) is the reverse arc of eH in H.
(b) Otherwise, similarly to case 1b, e is an oriented arc of L∩R. The arc e cannot have a reverse arc in L,

as this arc would be in EL \ER and would break the non-orientation condition on r. Since e is in L,
m(e) = eH . The non-orientation constraint in G yields an arc eG reverse of eH in G. This arc has no
antecedent in L and belongs to G\m(L). Therefore eG is in H where it is the reverse arc of eH .

Thereafter H satisfies the non-orientation constraint OH(i).

19

(⇐). Suppose for all matches m : L ↪→ G on a D-combinatorial graph satisfying OG(i), the graph H, result of
the direct derivation G⇒r,m H, satisfies the non-orientation constraint OH(i).

Let m′ be the morphism R ↪→ H, which is a mono by construction of DPO rewriting and consider an added
arc e of ER \EL. Then, there exists eH in H such that m′(e) = eH .

Because H satisfies OH(i), eH has a reverse arc e′H in H. Since e is not in L, eH is not in G. Because G
satisfies OG(i), e′H is not in G (otherwise eH would also be in G). Thus, e′H is an added arc in H. By injectivity
of m′ there exists a unique i-arcs e′ in R such that m′(e′) = e′H . Then e and e′ are reversed arcs of ER \EL in R.
The proof holds by reversing the roles of H and G, as well as R and L.

Thereafter r satisfies the non-orientation condition Or(i).

Example 8 (Non-Orientation Preservation). The rule from Figure 14 also satisfies the non-orientation condi-
tion for the dimension 3: there is no deletion (in L\R) of a 3-arc without its reverse, the 3-arc added (in R\L)
is a loop. As we can see, the only oriented 3-arc in the rule belongs to the interface L∩R. The graph G in the
bottom left corner of Figure 15 satisfies the non-orientation constraint for the dimension 3. Thus, the direct
derivation yields a graph satisfying the non-orientation constraint for the dimension 3.

5.2. Dealing with the cycle constraint

Finally, the cycle constraint needs a comparable condition on transformation rules to acknowledge the
rules that guarantee consistency. The main issue when dealing with the cycle constraint is the description of
neighboring elements. The preservation of the first two topological constraints considered arcs always incident to
matched nodes. Since rules may only partially match cycles, we discuss constructions and properties that will
help us define a necessary and sufficient condition to preserve the cycle constraint.

Recall from Lemma 1 that the order of the dimensions for the cycle constraints does not matter in a
combinatorial graph when considering the constraint on the whole graph.

5.2.1. Rule completion

(a) (b)

Figure 16: i j-completion of a rule: implicit arcs in an i ji j-cycle are added.

First, since the cycle constraint characterizes cycles of length 4, if there is an i ji-path or a ji j-path in L, we
can add the missing arc to make a cycle. In other words, if there is an i ji-path p in the left-hand side L of a rule
r and we apply r to a graph G that satisfies CG(i, j) via the match morphism m : L ↪→ G then there is a j-arc
of source m(t(p)) and target m(s(p)) in G. If not already in the rule interface, this j-arc can be added to L∩R
without modifying the result of the direct transformation G⇒r,m H. For instance, we can add the missing j-arcs
to the rule of Figure 16a and get the rule of Figure 16b. The application of either rule results in the same graph.
However, it is easier to use the latter construction because it clarifies the cycles in the rule. Consequentially,
when considering the cycle constraint in a rule, we first impose the completion of every i ji-path and ji j-path (in
L and R). We call this operation the i j-completion of the rule and assume that every rule is i j-completed.

20

Assumption 4. Every rule is i j-completed.

5.2.2. Alternating paths

Given a rule r and a match m : L ↪→ G, an i ji j-cycle in G is split into (possibly empty) elements of G\m(L),
m(L∩R), and m(L\R). The elements of G\m(L) are not matched by the rule and are left unchanged by the rule.
The elements of m(L∩R) belong to the rule interface and are not modified. Therefore, the only part that raises
concern consists of the elements in m(L\R). If we guarantee that for each path in m(L\R) coming from the
cycle, a similar path exists in m′(R\L), by concatenation with elements of m′(R∩L) and elements of H \m′(R),
we reconstruct a cycle in H.

Example 9 (Intuition for Cycle Preservation). Figure 17, where all arcs are considered non-orientated, illus-
trates a rule that deletes a 3-arc between nodes c and e, and essentially exchanges the roles of c and e between
the top 1212-cycle and the bottom cycle. In the right-hand side of the rule, nodes a, b, d and e belongs to a
cycle. The question is whether the images of c, f , and h also belong to a cycle in H. As we can see, there is a
12-path from f to h in both L and R. Thus, the image of the path in G belongs to a cycle in G. Therefore, the
unmatched part can be concatenated with the image of the path from R. As a result, we get back the cycle in H.
This example provides intuition to preserve cycles with rules, explained more thoroughly in this section.

3

1

1
2

2

3

1

2

2

1

3

3

1

12

2

3

1

2

2

1

3

3

3

1

1
2

2

2

1

1

12

2

2

1

a

b

d

c

f

e

g

h

a

b

d

c

f

e

g

h

a

b

d

c

f

e

h

a

b

d

c

f

e

h
L R

G H

Figure 17: A rule preserving the cycle constraint for the dimensions 1 and 2.

Formally, elements in L that can be matched to an i ji j-cycle in G are paths labeled by a word on the alphabet
{i, j} such that two consecutive letters are distinct. We call (i, j)-alternating such paths. We want to ensure that
if L contains an (i, j)-alternating path with all arcs in EL \ER, R also has an (i, j)-alternating path with the same
source, target, and label. What we want to consider are only the longest paths. Since L may contain cycles with
all arcs in EL \ER, we need to enforce non-overlapping conditions to consider maximal elements. We say a path

21

overlaps if it contains an arc twice (note that it may include a node several times). We will try to preserve paths
to guarantee the preservation of the cycle constraint on combinatorial graphs. We call optimal paths such paths.

Definition 14 (Optimal Path). Let r = L� R be a D-combinatorial rule. We say the path p = vs vt is
(i, j)-optimal in L (resp. in R) if it satisfies the following properties:

• The path p is an (i, j)-alternating path (i.e., path labeled by a word on the alphabet {i, j} such that two
consecutive letters are distinct).

• All arcs of p are deleted arcs of EL \ER (resp. added arcs of ER \EL).

• The path p does not overlap.

• The path p is maximal (with repect to the inclusion of paths) between paths that satisfy the first 3 properties.

• The path p does not belong to an i ji j-cycle in L (resp. in R).

Example 10 (Optimal Path). Consider the left-hand side of the rule from Figure 17. The 1212-cycle adcb
forms a (1,2)-alternating path. This path is non-overlapping and maximal. However, it is not optimal as it
contains interface arcs (the arc between a and d and the one between b and a). Restricted to the 21-path dcb,
it is still not optimal as it is part of an i ji j-cycle. The 132-path bceh is labeled with three distinct dimensions.
Therefore it is not an alternating path, and a fortiori not an optimal path. Conversely, the 131-path f ecb is a
maximal non-overlapping (1,3)-alternating path. As it contains only deleted arcs and is not part of a 1313-cycle,
the path is (1,3)-optimal.

Note that any optimal path satisfies the following straightforward property: if p = vs vt is an (i, j)-optimal
path in a D-combinatorial rule r = L� R, then vs and vt are distinct interface nodes of L∩R.

Consider again the 1212-cycle of source f in the graph G from Figure 17. The cycle can be divided into an
optimal path from f to h (the red 12-path going through e) and a path from h to f in G\m(L) (the black 12-path
going through g). For any optimal path that is not a cycle in L, we impose a path with the same source, target,
and label in R and call coherent such paths.

Definition 15 (Coherence). Let r = L� R be a D-combinatorial rule. An optimal path in L (resp. in R) is
coherent with an optimal path in R (resp. in L) if they share the same source, target, and label. An optimal path
in r is coherent if it admits a unique, coherent optimal path in the other side of the rule.

To guarantee that a combinatorial rule preserves the cycle constraint, we impose that every optimal path is
coherent.

Definition 16 (Cycle Condition). A D-combinatorial rule r = L� R satisfies the cycle condition Cr(i, j) if it
satisfies the following sub-conditions:

1. Any (i, j)-optimal path in r is coherent.
2. Any preserved node of L∩R that is the source of an i-arc (resp. j-arc) in EL \ER is the source of an i-arc

(resp. j-arc) in R that either belongs to an i ji j-cycle or to an (i, j)-optimal path.
3. Any added node of VR \VL is the source of an i-arc (resp. j-arc) in R that either belongs to an i ji j-cycle or

to an (i, j)-optimal path.

Note that, in a D-combinatorial rule r that satisfies the cycle condition Cr(i, j), there can be no (i, j)-optimal
path that consists of a single arc. Indeed, such an arc would have to be a coherent optimal path and therefore in
L∩R, which contradicts the optimality of the path.

Example 11 (Cycle Condition). One can easily verify that the rule from Figure 17 satisfies the cycle condition
of Definition 16. We provide more examples in Figure 18, where arcs are still considered non-oriented, interface

22

(a)

(b)

Figure 18: Rules that satisfies the cycle condition Cr(1,2).

elements are drawn in black, and added or deleted elements are drawn in red. For instance, the rule of Figure 18a
transforms two 1212-cycles, where the 2-arcs are loops, into a single 1212-cycle on four nodes. In L, each node
is the source of an i ji j-cycle, L admits no (1,2)-optimal path. Note that R does not add any (1,2)-optimal path.
All nodes have their incident 2-arcs in L deleted but are the source of a 2-arc that belongs to a cycle in R. In
the rule of Figure 18b, L consists of two (1,2)-optimal paths. The path abc is coherent in L as there is also a
(1,2)-optimal path between a and c in R. Similarly, the path de f is coherent in L. All nodes of L are interface
nodes with deleted 1-arcs and 2-arcs. Nodes a, c, d e, and f are the source of arcs that belong to an optimal path.
Node b is the source of a 1-arc and a 2-arc that belong to a 1212-cycle in R. Likewise, the added nodes h, i, and j
are the sources of a 1-arc and a 2-arc that belong to a 1212-cycle in R. Finally, an added node can also be the
source of an arc that belongs to optimal paths, such as node g.

5.3. Preserving the cycle constraint

Before detailing the theorem for cycle preservation, we will provide a preliminary result on the size of optimal
paths in a coherent rule.

Lemma 2. Let r = L� R be an i j-completed rule such that for all matches m : L ↪→ G on a D-combinatorial
graph satisfying CG(i, j), the resulting graph H of the direct derivation G⇒r,m H satisfies the cycle constraint
CH(i, j). Then any (i, j)-optimal path in L is of size 2.

Proof. Suppose an (i, j)-optimal path exists in L with elements in L \R of size 1. Without loss of generality,
we can suppose there is an i-arc e1 of source vs and target vt in L such that vs is the target of no j-arc and
vt is the source of no j-arc. When matched to G, the i ji j-cycle contains m(e1) and an (i, j)-alternating path

p = m(vt)
ji j
 m(vs) with all arcs in G \m(L). Below, the arc in m(L \R) is displayed in red whereas arcs in

G\m(L) are drawn in blue.

23

Therefore p is also in H. Since H satisfies the cycle constraint CH(i, j), p can be extended to an i ji j-cycle
with an i-arc of source m′(vs) and target m′(vt). As r is a D-combinatorial rule and H is a D-combinatorial graph,
this i-arc is in m′(R), which contradicts that e1 is in L\R.

Furthermore, an (i, j)-optimal path can not be of size greater than 4 as there exists no (i, j)-alternating path
of size greater than 4 without duplicate arcs in a D-combinatorial graph satisfying CG(i, j). The i j-completion of
the rule prevents it from being of size 3. Finally, the definition of optimality prevents it from being of size 4.

Therefore, any optimal path is of size 2.

Exploiting this characterization, we show that the cycle condition on a combinatorial rule is necessary and
sufficient to guarantee that its application on a combinatorial graph satisfying the cycle constraint results in a
graph that also satisfies the cycle constraint.

Theorem 3 (Cycle Preservation). Let r = L� R be a D-combinatorial rule.

The rule r satisfies the cycle condition Cr(i, j) if and only if for all matches m : L ↪→ G on a D-combinatorial
graph satisfying CG(i, j), the graph H, result of the direct derivation G⇒r,m H satisfies the cycle constraint
CH(i, j).

Proof. Given a match m : L ↪→ G on a D-combinatorial graph satisfying CG(i, j), let m′ denote the morphism
R ↪→ H, which is a mono by construction.

(⇒). Suppose r satisfies the cycle condition Cr(i, j). Consider m : L ↪→ G a match on a D-combinatorial graph
G satisfying CG(i, j), and H the result of the direct derivation G⇒r,m H. Let vH be a node of H.

1. Suppose that vH ∈ H \m′(R), then vH is a node of G. Thus, vH is the source of an i ji j-cycle in G since G
satisfies CG(i, j).

(a) If no arc of this cycle is in m(L\R), then this cycle is left unchanged by the rule and vH is the source
of the same i ji j-cycle in H.

(b) Otherwise, certain parts of the cycle are in m(L\R). Because vH is in G\m(L), two nodes m(vs) and
m(vt) satisfies :

• Nodes m(vs) and m(vt) belong to the cycle.
• Nodes m(vs) and m(vt) are in m(L∩R).

• All arcs from the cycle in p = m(vs)
w
 m(vt) are in G\m(L).

• Node vH belongs to p.
Since vH is in G\m(L), its incident arcs cannot be in m(L) and p is a path, the size of which is at

least 2. If w′ completes w to get a cycle, the remaining part of the cycle is a path m(vt)
w′
 m(vs),

which is the image of an (i, j)-alternating path in L. This (i, j)-alternating path consists of interface
arcs and optimal paths. Since any optimal path is coherent according to sub-condition 1, there is a
similar path in m′(R). Either way, their concatenation with m′(vs)

w
 m′(vt) is an i ji j-cycle of source

vH in H.
2. Otherwise, vH is in m′(R). Denote v the node in R such that m′(v) = vH .

(a) Suppose v is a node of L∩R and v is not the source of an i-arc in L. Since v belongs to L∩R, vH is a
node of G. As G satisfies CG(i, j), vH is the source of an i ji j-cycle in G. From that point, the proof
is similar to cases 1a and 1b depending on whether the cycle is partially matched.

24

(b) Otherwise, assume v is a node of L∩R, but v is the source of an i-arc in L. Since r is a combinatorial
rule, v is the source of an i-arc in R. Sub-condition 2 guarantees that this i-arc either belongs to an
i ji j-cycle or to an (i, j)-optimal path in R. In the former case, the image by m′ of the cycle yields
an i ji j-cycle of source vH in H. In the latter, let p = vs

w
 vt be the (i, j)-optimal path in R. By

sub-condition 1, p is coherent and there exists an (i, j)-optimal path p′ = vs
w
 vt in L. Without

loss of generality, assume that the first arc of p′ is labeled by i. Since G satisfies CG(i, j), m(vs)
is the source of an i ji j-cycle in G and the first part of this cycle is m(p′). The remaining arcs of
the cycle can be subdivided into elements of G\m(L) left unchanged by the rule, interface arcs of
m(L∩R) preserved by the rule, and (i, j)-optimal paths. Any such optimal path is coherent from
sub-condition 1 and yields a similar optimal path in R. Their concatenation with m′(p) is a cycle.
When considering it with vH instead of m(vs), it is an i ji j-cycle of source vH in H.

(c) If v is a node of R \L, the proof is similar to case 2b, exploiting sub-condition 3 instead of sub-
condition 2.

Thereafter H satisfies the cycle constraint CH(i, j).

(⇐). Suppose for all matches m : L ↪→ G on a D-combinatorial graph satisfying CG(i, j), the result H of the
direct derivation G⇒r,m H satisfies the cycle constraint CH(i, j).

Sub-condition 1 of the cycle condition

Suppose there is an (i, j)-optimal path vs
w
 vt in L. By optimality, vs 6= vt . According to Lemma 2, the path

is of size 2. The path m(vs
w
 vt) belongs to an i ji j-cycle in G because G satisfies CG(i, j). The two arcs that

define the path m(vt)
w
 m(vs) are in G\m(L\R). Thus, they are in H, where they belong to an i ji j-cycle. The

incident arcs condition guarantees that the path m′(vt)
w
 m′(vs) comes entirely from R \L and is a maximal

non-overlapping path. Since the path contains two arcs and have distinct endpoints, it cannot overlap. Therefore
it is the (i, j)-optimal path in R coherent with vs

w
 vt .

Suppose there is an (i, j)-optimal path p = vs
w
 vt in R and consider the cycle completion of the path in H.

It yields elements in G that belong to a cycle with arcs or vertices from m(L). Elements on this alternating path
are in m(L\R) by hypothesis on p. According to Lemma 2, the path is of size 2. The incident arcs constraint on
G ensures that it is an optimal path coherent with p.

Sub-condition 2 of the cycle condition

Consider a preserved node v of L∩R that is the source of an i-arc in L\R. Because r is a combinatorial rule,
sub-condition 1 of the weak incident arcs condition IG(i) guarantees that v is also the source i-arc in R\L (this
arc can not be in L∩R because v is already the source of an i-arc in L\R).

Let vH be the image of v by m′, i.e., vH = m′(v). Since H satisfies CH(i, j), vH is the source of an i ji j-cycle
in H. Depending on whether the whole cycle is present in R, v is the source of an i-arc in R that belongs either to
an i ji j-cycle or to an (i, j)-optimal path. The proof holds for a j-arc.

Sub-condition 3 of the cycle condition

Consider an added node v of R\L. Because r is a combinatorial rule, sub-condition 2 of the weak incident
arcs condition IG(i) guarantees that v is the source i-arc in R. Similar to the proof of sub-condition 2, this arc
belongs either to an i ji j-cycle or to an (i, j)-optimal path. The proof holds for a j-arc.

Thereafter r satisfies the cycle condition Cr(i, j).

Theorem 3 is stronger than the theorems presented in previous work for the preservation of the cycle
constraint. We also want to point out that Theorems 1, 2, and 3 express consistency preservation as simple
syntactic conditions on the rule. Intuitively, such conditions are possible because of our specific framework,
namely D-combinatorial graphs, which is highly regular.

25

6. Rule schemes using product

As we have seen in Section 2.3, products offer a simple way to apply transformations, such as arc deletion or
arc relabeling, on a global scale. Taking benefit from our specific graphs, we will use the product as a mechanism
to generalize transformations of D-combinatorial graphs in the context of the DPO approach.

Our product-based generalization of DPO rewriting will allow us to define a large family of operations on
combinatorial graphs taking advantage of their regularity with respect to the dimensions of D. In Section 6.1, we
provide more details about pattern graphs introduced in Section 3.1. Pattern graphs carry words of dimensions as
labels on their arcs and enable us to select subgraphs to be modified in the combinatorial graphs. In Section 6.2,
we define graph scheme as a way to encompass a transformation to be applied globally on a graph. We call
instantiation of a graph scheme the operation (relying on a graph product) that modifies a pattern graph based
on a graph scheme. We also define rule schemes as spans in the category of graph schemes. Similarly, we can
instantiate a rule scheme by instantiating each of its graph schemes with the same pattern graph. Since we
can instantiate a rule scheme with any pattern graph (assuming the right set of labels), rule schemes are rule
abstractions, encoding infinitely many possible rewriting. Finally, in Section 6.3, we will discuss the mechanisms
involved in the application of rule schemes.

6.1. Global extraction of paths

In a D-combinatorial graph, every node is the source of a unique arc for each dimension in D. Therefore,
given a word w on D, every node is the source of a unique w-path. In the relabeling operation defined in
Section 2.3, we used pairs of the form (i, j) to rename a label i into j. Here, we will consider, more generally,
pairs of the form (w, i) to create an i-labeled arc between the source and the target of a w-path.

The uniqueness of source and target per dimension makes it possible to build paths by following arcs forward
or backward. Thus, for a dimension i, we introduce the notation i to indicate that, from a given node v, the next
node in the path is the unique node v′, source of the i-arc whose target is v. We accordingly extend the labeling
alphabet of the graphs:

Definition 17 (Conjugate Dimensions). For any d ∈ D, we define the conjugate dimension d which yields the
conjugate alphabet D= D∪{d | d ∈ D}.

The conjugation is extended to words on D∗ such that the conjugate of w(1) . . .w(n) is w(n) . . .w(1).

Conjugation allows us to broaden the definition of a path in the case of D-combinatorial graphs. For a
D-combinatorial graph G = (V,E,s, t, l), we introduce the conjugate D-combinatorial graph G = (V,E∪E,s, t, l),
with E = {e | e ∈ E}. The functions s, t and l on arcs in E are the corresponding functions of G, i.e., for
e ∈ E, s(e) = s(e), t(e) = t(e) and l(e) = l(e). On arcs in E, the functions s, t and l rely on the inversion of the
underlying arcs, i.e., for e ∈ E, s(e) = t(e), t(e) = s(e) and l(e) = l(e). From now on, for w in D∗, w-paths of a
D-combinatorial graph will implicitly refer to the w-paths defined on its conjugate version. In short, such w-paths
are well-defined, and their target always exists because a node in G is the source and target of a unique i-arc for
each dimension i in D:

Fact 2. The incident arcs constraint guarantees the existence and uniqueness (up to the starting node) of paths
labeled by a sequence of conjugate dimensions.

In order to build rule schemes as an abstraction of rules, labels on the conjugate alphabet will be used to
encode the reconnection between nodes in the graph that supports the instantiation. We extend the definition
of pattern graph (from Section 3.1 to graphs labeled over subsets of D∗. Figure 19 provides an example of a
{ε,21,21}-pattern graph where nodes a, b, c and d are the sources of a singe ε-arc, a single 21-arc and a single
21-arc.

Intuitively, labeling arcs with paths offers greater freedom to characterize modified parts of the graphs and
create arcs from such complex paths. In general, any pattern graph can be used to instantiate a rule scheme. In

26

Figure 19: A pattern graph.

practice, pattern graphs will be extracted from the graph modified by the application of the rule scheme. We will
discuss in Section 6.3 how to derive pattern graphs from a combinatorial graph. In the sequel, W is a finite set of
words of D∗.

6.2. Rule schemes

Following the idea given in Section 2.3 of representing a graph modification with a product, we use a graph
to represent the modification to be carried out on the pattern graph. Since pattern graphs belong to the category
W-Graph and we are trying to build objects from the category D-Graph, the modification will rely on a function
from W to D. Therefore, the product is expressed in the category of graph scheme. The construction is similar to
the relabeling operation, with the functors EΣ and πΣ replaced by:

• An embedding functor ED : W-Graph→ (W×D)-Graph that transforms the arcs labeled by a word w in
W into a set of |D| arcs labeled (w,d), for all d ∈ D.

• A projecting functor πD : (W×D)-Graph→ D-Graph that only keeps the second part of the arc labels.

To ease certain proofs and constructions, we will also consider the projecting functor πW : (W×D)-
Graph→W-Graph that only keeps the first part of the arc labels.

The instantiation ι(Π,P) of a (W,D)-graph scheme Π along a W-pattern graph P is similar to the relabeling
operation given in Section 2.3. The instantiation is achieved as follows :

1. Embed P in the category of (W×D)-graphs to get ED(P).
2. Construct the product ED(P)×(W×D) Π.
3. Apply the projecting functor πD to ED(P)×(W×D) Π and get ι(Π,P), the instantiation of Π along P :

ι(Π,P) = πD(ED(P)×(W×D) Π).

This construction is summarized by the following commutative diagram:

ι(Π,P) ED(P)×Π Π

P ED(P) 1W×D

πD

!Π

ED
!ED(P)

where the square is a pullback, and double arrows represent functors.

Example 12 (Instanciation of a Graph Scheme). Let us take back the pattern graph from Figure 19, which
is displayed at the bottom left corner in Figure 20 (graph P). As depicted in Figure 20, the pattern graph is
first embedded in the category ({21,21,ε},{1,2})-Graph to give the graph ED(P), placed just above. The

27

graph scheme Π is built on the graph from Figure 2 and depicted on the right. Arc labels are extended as
follows: the 2-loop is turned into a (21,2)-loop on x whereas the 1-arcs are replaced by (ε,1)-arcs. The product
ED(P)×(W×D Π of ED(P) and Π is shown in the center of the figure. Applying the projecting functor erases the
first part of the labels and yields ι(Π,P) = πD(ED(P)×(W×D) Π), the top graph of Figure 20.

Figure 20: Instantiation of a graph scheme.

Definition 18 (Rule Scheme). A (W,D)-rule scheme S = L� R, is a rule in the category of (W,D)-graph
schemes. The core of the rule scheme S is the projection of S in the category D-Graph:

πD(S) = πD(L)� πD(R).

Note that the core of a rule scheme is the rule built by deleting the labels part on W. For instance, the rule of
Figure 21b is the core of the rule scheme from Figure 21a. To apply a rule scheme to a graph, we instantiate each
graph of the rule thanks to a product with the same pattern graph.

28

(a) (b)

Figure 21: A ({21,ε},{1,2})-rule and its core.

Definition 19 (Rule Scheme Instantiation). Let S = L� R be a (W,D)-rule scheme and P a W-pattern graph.
The scheme instantiation ι(S ,P) of S on P is the rule ι(L,P)� ι(R,P).

The definition of rule scheme instantiation is well-founded.

Proof. Since the pattern graph P and the rule schemes are defined on the same set of words W, the products are
well-defined.

Example 13 (Instantiation of a Rule Scheme). Figure 22 shows the instantiation of the rule scheme from
Figure 21a with the pattern graph of Figure 19. Note that the instantiation of the graph scheme in Figure 20 is the
instantiation of the right-hand side of the rule and that we do not detail the instantiation of the left-hand side.

We now explain how the instantiation of a rule scheme can be used to obtain a rule that is applicable to a
combinatorial graph.

6.3. Application of rule schemes

The application of a rule scheme S to a D-combinatorial graph G is done in a series of steps. First, a pattern
graph P = (VP,EP,sP, tP, lP) for S is built from G. This construction essentially relies on the replacement of
G by its W-transitive closure. The idea is to replace any path v v′ in G labeled by a word w of W by an arc
e ∈ EP such that sP(e) = v, tP(e) = v′ and lP(e) = w. Formally, the construction is achieved using a functor.

Definition 20 (Pattern Functor). Let D be a finite set of dimensions and W a finite set of words in D∗.
The W-pattern functor is the functor P : D-Graph→W-Graph from D-combinatorial graphs to W-pattern

graphs defined as follows:

• For a D-combinatorial graph G, the W-pattern graph P(G) has the same nodes as G and, for w ∈W, a
w-arc of source v1 and target v2 whenever there is a w-path v1

w
 v2 in G.

• For a D-combinatorial graph morphism m : G→ F, the W-graph morphism P(m) : P(G)→ P(F) has the
same node morphism as m and an edge morphism that sends the unique w-arc of source v in P(G) to the
unique w-arc of source v in P(F).

Proof. Let G be a D-combinatorial graph, then for all v in vG and all w ∈W, there exists a unique path p of
source v and labeled w in G. Therefore, the functor is well-defined on objects. Furthermore, the uniqueness
of w-path in G yields uniqueness of w-arcs in P(G), for each node of G. Thus, the functor is well-defined on
morphisms.

29

Figure 22: Instantiation of a rule scheme.

To be able to apply a rule scheme on a graph G , we still need to ensure that the instantiation of the left-hand
side of the rule scheme produces a graph that can be matched in G . Therefore we will now make precise the two
following points:

• A selection mechanism should specify what part of the P(G) will be used as the pattern graph.

• A method should specify how to construct the match from the instantiated rule.

Let us first deal with the selection mechanism and assume we want to apply the transformation to a topological
cell in an object modeled by a graph G , i.e., a maximal subgraph built using a subset of the labeling alphabet. We
may not know all the nodes in the graph affected by the transformation, but we know for sure that the nodes
corresponding to the cell are concerned. If we specify one node that must be in the transformed part of the graph,
then the transformed part is the subgraph of P(G) containing the node and all nodes reachable to and from this
node. Formally, let us define Pv (for a node v in G) as the maximal subgraph of P(G) such that v is in Pv and, for
all arcs e such that s(e) or t(e) is in Pv, then e, s(e), and t(e) are in Pv. For all nodes v in G , there is a unique
graph Pv and a unique inclusion pv : Pv ↪→ P(G).

Example 14 (Pattern Functor). Consider the combinatorial graph depicted in Figure 23a. The application of
the W-pattern functor for W= {ε,21,21} yields the W-graph of Figure 23b. The 3-arcs are discarded. Each
node is the source of an ε-loop, the 21 and 21-paths are turned into arcs. The application of the pattern functor
results in three strongly connected components. The left one corresponds to Pg and Ph, the middle one to Pa, Pb,
Pc and Pd , and the right one to Pe and Pf . Note that the middle one corresponds to the pattern graph of Figure 19.

30

(a)

(b)

Figure 23: A {1,2,3}-combinatorial graph (a) and its image by the {ε,21,21}-pattern functor (b).

For each node v from G , the pattern graph Pv is unique. Given a graph scheme L from a rule scheme S ,
the product of the embedded pattern graph ED(Pv) and L is also unique. Therefore, given a node v from G , the
instantiation ι(L,Pv) is unique. However, node v from Pv may have been duplicated in the product construction.
Indeed, node v yields as many nodes in the product as nodes in L. Nevertheless, if we identify a node vL among
the nodes of L that we call a hook, the product yields a unique node (v,vL).

Let us assume that the maximal subgraph of ι(L,Pv) containing the node (v,vL) is actually ι(L,Pv), i.e.,
ι(L,Pv) is connected. If there is a mono ι(L,Pv) ↪→ G mapping (v,vL) to v, then the morphism is unique. This
uniqueness comes from the incident arcs condition verified by G . Indeed, each arc incident to (v,vL) can only
be sent to the unique arc incident to v with the same label. The mapping of the arcs incident to (v,vL) provides
a mapping of the nodes adjacent to (v,vL). There is a unique way to propagate this mapping and we get the
uniqueness on m : ι(L,Pv) ↪→ G such that m((v,vL)) = v.

Example 15 (Construction of the Match). If we identify y as a hook in the left hand side of the rule scheme
of Figure 22, then the node (y,a) is uniquely defined in the instantiated rule of the same figure. As we can see,
there is a unique mono ι(L,Pa) ↪→ G (where G is the combinatorial graph of Figure 23a) that maps (y,a) to a.
It is the mono that maps (y,a) to a, (y,b) to b, (y,c) to c, (y,d) to d and the arcs accordingly. The morphism is
depicted by the grey dashed arrows in Figure 24.

Note that if ι(L,Pv) is not connected, there might not be uniqueness of the mono ι(L,Pv) ↪→ G . For instance,
if two distinct components of ι(L,Pv) are isomorphic, we can exchange their image and get another mono. This
limit can be bypassed whenever the partition arises from L. In this case, if we identify one hook pair (v,vL) per
component of L such that all the corresponding pattern graph Pv’s are isomorphic, we restore the uniqueness of
the mono. Note that the construction of the pattern graph guarantees that it is connected. The embedding functor
construction ensures every arc incident to each node of L is associated with a unique arc in ED(Pv). Therefore,
the specification of hook pairs is sufficient to guarantee the uniqueness of match, should it exist. In this case, the
local propagation exploiting the incident arcs property provides an algorithm to build the match.

As the instantiation mechanism is rather general, it can produce rules that may not be applicable in some
cases. We could impose conditions on the labels used in the rule scheme, but we may unnecessarily restrict our
framework expressiveness. Therefore, we believe it is up to the user to check on examples that any written rule
corresponds to the desired operation.

31

Figure 24: Mono from the instantiated left-hand side of the rule to the combinatorial graph.

We have discussed how we can apply a rule scheme to a combinatorial graph; let us now wrap up the whole
process. To apply a (W,D)-rule scheme S to a D-combinatorial graph G , we first extracted a pattern graph P
from G . This pattern graph P is built in two steps: the application of the W-pattern functor and the choice of
inclusions pv : Pv ↪→ P(G) (i.e., the choice of a node v in VG for each hook in L) to specify where the operation
should be done. With this pattern graph, we instantiate the (W,D)-rule scheme to get a D-rule. Thanks to
the hook nodes in L, we construct the unique mono m : ι(S ,P) ↪→ G and finally realize the direct derivation
G ⇒ι(S ,P),m H . An example of the complete pipeline is given in Figure 25 where both the hook node in the
rule scheme and the chosen node in the combinatorial graph are filled in green. The transformation in the graph
is put forward by the red coloring.

The complete construction can be summarized by the following commutative diagram:

1W×D

ED(Pv) L• K R

Pv ED(Pv)×L• ED(Pv)×K ED(Pv)×R

P(G) ι(L•,Pv) ι(K,Pv) ι(R,Pv)

G D H

!ED(Pv) !L• !K !R

pv

ED

πD πD πD

m
P

where L• means that L has a hook per connected component. The top span L•←↩ K ↪→ R is the rule scheme.
The second span Pv×L•←↩ Pv×K ↪→ Pv×R is obtained by the product with Pv (a subgraph of the embedding

32

(21,2)

y

(ε,1) (ε,1)

x

2

2

2

2

(x,a)

(x,b)

(x,c)
(x,d)

(y,a) (y,b)

(y,c)

(y,d)

1

1

1

1

1

1

1

1

P

21 21

ε

21

21

2121

21
ε

ε
ε

21

a
b

c
d

(21,1)

y

L R

(y,a) (y,b)

(y,c)

(y,d)

Scheme
Instantiation

1

1
1

1

ι(L,P) ι(R,P)

21 21

ε

21

21

2121

21
ε

ε
ε

21

a
b

c
d

e

f

21
21

εg

h

21
21

ε

ε

ε

1

2

1

1

2

2
2

1

a b

cd

1

1

1

2

2

2

3

3

3

3

e

f

g

h

Pattern
Functor

Choice of
Maximal

Subgraph

G H

2 2

2
2

a b

cd

1

1

1

2

2

2

3

3

3

3

e

f

g

h

2

2

2
2 1

1
1

1

xa
xb

xc

xd

Figure 25: Complete process to transform a combinatorial graph with a rule scheme.

of G). The third span is obtained with the projecting functor and yields the last span by standard DPO-rewriting.

As a final remark, let us point out that the set of words W has been given a priori for the rule scheme and
the pattern graph. As of now, a W is just a superset of all words used to label a given W-pattern graph or the
(W,D)-graph schemes of a rule scheme. In the following three sections, we will impose conditions on W to lift
the condition for the preservation of our three elementary constraints. Nonetheless, the choice of W inherently
comes from the transformation that we want to describe through the rule scheme.

7. Incident arcs consistency in rule schemes

We now lift the incident arcs condition from D-combinatorial rules to rule schemes. Since rule instantiations
are essentially defined through a product, it is natural that each of the two members of the product should
be subject to conditions to ensure that the resulting instantiation fulfills the intended incident arcs condition.
Therefore, we will start by defining a first condition for the pattern graphs and a second one for the rule schemes.
Afterward, we will show that, under such hypotheses, the instantiation of a consistent rule scheme via a consistent
pattern graph yields combinatorial rules.

Definition 21 (Incident Arcs Constraint for Pattern Graphs). A W-pattern graph P = (VP,EP,sP, tP, lP) satisfies
the incident arcs constraint IP(W) if every node v in VP is the source of a unique w-arc and the target of a
unique w-arc for each word in W.

Note that when the pattern graph P is defined as a maximal subgraph of a D-combinatorial graph G generated
from a given node and the words of W, P trivially satisfies the incident arcs constraint for pattern graphs
IP(W). For instance, the pattern graph from Section 6 (see Figure 19) satisfies the incident arcs constraint
for pattern graph on the set of words {ε,21,21}. Let us point out that the incident arcs constraint on pattern

33

graphs guarantees that when building a product using such a pattern graph, all arcs of a graph scheme have a
corresponding arc for each node in the embedded pattern graph. Let us now introduce a counterpart condition for
rule schemes:

Definition 22 (Incident Arcs Condition for Rule Schemes). A (W,D)-rule scheme S = L� R satisfies the
incident arcs condition IS (i) for a dimension i in D if the core πD(S) of S satisfies the incident arcs condition
IπD(S)(i). If the core πD(S) of S is a D-combinatorial rule, S is said to be a (W,D)-combinatorial rule
scheme.

In other words, a (W,D)-rule scheme S satisfies IS (i) for a dimension i in D if :

1. Any preserved node of πD(L∩R) is the source (resp. target) of an i-arc in πD(L) if and only if it is the
source (resp. target) of an i-arc in πD(R).

2. πD(L) satisfies I(VL\VR),πD(L)(i).
3. πD(R) satisfies I(VR\VL),πD(R)(i).

Let us recall that the first two sub-conditions concern the weak-incident arcs conditions, while the last one is
equivalent to the dangling arc condition (also called gluing condition).

Example 16 (Incident Arcs Condition for Rule Schemes). The rule scheme from the previous section (see
Figure 21a) satisfies IS ({1,2}). The core of the rule scheme is given in Figure 21b. Node y belongs to the
interface. It is the source of a 1-loop in L. It is also the source and target of an i-arc in R. Thus, the first
sub-condition holds. There is no deleted nod. The added node x is the source of a 2-loop and the source and
target of a 1-arc. Thus the second and the third sud-conditions also hold. In the end, the rule scheme is a
{ε,21,21},{1,2})-combinatorial rule scheme.

Theorem 4 (Lifting the Incident Arcs Condition to Rule Schemes). Let i be a dimension in D and S = L� R
be a (W,D)–rule scheme.

The rule scheme S satisfies incident arcs condition IS (i) if and only if for all W-pattern graph P that
satisfies the incident arcs constraint IP(W), the scheme instantiation ι(S ,P) satisfies the incident arcs condition
Iι(S ,P)(i).

Proof. Let S = L� R be a (W,D)-rule scheme and i ∈ D be a dimension.

(⇒). Assume that the core πD(S) of S satisfies the incident arcs condition IπD(S)(i). Consider a W-pattern
graph P that satisfies the incident arcs constraint IP(W).

Let K = L∩R be the interface of the rule scheme, pk be the morphism ED(P)×(W×D) K→ ED(P), pr be
the morphism ED(P)×(W×D) R→ ED(P), kp be the morphism ED(P)×(W×D) K → K, rp be the morphism
ED(P)×(W×D) R→ R, such that the morphisms come from the following products:

ED(P)×(W×D) K ED(P)×(W×D) R

K ED(P) R

kp
pk

pr
rp

Sub-condition 1 of the weak incident arcs condition.

Let v be a preserved node of ι(K,P). Thus, v is a preserved node of ED(P)×(W×D) K and there are two nodes
a in ED(P) and u in K such that pk(v) = a and kp(v) = u. If v is the source of an i-arc in ι(L,P) then there is a
word w in W such that v is the source of an arc labeled (w, i) in ED(P)×(W×D) L. By construction of the product,
there is an arc of source a in ED(P) and an arc of source u in L both labeled (w, i). Since πD(S) satisfies the
incident arcs condition IπD(S)(D), there is a word w′ in W such that u is the source of an arc labeled (w′, i) in

34

R. Since P satisfies the incident arcs constraint IP(W), the embedding functor EW ensures the existence of an
arc labeled (w′, i) in ED(P) of source a. Therefore, v is the source of an arc labeled (w′, i) in ED(P)×(W×D) R,
transformed into an i-arc in ι(R,P) by the projecting functor.

The proof holds for the target of an i-arc in ι(L,P) and for the source or target of an i-arc in ι(R,P). Thereafter,
any preserved node of ι(K,P) is the source (resp. target) of an i-arc in ι(L,P) if and only if it is the source (resp.
target) of an i-arc in ι(R,P).

Sub-condition 2 of the weak incident arcs condition.

Let v be an added node of ι(R,P) \ ι(K,P). Thus, v is a node of ED(P)×(W×D) R \ED(P)×(W×D) K and
there are two nodes a in ED(P) and u in R \K such that pr(v) = a and rp(v) = u. Since πD(S) satisfies the
incident arcs condition IπD(S)(D), u is the source of a unique i-arc in πD(R). This i-arc yields an arc labeled
(w, i), for a word in w in W, that is the only arc in R of source u having i as the second part of its label. Since P
satisfies the incident arcs constraint IP(W), the embedding functor EW ensures the existence and uniqueness
of a (w, i)-arc of source a. Therefore, there is an arc labeled (w, i) of source v in ED(P)×(W×D) R and it is the
only arc of source v having i as the second part of its label. This arc is transformed into an i-arc in ι(R,P) by the
projecting functor. Thus, there is a unique i-arc of source v in ι(R,P).

The proof holds for an i-arc of target v. Thereafter, any added node of ι(R,P)\ ι(K,P) is the source (resp.
target) of a unique i-arc and ι(S ,P) satisfies sub-condition 2 of the weak incident arcs condition.

Dangling condition.

The proof for a node deleted from ι(L,P) \ ι(K,P) is the same as the proof for a node added in ι(R,P) \
ι(K,P).

Thereafter, ι(S ,P) satisfies the incident arcs condition Iι(S ,P)(D).

(⇐). Assume that for all W-pattern graph P that satisfies the incident arcs constraint IP(W), the scheme
instantiation ι(S ,P) satisfies the incident arcs condition Iι(S ,P)(D).

In particular, consider the terminal graph 1W. Then ι(S ,1W) is the core πD(S) of S . Thus πD(S) satisfies
the incident arcs condition IπD(S)(i).

Thereafter, the rule scheme S satisfies incident arcs condition IS (i).

Provided that pattern graphs and rule schemes satisfy certain conditions, which can be verified by direct static
analysis, then Theorem 4 states that all rules obtained by instantiation verify the incident arcs conditions.

Example 17 (Lifting the Incident Arcs Condition to Rule Schemes). The rule scheme from Figure 21 is a
{ε,21,21},{1,2})-combinatorial rule scheme. Its instantiation with the pattern graph of Figure 19 yields the
rule of Figure 22, which satisfies the incident arcs condition for the dimensions 1 and 2.

Likewise, we will study constraints on pattern graphs and conditions on rule schemes for the non-orientation
and cycle properties.

8. Non-orientation consistency in rule schemes

By analogy with the extension of the incident arcs condition, we study the condition of non-orientation.
First, we give a constraint on pattern graphs and a condition on the rule schemes such that scheme instantiation
produces a rule that satisfies the non-orientation condition.

Definition 23 (Non-Orientation Constraint for Pattern Graphs). A W-pattern graph P satisfies the non-orientation
constraint OP(W) if for every w in W, w is also in W and every w-arc in P admits a reverse w-arc.

35

If the pattern graph P is built on a D-combinatorial graph G that satisfies the non-orientation constraint
OG(D), then P trivially satisfies the non-orientation constraint for pattern graphs OP(W). For instance, the
pattern graph from Section 6 (see Figure 19) satisfies the non-orientation constraint for pattern graph on the set
of words {ε,21,21}. The non-orientation constraint on pattern graphs ensures that, for all words w in W, arcs
labeled w and w in the graph scheme yields arcs and reverse arcs in the product construction.

Definition 24 (Non-Orientation Condition for Rule Schemes). A (W,D)-rule scheme S = L� R satisfies the
non-orientation condition OS (i) for a dimension i in D if :

• The core πD(S) of S satisfies the non-orientation condition OπD(S)(i).

• For any arcs e and e′ in S such that1lπD(S)(πD(e)) = lπD(S)(πD(e′)) = i and e is the reverse arc of e′ in
πD(S), then lπW(S)(πW(e)) is the conjugate of lπW(S)(πW(e′)).

Example 18 (Non-Orientation Condition for Rule Schemes). The rule scheme given in Section 6 in Fig-
ure 21a satisfies the non-orientation condition OS (1). Indeed, its core rule (see Figure 21b) contains a 1-loop in
L and two reverse i-arcs in R. The 1-arcs in the right hand side of the core rule are (1,ε)-arcs in the rule scheme,
thus the parts of the label on W are conjugate words.

Theorem 5 (Lifting the Non-orientation Condition to Rule Schemes). Let i be a dimension in D and S = L� R
be a (W,D)-combinatorial rule scheme.

The rule scheme S satisfies the non-orientation condition OS (i) if and only if for all W-pattern graph P
that satisfies both the incident arcs constraint IP(W) and the non-orientation constraint OP(W), the scheme
instantiation ι(S ,P) satisfies the non-orientation condition Oι(S ,P)(i).

Proof. Let i be a dimension D and S = L� R be a (W,D)-combinatorial rule scheme.

(⇒). Assume that the rule scheme S satisfies the two sub-conditions and consider a W-pattern graph P that
satisfies IP(W) and OP(W).

Without loss of generality, let us consider the case of ι(L,P)\ ι(R,P). Since πD(S) satisfies OπD(S)(i) and
IπD(S)(D), L\R always contains an arc and its reverse. Theses arcs have conjugate words on the first part of
their label. Because P satisfies OP(W), the product pairs these arcs with reverse arcs of πD(ED(P)). Thus, the
product creates reverse arcs in ι(L,P).

Thereafter, ι(S ,P) satisfies Oι(S ,P)(i).

(⇐). Assume that for all W-pattern graph P that satisfies IP(W) and OP(W), the scheme instantiation ι(S ,P)
satisfies the non-orientation condition Oι(S ,P)(i). Similar to the proof of theorem 4, the terminal graph 1W gives
us the condition on the core of S .

For the second condition, consider an i-arc e in S such that πD(e) is an arc constrained by OπD(S)(i). Note
that since S is a (W,D)-combinatorial rule scheme, the reverse arc of πD(e) is unique (theorem 4). Let us
assume that lπW(S)(πW(e)) = w. Again, we build a scheme instantiation for S using a particular graph.

Intuitively, Gw is composed of 3 occurrences of SW\{w,w} glued together with a www-cycle, like this :

1Where lπD(S) stands for lπD(L), lπD(K) or lπD(R) (resp. lπW(S) stands for lπW(L), lπW(K) or lπW(R)) depending on whether e ∈ L, e ∈ K or
e ∈ R.

36

Formally1, let Gw = (Vw,Ew,sw, tw, lw) be the graph such that :

• Vw = {v1,v2,v3}.

• Ew = {e1,w,e1,w,e2,w,e2,w,e3,w,e3,w}∪E1∪E2∪E3 where Ek = {ek,w′ | w′ ∈W\{w,w}} for k = 1, 2 or 3.

• sw(ek,w) = vk, sw(ek,w) = vk+1, and sw(e ∈ Ek) = vk for k = 1, 2 or 3.

• tw(ek,w) = vk+1, tw(ek,w) = vk, and tw(e ∈ Ek) = vk for k = 1, 2 or 3.

• For any 1≤ k ≤ 3, for any w′ ∈W, lw(ek,w′) = w′.

Gw satisfies IP(W) and OP(W). In ι(S ,Gw), e yields 3 arcs e1, e2, and e3 labeled (w, i) and such that, for
k = 1, 2 or 3:

sι(S ,Gw)(ek) = (vk,sS (e)), tι(S ,Gw)(ek) = (vk+1, tS (e)).

Because the scheme instantiation ι(S ,Gw) satisfies the non-orientation condition Oι(S ,Gw)(i), the arcs e1,
e2, and e3 admit reverse arcs e−1

1 , e−1
2 , and e−1

3 . By construction of the product, they correspond to a (w, i)-arc in
S . Call it a. Since πD(S) satisfies OπD(S)(i), πD(a) is a reverse arc of πD(e).

By unicity, lπW(S)(πW(e)) is the conjugate of lπW(S)(πW(a)) and a = e−1.

Thereafter, the rule scheme S satisfies the non-orientation condition OS (i).

Example 19 (Lifting the Non-orientation Condition to Rule Schemes). The rule scheme of Figure 21 satis-
fies the OS (1) while the pattern graph of Figure 19 satisfies OP({ε,21,21}). Thus, the instantiated rule of
Figure 22 satifies the non-orientation condition for D-rules Or(1).

We are left with the study of the cycle property for rule schemes.

9. Cycles consistency in rule schemes

Lifting the incident arcs condition and the non-orientation condition from rules to rule schemes was pretty
straightforward. However, extrapolating the cycle condition relies on verifying whether a cycle in the scheme
will be instantiated into a cycle. The three sub-conditions of the cycle condition for an instantiated rule relate to
the arcs in ι(S ,P). The issue is thus to be able to verify if a cycle in L or R yields a cycle in ED(P)×(W×D) L or
ED(P)×(W×D) R without any prior knowledge on P. Intuitively, a pattern graph and a graph scheme can then be
seen as two orthogonal spaces: a path containing only moves in the graph scheme stays on the same node from
the pattern graph point of view and reciprocally. Thus, we understand that a path in the product of two graphs is
a cycle if and only if it is a cycle in both graphs.

1In the definition of Gw, all the arithmetic operations are described modulo 3

37

9.1. Global constraints on combinatorial graphs

The possibility of oriented arcs complicates the identification of cycles at the level of the rule scheme.
To bypass this difficulty, we broaden the local study to a global one and fully state the conditions on all the
dimensions.

First, we split the dimension set D between the oriented dimensions O and the non-oriented dimension N so
that1 OtN = D (meaning D= NtOtO). Furthermore, we denote ‖d‖ the integer value of d, ie ‖d‖= d if
d is in D and ‖d‖= d if d is in O. Therefore, conjugation is a bijection on D∗ such that d = d for d in O and
d = d for d in N.

In the sequel, we will consider D ⊆ N, split into D = OtN, and E ⊆ {(i, j) ∈ D2 | i < j} as the set of
exchangeable dimensions.

9.2. Path equivalence in combinatorial graphs

In this section, we will introduce a rewriting system on D∗. For a complete study of string rewriting systems,
we advise the reading of the first two chapters of [36]. Let us recall that a set A together with a binary relation −→
on A define an abstract reduction system (A,−→). +−→ is the transitive closure of −→ and ∗−→ is the reflexive and
transitive closure of −→. An abstract reduction system is confluent whenever two elements obtained from the
same ancestor have a common descendant. The system is noetherian if it contains no infinite reduction chain. A
string rewriting system on an alphabet Σ is a binary relation on Σ∗ and defines a reduction system via sub-string
rewriting.

The conjugate rewriting system for N and E is:

RN,E = {(i i,ε) | i ∈ D}∪{(ji, i j) | (i, j) ∈ (N∪O)2∪ (N∪O)2,(‖i‖,‖ j‖) ∈ E}.

Let us point out that RN,E is noetherian, but, for ‖N‖> 1, RN,E is not confluent.

The conjugate rewriting system encapsulates path reduction only based on their label. A word can be reduced
to another if both words label paths with the same endpoints. The first part of the set definition of RN,E states
that a possible simplification is the removal of two consecutive conjugate labels. When the label is in N, the
simplification corresponds to the traversal of an arc and its reverse. When the label is in O, an arc is traveled
back and forth. The second part of the set definition classifies which two consecutive dimensions can be inverted,
exploiting the cycle constraint on the underlying graph.

Lemma 3. For two words w and w′ in D∗, we denote P(w,w′) the following property: For any combinatorial

graph G satisfying OG(N) and CG(E), if there is a path vs
w
 vt then there is a path vs

w′
 vt .

Let w and w′ be two words of D∗. Then we have :

w ∗−→RN,E w′⇒ P(w,w′)

Proof. Let G be a D-combinatorial graph satisfying OG(N) and CG(E), and let v be a node of G. Let us show
the result of the lemma by induction on the number of steps in the reduction.

If there are no steps, w = w′, and the result is trivial. Otherwise there exists a sequence of reduction:

w = w0 −→RN,E w1 −→RN,E w2 −→RN,E . . .−→RN,E wk = w′

for some k ≥ 1. Suppose there is a path vs
w
 vt in G.

1Where AtB is the disjoint union of the sets A and B.

38

• If the reduction from w to w1 is of the form (i i,ε) (with i in D), there exists wp and ws in D∗ such that
w = wpi iws and w1 = wpws. Let v be the target of the wp-path starting at vs. Since v satisfies Iv(i), there
exists a node v′ and an i-arc e such that s(e) = v and t(e) = v′. Besides G satisfies OG(N). If i is in N then
e admits a reverse i-arc e′, otherwise i corresponds to the reverse traversal of e. Either way, i i is a cycle
and the target of the i i path of source v is v. Therefore the target of the wp path of source v is vs. We can
remove the i i-cycle and the target of the wpws-path of source vs is vt .

The case where i belongs to N and is a non oriented dimension is illustrated in the following figure:

The case where i belongs to O and is an oriented dimension is illustrated in the following figure:

• If the reduction from w to w1 is of the form (ji, ji) (with (i, j) in E), there exists wp and ws in D∗ such
that w = wp jiws and w1 = wp i j ws. Let v be the target of the wp-path starting at vs, and v′ be the target
of the ji-path starting at v. Because the w-path starting at vs has vt for target, the target of the ws-path
from v′ is vt . Since G satisfies CG(E), v is the source of a ji ji-cycle. By unicity of the i and j arcs, the
cycle contains v′, yielding a ji-path from v′ to v. The reverse traversal of this path is an ji-path from v to v′.
Therefore, the target of the i j-path starting at v is v′ and we can conclude that the target of the path labeled
w = wp i j ws starting at vs is vt .

The most generic case with both i and j being oriented is illustrated in the following figure:

By induction, since w1
∗−→RN,E wk = w′, there is a path vs

w′
 vt in G.

Note that the essential part of this lemma is about the possibility of switching two dimensions, which is a lot
simpler without oriented dimensions. From this lemma, we can derive straightforward corollaries:

1. If w ∗←→RN,E w′ then, in any combinatorial graph G satisfying OG(N) and CG(E), there is a path vs
w
 vt if

and only if there is a path vs
w′
 vt .

2. If w ∗−→RN,E ε , then, in any combinatorial graph G satisfying OG(N) and CG(E), a w-path is a cycle.

39

3. These results extends1to words ŵ and ŵ′ in W∗, we consider the flatten word in D∗ to use the reduction
system.

9.3. Preservation of consistency in rule schemes

The result of Lemma 3 can also be extended to W-pattern graphs obtained via the W-pattern functor on
D-combinatorial graphs. A word ŵ in W∗ labels a path vs vt in a W-pattern graph P if and only if the flatten
word labels a path vs vt in the underlying D-combinatorial graph G. Indeed the W-pattern functor extracts a
subset of the node set of G and turns w-paths (for w in W) into w-arcs. Therefore, we can reduce flatten words of
W∗ using RN,E and consider paths in P.

Definition 25 (Cycle Constraint for Pattern Graphs). A W-pattern graph P satisfies the cycle constraint CP(N,E)
if it is coherent with RN,E: for all words w,w′ in W∗, w can be rewritten as w′ by RN,E implies that for any w-path

vs
w
 vt in P, there is a w′-path vs

w′
 vt in P.

The cycle constraint for pattern graphs is quite restrictive. Yet, if the pattern graph P is built on a D-
combinatorial graph that satisfies OG(N) and CG(E), then P satisfies the cycle constraint for pattern graphs
CP(N,E) as a consequence of Lemma 3.

For instance, the pattern graph given in Figure 19 (see Section 6) satisfies the non-orientation constraint for
the set of exchangeable dimensions {(1,2)} and {1} as the set of non-oriented dimensions.

(a) (b)

(c) (d)

Figure 26: Two rule schemes with the same core and a pattern graph for instantiation.

Example 20 (Intuition for Cycle Preservation in Rule Schemes). Similar to the incident arcs and the non-
orientation properties, we force the core of the rule to satisfy the cycle condition for D-rules. Consider the rule
given in Figure 26a. It satisfies Cr(1,2) since the two 12-paths are coherent, and each node is the source of an
optimal path. The two rules from Figure 26b and 26d have the previous D-rule as core rule. We consider their
instantiation with the pattern graph given in Figure 26c. The instantiation of the first rule scheme (see Figure 26b)

1A word ŵ in W∗ is understood as the concatenation of words from W. Thus, for such a word ŵ, there exists k ≥ 0 and w1, w2, . . .wk
in W such that ŵ = w1w2 . . .wk. Each wi (for 1≤ i≤ k) is a word of W, i.e., a word with letters from D, such that wi = (wi)(1) . . .(wi)(li).
When flatten, ŵ is therefore equal to (w1)(1) . . .(w1)(l1)(w2)(1) . . .(w2)(l2) . . .(wk)(1) . . .(wk)(lk).

40

is given in Figure 27a. The coherent optimal paths in the core of the rule do not yield coherent paths in the
instantiated rule. During the instantiation process, the product of the graph scheme with the embedded pattern
graph creates an arc between nodes in the Cartesian product of the node sets whenever there is an arc with the
same label in both graphs. Indeed, arcs in the pattern graph stand for paths in the underlying combinatorial graph.
Thus, the W-part of the label in the graphs of the rule scheme indirectly represents the path in the combinatorial
graph where we will apply the rule scheme. In the instantiated rule’s left-hand side, we can find a 12-optimal
path from (x,a) to (y,c), but we cannot find a coherent path in the right-hand side. Essentially the W-parts of the
label misfit and provide different paths. Indeed the path abc in L (of Figure 26b) has 1 for W-label whereas the
path aec in R has 11 for W-label. From Lemma 3, we know that we can prevent this from happening if we force
coherent paths to have their W-part of label congruent for ∗←→RN,E .

(a)

(b)

Figure 27: Instantiation of the rule schemes from Figure 26 with the pattern graph of Figure 26c.

To ensure the coherence of optimal paths, we extend the definition to rule schemes.

Definition 26 (Coherence of Optimal Path in Rule Schemes). Let S = L� R be a (W,D)-combinatorial rule
scheme. Two optimal paths p and p′ of πD(S) are coherent in S if p and p′ are coherent in πD(S) and

lπW(S)(πW(p)) ∗←→RN,E lπW(S)(πW(p′)).

41

Example 21 (Coherence of Optimal Path in Rule Schemes). The rule scheme of Figure 26d has coherent
optimal paths. For instance, the 12-path abc has 1 for W-label in L whereas the 12-path aec has 111 ∗−→R /0,{(1,2)} 1
for W-label in R. Similarly, the paths de f (in L) and db f (in R) have 1 for W-label. The instantiated rule of
Figure 27b preserves the coherence of optimal paths. For example, the optimal path (x,a)(x,b)(y,c) in L is
coherent with the optimal path (x,a)(z,e)(y,c) in R. Likewise, the optimal path (y,d)(z,e)(z, f) in L is coherent
with the optimal path (y,d)(y,b)(z, f) in R.

The cycle constraint on pattern graphs ensures that cycles from graph schemes will be associated with cycles
in the embedded pattern graph, yielding cycles in the instantiated rule.

Definition 27 (Cycle Condition for Rule Schemes). A (W,D)-combinatorial rule scheme S = L� R satisfies
the cycle condition CS (E) if :

• The core πD(S) of S satisfies the cycle condition CπD(S)(E).

• S is coherent with RN,E, i.e.:

– For any (i, j) in E, any coherent (i, j)-optimal path of πD(S) is coherent in S .

– For any (i, j) in E, any concatenated word w labeling a cycle in πW(S) corresponding to an
i ji j-cycle in πD(S) can be reduced to ε using RN,E.

Figure 28: A rule scheme satifying CS (1,2).

Example 22 (Cycle Condition for Rule Schemes). The rule scheme illustrated previously (see Figure 26d)
satisfies the cycle condition CS ({(1,2)}) as it contains only coherent optimal paths. Let us provide another rule
scheme satisfying a cycle condition with the example of Figure 28. The 12-optimal path cad is coherent with
the 12-optimal path ced (with 21 as the W-label). Node b is the source of a 1212-cycle in L and R. The cycle is
labeled 21212121 ∗−→R /0,{(1,2)} ε in L and 2121 ∗−→R /0,{(1,2)} ε in R. Similarly, node c is the source of a 2121-cycle in
L and R with W-label congruent to ε in both sides. The added node e is source of a 2-arc in an coherent optimal
path and the source of a 1-arc in a cycle.

Theorem 6 (Lifting the Cycle Condition to Rule Schemes). Let S = L� R be a (W,D)-combinatorial rule
scheme satisfying the non-orientation condition OS (N).

If the rule scheme S satisfies the cycle condition CS (E), then for all W-pattern graph P that satisfies
IP(W), and CP(N,E), the scheme instantiation ι(S ,P) satisfies the cycle condition Cι(S ,P)(E).

Proof. Let S = L� R be a (W,D)-combinatorial rule scheme satisfying the non-orientation condition OS (N).

42

Let (i, j) ∈ E be a pair of dimension, pl be the morphism ED(P)×(W×D) L→ ED(P), pr be the morphism
ED(P)×(W×D)R→ED(P), lp be the morphism ED(P)×(W×D)L→ L, rp be the morphism ED(P)×(W×D)R→R,
such that the morphisms come from the following products:

ED(P)×(W×D) L ED(P)×(W×D) R

L ED(P) R

lp
pl

pr
rp

Sub-condition 1 of the cycle condition.

Let p = vs vt be (i, j)-optimal path in πD(ι(L,P)). And denote pι(L,P) the corresponding path in ι(L,P).
Thus, vs and vt are nodes of ED(P)×(W×D) (L∩R) and there exist nodes as, at in ED(P) and us, ut in L∩R such
that pr(vs) = as, rp(vs) = us, pr(vt) = at and rp(vt) = ut .

By construction of the product, the (i, j)-optimal path p yields two specific paths. One is an (i, j)-alternating
path pP in πD(ED(P)), from as to at with the same label. The other is (i, j)-optimal path pπD(L) in πD(L), from
us to ut with the same label.

Because the core πD(S) of S satisfies the cycle condition CπD(S)(E), pπD(L) is coherent and there is an
(i, j)-optimal path pπD(R) from us to ut with the same label in πD(R). The paths in ED(P) and R create an (i, j)-
alternating path p′ in πD(ι(R,P)). By hypothesis on S , pι(L,P) is coherent in S . Thus, lπW(S)(πW(p)) ∗←→RN,E
lπW(S)(πW(p′)). Because P satisfies CP(N,E) p′ is a path from vs to vt .

Since pπD(L) is optimal, the path p′ only contains added arcs and does not overlap. Besides, this path is
maximal (if not it would be included in a path obtained from R, meaning pπD(L) was not coherent). Similarly,
it cannot belong to a cycle, as such a cycle would come from R. Therefore p′ is optimal in πD(ι(R,P)) and
coherent with p.

The reverse proof holds by symmetry and the scheme instantiation ι(S ,P) satisfies sub-condition 1 of
Definition 16.

Sub-condition 2 of the cycle condition.

Let v be a preserved node of (ι(L,P))∩ (ι(R,P)) that is the source of an i-arc in πD(ι(L,P))\πD(ι(R,P)).
Therefore, there exist a node a in ED(P) and a node u in K such that pr(v) = a and rp(v) = u. By construction of
the product, the existence of an i-arc of source v in πD(ι(L,P))\πD(ι(R,P)) means there is an i-arc in πD(ED(P))
of source a and an i-arc in πD(L) of source u. Since the core πD(S) of S satisfies the cycle condition CπD(S)(E),
the i-arc in R either belongs to an i ji j-cycle or to an (i, j)-optimal path.

• Assume that the i-arc belongs to an (i, j)-optimal path. Because P satisfies IP(W), the (i, j)-optimal path
in πD(R) can be associated with an (i, j)-alternating path of source a in ED(P). Similar to the proof for
sub-condition 1, the paths in ED(P) and R yield an (i, j)-optimal path in ι(R,P).

• Otherwise, the i-arc extends to an i ji j-cycle. The concatenated word w in πW(R), corresponding to the
cycle, can be reduced to ε using RN,E. Because P satisfies CP(N,E), w labels a cycle in P and thus
in πW(ED(P)). The product construction keeps this cycle and πD(v) is the source of an i ji j-cycle in
πD(ED(P)×(W×D) R).

Thus, the scheme instantiation ι(S ,P) satisfy sub-condition 2 of Definition 16.

Sub-condition 3 of the cycle condition.

The proof is similar to sub-condition 2.

Thereafter, ι(S ,P) satisfies Cι(S ,P)(E).

43

Note that Lemma 3 provides a formal characterization to describe which rule schemes always instantiate into
consistent rules. Although the rewriting system is a valuable characterization, it is not confluent, and we would
need a reduction strategy to use it in practice.

10. Combinatorial maps

10.1. Preservation of consistency for combinatorial maps

Recall that an n-G-map is a totally labeled [[0,n]]-topological graph satisfying OG([[0,n]]), IG([[0,n]]), and
CG([[0,n]]+2) where [[0,n]]+2 denotes the dimensions i, j ∈ [[0,n]] such that i+2≤ j. From Theorems 1, 2, and 3,
if a rule r in the category of [[0,n]]-Graphs satisfies Or([[0,n]]), Ir([[0,n]]) and Cr([[0,n]]+2), then the result
graph H of the direct derivation G⇒r,m H is an n-G-map. Similarly, if a rule r satisfies Or([[2,n]]), Ir([[1,n]])
and Cr([[1,n]]+2) then the graph H result of the direct derivation G⇒r,m H where G is an n-O-map is also an
n-O-map.

Graph transformations built on production rules satisfying the appropriate conditions yield derivations
preserving the topological constraints of the considered model. When extending rules to rule schemes, the
verifications are lifted to the rule scheme level (Theorems 4, 5, and 6). In particular, the result from Theorem 4
ensures the dangling condition can be checked independently of the combinatorial map on which the rule scheme
is applied.

G-maps and O-maps are defined by slightly different constraints, namely the orientation of the 1-arcs for the
O-maps. These constraints yield different conditions for the preservation of the topological consistency when
applying rule-based graph transformations. When trying to transpose the conditions to rule schemes, we need to
cope with dimension conjugation. In the model of G-maps, the whole set D of dimensions is non-oriented, such
that N =D and O = /0. With N equals to D, the construction of rule schemes is drastically simplified, and we can
do away with dimension conjugation. In the case of O-maps, D is split into N = D\{1} and O = {1} meaning
that we actually need to take care of the conjugation condition from Theorem 6.

When applying a rule scheme to an n-G-map or n-O-map, the pattern graph built during the application process
inherits properties from the map. For instance, consider an n-G-map G. Thus any pattern graph P built on G with
a set of words W satisfies the consistency constraint for pattern graphs IP(W), OP(W), and CP([[0,n]], [[0,n]]+2).
Therefore the instantiation of any rule scheme S that satisfies IS ([[0,n]]), OS ([[0,n]]), CS ([[0,n]]+2) yields a
rule ι(S ,P) that satisfies the conditions Oι(S ,P)([[0,n]]), Iι(S ,P)([[0,n]]) and Cι(S ,P)([[0,n]]+2). Therefore any
direct transformation on any instantiation of the rule scheme results in an n-G-map. Similarly, rule schemes
satisfying the appropriate conditions yield instantiations that transform n-O-maps into n-O-maps.

As a consequence, we can certify that a rule preserves the model’s constraints. We provide algorithms
to check this preservation similarly to Jerboa’s syntactic analyzer. Jerboa’s rule editor assumes a set-based
representation of graphs: a graph is described as a set of nodes and a set of arcs. We can access nodes or arcs
using their names or looping over the corresponding set and assume that the set of dimensions D is fixed.

The function providing all cycles of a graph can be obtained with a union-find strategy. Start with paths
that consist of arcs labeled i and j and unify them recursively whenever one is the source of the other and the
dimensions alternate. When the construction stops, the set of paths is pruned to keep only the cycles.

A rule L� R consists of two graphs L = (VL,EL) and R = (VR,ER) where the preserved elements have the
same nodes in both sides. Thus we can check if a node or an arc is preserved. Besides, we compute optimal paths
for one side of a rule scheme. The function to compute optimal paths is similar to the construction of cycles, only
considering non-preserved arcs. The obtained set of paths should also be pruned, in this case, to eliminate paths
that are sub-paths of cycles.

Since the rewriting system RN,E is noetherian, the set of normal forms for a word is finite and computable.
However, because RN,E is not necessarily confluent, we may need to compute the complete collection of normal
forms to check whether a word reduces to ε , or whether two words are congruent. In practice, the words on arcs

44

are usually of length smaller than 2 or 3, and the concatenation along the path nearly always yields words of size
at most 6 to 10. For simplicity, we denote N F RN,E(w) the set of normal forms for a word w from D∗ for the
rewriting system RN,E.

The verification should first run Algorithm 1, then Algorithm 2 and Algorithm 3 as the last two algorithms
assume that the input rule scheme satisfies the incident arcs condition. The algorithms only check for one
dimension (resp. pair of dimension for the cycle condition) and, therefore, should be run on all dimensions
relevant to the model.

Algorithm 1: Check incident arcs consistency for a dimension i.
Input: A rule scheme S = L� R, and a dimension i of D.
Output: True if the rule satisfies IS (i), False otherwise.

1 Function check_incident_arcs(L,R,i):
2 consistent← True
3 foreach v ∈VL do
4 SL←{e ∈ EL | sL(e) = v and lπD(L)(e) = i}
5 TL←{e ∈ EL | tL(e) = v and lπD(L)(e) = i}
6 if v ∈VR then // Preserved node
7 consistent← consistent and |SL| ≤ 1 and |TL| ≤ 1 // At most one incident arc
8 SR←{e ∈ ER | sR(e) = v and lπD(R)(e) = i}
9 TR←{e ∈ ER | tR(e) = v and lπD(R)(e) = i}

10 consistent← consistent and |SL|= |SR| and |TL|= |TR| // Same in both sides
11 else // Deleted node
12 consistent← consistent and |SL|= 1 and |TL|= 1 // Look for a unique deleted arc

13 foreach v ∈VR do
14 if v 6∈VL then // Added node
15 SR←{e ∈ ER | sR(e) = v and lπD(R)(e) = i}
16 TR←{e ∈ ER | tR(e) = v and lπD(R)(e) = i}
17 consistent← consistent and |SR|= 1 and |TR|= 1 // Look for a unique added arc

18 return consistent

In Algorithm 1, we check the condition IS (i) for a rule scheme S and a dimension i from Definition 22.
Lines 6 to 10, ensures that a preserved node is the source (resp. target) of an i-arc in the left-hand side if and
only if it is the source (resp. target) of an i-arc in the right-hand side. Lines 13 to 17 ascertain that each added
node is the source (resp. target) of an i-arc, i.e., πD(R) satisfies I(VR\VL),πD(R)(i). Similarly, line 12 certifies
that each deleted node is the source (resp. target) of an i-arc, i.e., πD(L) satisfies I(VL\VR),πD(L)(i). This last
sub-condition yields the dangling condition on the instantiated rule, which guarantees applicability (provided
that an instantiation is possible).

In Algorithm 2, we check the condition OS (i) for a rule scheme S and a dimension i from Definition 24.
This condition boils down to only having oriented arcs in the interface, where the definition of reverse arc is
extended to encompass the conjugation of the W part of the label. In line 4, we construct the set of possible
reverse arcs. The first three boolean conditions sL(e′) = tL(e), tL(e′) = sL(e), and lπD(L)(e

′) = i ensure that the
arcs are reverse arcs in the core πD(S). These boolean conditions tackle the first sub-condition of Definition 24.
The last boolean condition states that the reverse arcs in the core have conjugate labels, according to the second
sub-condition of Definition 24. When we find one, we make sure that both have the same status (deleted or
preserves) at lines 5 to 10. Otherwise, i.e., when the arc is oriented, we check whether it is preserved at line 12.

45

Algorithm 2: Check non orientation consistency for a dimension i.
Input: A combinatorial rule scheme S = L� R, and a dimension i of D.
Output: True if the rule satisfies OS (i), False otherwise.

1 Function check_non_orientation(L,R,i):
2 consistent← True
3 foreach e ∈ {e′ ∈ EL | lπD(L)(e) = i} do
4 IL←{e′ ∈ EL | sL(e′) = tL(e) and tL(e′) = sL(e) and lπD(L)(e

′) = i and lπW(L) (e
′) = lπW(L) (e)}

5 if |IL|= 1 then // Found a reverse arc
6 r← e′ ∈ IL
7 if e ∈ ER then // Preserved arc
8 consistent← consistent and r ∈ ER // The reverse must be preserved too
9 else // Deleted arc

10 consistent← consistent and r 6∈ ER // The reverse must be deleted too

11 else // No reverse arc
12 consistent← consistent and e ∈ ER // The arc must be preserved

13 (. . .) idem (lines 3 to 12) for arcs in ER by considering functions sR, tR, lπD(R), and lπW(R) , as well as switching the roles of EL

and ER.
14 return consistent

46

Algorithm 3: Check cycles consistency for a pair of dimensions (i, j).
Input: A combinatorial rule scheme S = L� R, and two dimensions i and j of D.
Output: True if the rule satisfies CS ({(i, j)}), False otherwise.

1 Function check_cycles(L,R,i, j):
2 consistent← True
3 PathsL, PathsR←{p = vs vt ∈ L | p is (i, j)-optimal in L}, {p = vs vt ∈ R | p is (i, j)-optimal in R} // Optimal paths
4 CyclesL, CyclesR←{p = vs vt ∈ L | p is an(i, j)-cycle in L}, {p = vs vt ∈ R | p is an(i, j)-cycle in R} // Cycles

// Check paths coherence
5 foreach p ∈ PathsL do
6 C←{p′ ∈ PathsR | sL(p) = sR(p′) and tL(p) = tR(p′) and lπD(L)(p) = lπD(R)(p′)}
7 if |C|= 1 then
8 c← p′ ∈C
9 N p←N F RN,E (lπW(L)(p)) // The set of normal forms of the label of p

10 Nc←N F RN,E (lπW(L)(c))
11 consistent← consistent and N p∩Nc 6= /0 // Labels are congruent

12 else
13 consistent← False

14 (. . .) idem (lines 5 to 12) for paths in R
// Check cycles

15 foreach p ∈CyclesL do
16 consistent← consistent and [|p|= 2 or |p|= 4] // Check cycle size
17 N←N F RN,E (lπW(L)(p))
18 consistent← consistent and ε ∈ N // Reduction to the empty word

19 (. . .) idem (lines 14 to 17) for cycles in R
// Check extension to path or cycle

20 foreach v ∈VR do
21 i_arc← null
22 if v ∈VL then // Preserved node
23 SL←{e ∈ EL | sL(e) = v and lπD(L)(e) = i}
24 if |SL|= 1 then
25 i_arc← e ∈ ER such that sR(e) = v and lπD(R)(e) = i // Uniquely exists from Alg. 1

26 else // Added node
27 i_arc← e ∈ ER such that sR(e) = v and lπD(R)(e) = i // Uniquely exists from Alg. 1

28 P←{p ∈CyclesR∪PathsR | i_arc ∈ p} // Empty set if i_arc = null
29 consistent← consistent and |P| 6= 0
30 (. . .) idem (lines 20 to 28) for dimension j

31 return consistent

In Algorithm 3, we check the condition CS (i, j) for a rule scheme S and a pair of dimensions (i, j) from
Definition 27. The condition is obtained from the condition for instantiated rules on the core of the scheme and
an extension with the rewriting system. The sub-condition on the core (see Definition 16) is verified by lines 8
(path coherence), lines 24 to 27 and 30 to 32 (preserved nodes), lines 29 to 32 (added nodes). The extension with
the rewriting system to coherence with RN,E is covered by lines 10 to 15 (path coherence) and lines 17 to 20
(cycles reduction to ε).

In Section 3, we talked about the quad subdivision operation dedicated to mesh refinement. The rule scheme
of Figure 29 describes the subdivision operation for G-maps, while the one of Figure 30 illustrates it for O-maps.

Example 23 (Consistency verification of the quad subdivision operation for a 2-G-map (Figure 29)).
The rule scheme SG is a ({ε,0,1,2},{0,1,2})-rule schemes. It satisfies ISG({0,1,2}) since the preserved
node a has incident non-oriented 0-, 1-, and 2-arcs in both L and R while added nodes b, c, and d have incident
arcs for each dimension in {0,1,2}. All arcs are non-oriented and the only arcs with W label different from ε are
loops. Thus, SG also satisfies OSG({0,1,2}). Finally, SG also satisfies CSG({(0,2)}) because all nodes are
sources of i ji j-cycles whose W label reduces to ε via R{0,1,2},{(0,2)}. For instance, the cycle (ε,0)(2,2)(ε,0)(2,2)
of source a corresponds to a 0202 cycle. The {ε,0,1,2}-part of the label is ε2ε2 = 22. Since 2 is non oriented,
(22,ε) is a rewriting rule of R{0,1,2},{(0,2)} and the label reduces to ε . The execution of Algorithms 1, 2, and 3

47

a

(1,1)
(0,0) (2,2)

ba (ε,0)

d

c

(ε,1)
(ε,0)

(1,1)
(0,2) (0,2)

(1,1)
(2,2) (2,2)

Figure 29: Quad subdivision operation: rule scheme SG for a 2-G-map.

will return True for all relevant dimensions. From these three conditions, we deduce that the rule scheme always
transforms a 2-G-map into a 2-G-map.

a

(2,2)

ba (ε,1)

d c

(1,1)
(ε,1) (ε,1)

(ε,1)

(1,2)

(12,2) (1,2)

(21,2)

Figure 30: Quad subdivision operation: rule scheme SO for a 2-O-map.

Example 24 (Consistency verification of the quad subdivision operation for a 2-O-map (Figure 30)).
The rule scheme SO is a ({ε,1,1,2,21,12},{1,2})-rule schemes. The execution of the Algorithms 1 and 2
respectively for dimension sets {1,2} and 2 will return True as SO satisfies ISO({1,2}) and OSG({2}). Note
that, as 1 is an oriented dimension, the conjugation part of the condition of non-orientation needs to be taken
into account. The cycle condition does not need any verification because a 2-O-map is not subject to any cycle
constraint.

The quad subdivision of the character presented at the beginning of the paper was realized with Jerboa.
Jerboa [17] is a generator of geometric modelers based on the work from [15] and [16] for the framework of
G-maps. This platform allows for the prototyping of dedicated modelers. In its current iteration, Jerboa supports
the definition of modeler kernels using G-maps in any dimension. The rules are specified using variables [32] that
can be simulated in our framework. Nodes of the rule with variables correspond to the nodes of the rule scheme.
Any i-arc between nodes of the rules with variables is replaced by a (ε, i)-arc. A relabeling of a dimension i into
a dimension j in a node variable yields a (i, j)-loop. Thus, we can write the rule scheme of Figure 29 in Jerboa
(with a slightly different syntax). The currently implemented syntactic analyzer uses more restrictive conditions
to preserve the model’s consistency but will still consider the rule scheme consistent.

Example 25 (Rule scheme instantiation for the quad subdivision operation). The left-hand side of SG (Fig-
ure 29) contains a single node and arcs labeled (i, i) for each dimension i in {0,1,2}. Therefore, the instantiation
with any pattern graph obtained via the {ε,0,1,2}-pattern functor on a 2-G-map yields a graph equal (up to
isomorphism) to the initial 2-G-map. The rule scheme instantiates into a rule that is always applicable. In
practice, the selection mechanism of Section 6.3 makes the scheme rule applicable on a connected component.
Thus, the instantiation left-hand-side of the rule scheme SG that contains a single node and three arcs produces a
DPO-rule whose left-hand side contains 100680 nodes and 302040 arcs. Since the right-hand side of the scheme
rule contains four nodes and 12 arcs (counting the non-oriented arcs as two arcs), the right-hand side of the
instantiated DPO-rule contains 402720 nodes and 1208160 arcs. In practice, the application of such a scheme

48

rule can be parallelized to speed up the computation time [37]. Likewise, the left-hand side of SO (Figure 29)
contains a single node and arcs labeled (i, i) for each dimension i in {1,2}. For the same reasons, the instantiation
on a pattern graph obtained by the associated functor will always yield a complete connected component in any
2-O-map. Therefore, the instantiated rule is always applicable.

The rule scheme SO of Figure 30 has non-loop arcs labels with (w,2) where w is different from ε . Such a
rule scheme is currently not supported in Jerboa (neither in the rule editor nor in the generic viewer that allows
application of operations to objects).

10.2. Application example in topology-based geometric modeling

As explained in Section 3, n-G-maps and n-O-maps represent n-dimensional, or nD, objects. Topology-based
modeling structures object by their cell subdivision and the adjacency relations between these cells. This
subdivision represents the topological structure of the object. Any other type of information (e.g., the geometric
shape) is called an embedding and attached to an orbit. Therefore, any modeling operation is defined by a
topological transformation (e.g., subdivide a face) and an embedding transformation (e.g., translate a point). In
this paper, we have only considered topological transformations.

(1) (2) (3)

Figure 31: House modeling: (1) cone extrusion, (2) edge rounding, (3) face extrusion.

Although the work presented in this paper focuses on scheme rules dedicated to formalizing modeling
operations, we also want to discuss the application of operations in the context of modeling an object. Modeled
objects result from complex successive applications of several operations. Let us take the example of modeling a
simplified house from Figure 31. From a square face, a pyramid is constructed by applying a cone extrusion
operation. Topologically speaking, this operation creates as many faces as there are edges in the starting face
(four edges in this case). All those faces are sewn along the starting face on a single point to create a cone. In a
second step, all edges of the created volume are rounded, i.e., replaced by faces. Finally, the base of the house is
constructed by applying an extrusion to the base square.

In geometric modeling, the most widespread practice consists of defining each operation algebraically
before implementing it. The consistency preservation is hardly verified and comes with an expensive additional
programming cost. Conversely, our approach takes care of operation genericity with the categorical product and
the consistency preservation with the conditions on rules and rule schemes.

Let us use the whole pipeline of Figure 31 to illustrate operations. We will provide certain in 2D and others
in 3D for both models. 2D operations only modify the outer surface on an object, making them easier to read and
understand, whereas 3D operations also change the inner parts of objects.

Cone extrusion. The cone extrusion adds a new topological vertex and a triangular face for each edge of the
original face. In 2D, this operation is restrained to only be applicable to isolated faces, i.e., faces that belong to a
non-volume. We build the new vertex as the dual of the original face. Each vertex of the original face is linked to
this dual vertex, resulting in triangular faces.

In a 2-G-map, isolated faces are represented by orbits on the dimensions 0, 1, and 2, where 2-arcs are loops.
The left-hand side of the rule scheme depicted in Figure 32a encodes such an orbit. The (0,0)-loops (resp.

49

(1,1)-loops) in the graph scheme represent 0-arcs (resp. 1-arcs) in the G-map whereas the (ε,2)-loops represent
2-loops. Let us provide a reading grid for the right-hand side of the rule. Node a corresponds to the initial face.
Node d is the dual vertex where the initial 0-arcs in a have been replaced by 1-arcs and the 1-arcs by 2-arcs. The
(ε,0)-arc between nodes c and d together with the (1,2)-loops on both nodes represent the edges between the
face and the dual vertex. Node b and its (0,0)-loop stand for the edges of faces added to mirror the initial face
and close the lateral triangular ones. Figure 32b is an instantiation of the rule scheme on a square face.

(a) Rule scheme for cone extrusion in a 2-G-map.

(b) Instantiated DPO rule on an hexagonal face.

Figure 32: Cone extrusion operation on a 2-G-map.

In a 2-O-map, an isolated face cannot be modeled as the model only supports volumes surrounded by closed
surfaces. To bypass this limitation, we start with a flat volume made of two faces. This falt volume corresponds
to an orbit on the dimensions 1 and 2, where the 1-arcs define two cycle graphs with reverse orientation. Such an
orbit is illustrated by the left-hand side of the rule scheme in Figure 33a. Each of the reverse cycles is encoded by
a node and its loop. The conjugated W-labels on the loops of nodes a and b depict the reverse orientation of the
cycles. In the right-hand side of the rule scheme, the (ε,1)(ε,1)(ε,1)-cycle acd correspond to the lateral faces
while the (1,2)-arc from node c to node d represents the link between the lateral faces. Figure 33b gives the
corresponding instantiated rule on a square face.

Edge rounding. The rule scheme of Figure 34a describes the edge rounding of a surface in 2D. We can use it with
Jerboa’s generic viewer to transform the pyramid of Figure 35a into the object of Figure 35c. The corresponding
2-G-maps are respectively given in Figures 35b and 35d.

The same operation is given for a 2-O-map with the rule scheme of Figure 34b where nodes b and c represent
the face replacing the rounded edge, and node d corresponds to the face replacing the rounded vertex.

Face extrusion. Face extrusion is similar to cone extrusion but adds a dual face instead of a dual vertex. Each
vertex from the initial face is linked to its copy in the dual face by an edge. Thereby, lateral faces are rectangles
instead of triangles.

The rule scheme of Figure 36a describes face extrusion for a 3-G-map. Nodes b and g correspond to the
face copies. The 3-arc between nodes a and b represents the link between the newly added volume and the
original face. Nodes d and e along with their common (ε,0)-arc correspond to the edges that link the two bases
of the prism. Nodes c and f represent the edges of faces from the bases that belong to the lateral faces. This
rule scheme is applied on the square face of the pyramid from Figure 35c (here considered in 3D), yielding the
3-G-map of Figure 36b. The final object is illustrated in Figure 36c.

In a 3-O-map, face extrusion corresponds to the rule schemes of Figure 37. Nodes a, b and c have been
respectively filed in red, blue, and green to be more easily retrievable in the right-hand side. On the left-hand
side, node a matches the face to be extruded in the original volume, node b the same face as a, but in the external

50

(a) Rule scheme for cone extrusion in a 2-O-map.

(b) Instantiated DPO rule on an hexagonal face.

Figure 33: Cone extrusion operation on a 2-O-map.

(a) For a 2-G-map.

(b) For a 2-O-map.

Figure 34: Rule schemes for edge rounding.

(a) Pyramid before edge rounding. (b) Underlying 2-G-map. (c) Pyramid after edge rounding. (d) Underlying 2-G-map.

Figure 35: Edge rounding of the pyramid.

volume, node c the nodes in faces adjacent to the face corresponding to b. On the right-hand side, the extruded
face a is now linked to the new face d of the extruded volume. The four nodes e, f , g, and k correspond to the
side faces, and share 3-link with the four nodes l, m, n and o that represent the new side faces of the external
volume. The side faces of the external volume are 2-linked to the green node c of the matched object, therefore
reconnecting with the outer volume. Node h is the base face of the extruded volume, 3-linked to the matched
blue face b of the external volume. Finally, both h and b are connected to the side faces with 2-arcs.

51

(a) Rule scheme for the operation of face extrusion in 3-G-map.

(b) 3-G-map obtained after extruding the face. (c) Corresponding object.

Figure 36: Face extrusion.

Figure 37: Rule scheme for the operation of face extrusion in a 3-O-map.

The rule scheme from Figure 37 is more complicated than its counterpart in the G-map model. Nonetheless,
a formal description of the operation is precious to fulfill the need of the geometric modeling community, more
likely to use the model of O-maps. Besides, consistency constraints on rule schemes help its writing. If one were
to implement this topological operation in a programming language, it would result in a lot more development
and debugging efforts.

We described a few operations in 2D and 3D for the models of G-maps and O-maps. Such topological opera-
tions, characteristics of geometric modelers, can easily be checked against the conditions provided previously in
the article with the algorithms presented at the beginning of the Section.

52

11. Related works

Graph transformations were introduced to generalize Chomsky grammars to non-linear structures [38]. The
algebraic approach to graph transformations uses production rules where the left-hand side and the right-hand
side are graphs. The rules are applied using constructions from the theory of categories, namely single-pushout
or double-pushout [24].

Formalizations based on graph transformations have been successfully achieved in many areas across com-
puter science, such as database design [39], concurrent and distributed systems [40], software engineering [41], IT
landscape modeling [42]. Essentially, graph transformations provide a safe framework to study the preservation
of domain-related properties.

Sometimes, graph transformations do not allow for encapsulating a model or a theory completely. For
instance, formal issues from a graph-based approach to geometric modeling cannot be solved directly with
graph transformations. In such cases, the standard approach is to extend graph rewriting. To our knowledge,
there are essentially two possibilities to conduct this extension: extend the category of graphs or extend the
rewriting mechanism. Once the model is correctly defined within the adequate framework, the preservation of
domain-related properties might still need to be answered. Application conditions [43] provide the most common
approach for consistency preservation, as they provide conditions to prohibit a rule from being applicable if its
application would violate a given constraint.

In this section, we review extensions of graph rewriting, their use for consistency preservation, and, finally,
some applications of graph transformations to geometric modeling. Note that application conditions are solely
discussed as a means for consistency preservation.

11.1. Rewriting in different categories

The first solution to extend graph transformations replaces the category of graphs with a more general one.
Such a replacement allows for the rewriting of objects that are not directly expressed as graphs. The most
straightforward addition is that of labels (on nodes, arcs, or both), resulting in the category of labeled graphs.
Labeled graphs can be further structured with the help of a type graph that describes relations on arcs and nodes
based on their label. Type graphs are used to slice the category of labeled graphs, leading to particular typed-graph
categories [44]. Other kinds of high-level structures have also been used to replace graphs, such as hypergraphs or
attributed graphs [45, 1]. In each of these generalizations, the rewriting process is expressed as a single-pushout or
double-pushout in the appropriate categories. Instead of considering a new category in which rewriting is proven
to be well-defined, another approach is to study minimal properties, ensuring that graph-like transformations are
well-defined. This line of research led to high-level replacement (HLR) systems and grammars [46], adhesive
categories [22], adhesive HLR categories [47]. Recently, a rewriting framework for abstract graphs (or objects
from a topos) has been investigated in [48] to cover several previous works [49, 50, 51, 52]. A first requirement
is that (DPO) rewriting is well defined. Furthermore, the rewriting needs to meet certain requirements to be of
practical interest. These requirements include well-known properties of rewriting systems, such as the local
Church-Rosser, parallelism, concurrency, and amalgamation theorems [53, 22, 47].

We believe that replacing the category of edge-labeled graphs with a category tailored to our models might
not be practical. We could have considered the category of G-maps (or O-maps) or the less specific category of
D-combinatorial graphs. However, the left-hand and right-hand sides of rules would then belong to the category
of D-combinatorial graphs. Production rules would always need to modify the complete connected component
because of the incident arc constraint. In [54], the authors explain how to achieve relabeling of totally labeled
graphs with rules expressed using the category of partially labeled graphs. Their approach allowed for relabeling
a node even if all its incident arcs were not matched. Similarly, we modify D-combinatorial graphs with rules
that are not expressed in the category of D-combinatorial graphs. In [54], the authors add two conditions on
rules to ensure that the result of the derivation is totally labeled. Likewise, we provided conditions on rules (in
Section 4) to guarantee that we derive D-combinatorial graphs. Essentially, despite the rule being expressed in
the category of D-graphs, we presented conditions certifying that the result of the direct derivation belongs to the
category of D-combinatorial graphs (more generally, the category of G-maps or O-maps).

53

(a) (b) (c)

Figure 38: Sequential application of the face subdivision operation.

In Section 3, we discussed the possible generalization of the quad subdivision from a face to a surface,
independent of the context and the underlying topology. This operation aims at subdividing surfaces for mesh
refining. Each face of the mesh has to be subdivided. Since we are considering rewriting in the category of
edge-labeled graphs, one could iteratively apply the operation on each face of the surface. Unfortunately, this
approach would provide incorrect results as the subdivision of one face increased the number of edges on the
surrounding faces, as explained in Example 26. Similarly, one could try to apply the operation on every face
simultaneously. This approach is not conceivable because of the concurrent modification of edges.

In the sense of graph transformations, the transformations are neither sequentially nor parallel independent [38,
1, 55]. Parallel-dependent transformations can be amalgamated to a transformation thanks to the amalgamation
rule [56, 55]. The computation of the amalgamation rule is done based on the transformations and principally used
as a synchronization mechanism [57, 58]. Likewise, sequentially-dependent transformations can be reduced to a
single transformation using the concurrency rule [59, 55]. One way to use these results would be to decompose
a transformation into simpler transformations (and use the results to aggregate these simple transformations
into more complex ones). For instance, one could have built a transformation for one node and then applied
it to each node of the topological cell. Such a solution would fulfill the needs of a geometric modeler, i.e.,
specifying modeling operations that do not depend on the underlying topology of the object under modification.
Nevertheless, this solution would be ill-suited as we need to link elements that belong to copies of different nodes
from the topological cell (see Section 3.3). Besides, one considering oriented maps, we need to link different
copies of different nodes (which led us to introduce path-related abstraction in the product construction). Indeed,
the amalgamation and concurrency theorems focus on graph transformation systems, although we are interested
in providing a rule editor with compact and straightforward operations. Were the subdivision rule to be computed
as the amalgamated rule, it would have to be recomputed for each application. Instead, we want to generalize
the transformations to abstract a part of the object’s topology. The preservation of the model consistency can
therefore be checked once, at design time, on the generalized rule. Nonetheless, such results could be a real asset
for our framework at the level of rule schemes, i.e., to apply them systematically with a particular purpose. For
example, these results would allow the application of several modeling operations simultaneously and, perhaps,
even compose our scheme rules.

Example 26 (Invalid sequential application of the quad subdivision). A sequential application of the face
subdivision application is shown in Figure 38. This sequence of operations is incorrect. Indeed, the edge between
the yellow and green faces is split twice. First, when the yellow face is subdivided (Figure 38b), thus yielding
two edges. Second, when these two new edges are split again, and the green face is subdivided. As a result, three
vertices are added instead of one.

54

11.2. Different kind of rewriting

Our approach is closer to the second solution to extend graph transformations: twisting the rewriting
mechanism. Several constructions with implicit or explicit pullbacks have been defined to enrich DPO rewriting
with cloning. For instance, the Sesqui-Pushout approach [60] uses a final pullback complement as the left square
in the rewriting step. The AGREE approach [61] relies on a morphism from the host graph to an enriched version
of the left-hand side of the rule to specify how edges should be transformed. The Pullback-Pushout (PB-PO)
approach [62] extends AGREE, capitalizing on two spans (intuitively two rules). The host graph is put in between
the two spans of the left-hand side, yielding 4 commuting squares, one being a pullback and another being a
pushout.

In AGREE [61], rules are local if they do not modify the strict complement of the left-hand side of the rule L
in the host graph G. Therefore, even if cloning and merging are allowed, it can only occur in the image of L in G
and the arcs incident to nodes in this image. The strict complement is defined as a pullback complement but can
intuitively be understood as the biggest subgraph of G that contains no element from the image of L. Similarly,
the PB-PO [62] approach can affect any element in the host graph G. This more general approach offers a more
general definition of locality. This locality depends on a subgraph Γ of the left-hand side of the bottom span of
the rule. Intuitively, a transformation is Γ-preserving if the transformation preserves this sub-object. However,
the properties we want to preserve do not easily fit in either AGREE or PB-PO.

Our construction of product-based generalization of DPO via rule scheme can be seen as an attempt to
combine enrichment with cloning and a categorical approach to relabeling. A categorical construction of
relabeling in the DPO approach has already been realized in [63]. The authors control the ambiguity of label
changes by epi-mono factorization and the use of least-upper-bound on the set of solutions. The incident arcs
constraint of D-combinatorial graphs removes that ambiguity. The relabeling only occurs on arcs in our specific
framework while being entirely determined by the arc label. In that sense, arc relabeling coincides with a function
on the label set. We showed that pair labels on arcs could encode such relabeling. The relabeling function is
simulated by an embedding functor into the category where arcs are labeled with pairs, a product in this category,
and a projecting functor back onto the category where arcs have a single label. Cloning and relabeling for G-maps
have always been achieved in previous works [15, 16]. To deal with O-maps, we also need to consider paths.
The navigational logic presented in [64, 65] allows reasoning about paths in a graph. However, this approach
does not inherently support relabeling.

11.3. Consistency preservation in graph transformations

Twisting the rewriting mechanism allows for studying consistency preservation. For instance, application
conditions hinder rule applicability, ensuring that the transformation of a well-formed object yields an equally
well-formed object.

In general, such conditions are based on the existence (positive application condition) or non-existence
(negative application condition, or NAC) of a given subgraph in the host graph. If this (non-)existence is fulfilled,
the production rule can adequately be applied. As shown in [66], a colimit of the positive application conditions
yields a rule applicable in the same context with only negative application conditions. Such conditions have
proven helpful in many cases but too restrictive in others. They were extended to nested application conditions
(or nested conditions) in [67] and shown to be expressively equivalent to first-order graph formulas, fulfilling
the requirements presented in [68]. In [55], standard results were proven for rules with nested conditions. In
particular, Local-Church Rosser, Parallelism, Concurrency, and Amalgamation theorems hold for rules with nested
conditions in M -adhesive categories (a weaker form of adhesivity restricted to a subclass of monomorphisms).
Application conditions offer mechanisms to repair a rule (with or without condition) if its application to a graph
satisfying a constraint does not preserve the constraint. One solution is to declare the rule inapplicable whenever
its application would result in an ill-formed graph.

Thanks to static analysis of rules with nested application conditions, one can derive correct transformation
systems.

55

A first solution is to demonstrate that the output satisfies a postcondition, provided the input satisfies a
precondition, and construct a weakest precondition relative to the postcondition. The proof that the precondition
implies the weakest precondition yields the correctness of the program [69]. The construction of weakest
preconditions of a rule relative to a postcondition is discussed in [67] for nested application conditions; it uses
shifts of conditions over rules and morphisms. Although each transformation and each condition are finite (i.e.,
are finite conjunction of conditions, each one being finitely nested), the actual complexity is never discussed. In
particular, the resulting conditions showed as examples in [67] or in [55] seem to suggest that the complexity
of the transformation is equivalent to the power set of the initial condition. Indeed, the shift over morphism
considers all epimorphisms with the same domain. By duality, these epimorphisms essentially represent the
category of sub-objects. Once the weakest precondition is obtained, one still has to show that the precondition on
the graph implies the weakest precondition of the rule relative to the postcondition. Since nested conditions are
equivalent to first-order formulas on graphs, this verification can be delegated to a solver. Following the work
of [70, 71, 72] (handling a subset of nested constraints), the solver can be used as a tool to build counterexamples.
In these works, invariants are checked during the evolution of a system based on a set of rules, while we are
interested in generic rules that are sure to preserve the consistency of the model.

Another well-known method to check the correctness of a program with respect to a precondition and a
postcondition is to provide a proof system and show its soundness with respect to the operational semantics [73].
In [74], the authors provide partial correctness of graph programs in the graph programming language GP [75]
and show soundness with respect to the operational semantics of the language.

In [76], the authors developed an approach to bypass the loss of applicability of rules with application
conditions. The authors guarantee that a constraint holds by construction after transformation. Their idea is to
transform the rule into a multi-rule to fix every possible way it could introduce a violation. The formalization is
done in adhesive categories for rules that only create structures and constraints1 of the form ∀(P,∃C) where P
is a sub-object of C. The authors provide sufficient conditions for correctness. Note that their approach is not
directly transposable for our purposes since our rules may delete structures, and we need to express uniqueness
as a constraint.

However, a rule (without condition) that can sometimes result in a well-formed graph and sometimes result in
an ill-formed graph would be considered invalid in geometric modeling. In other words, a rule is valid if whenever
there is a match from the left-hand side of the rule to a well-formed graph, the rule is both applicable and result
in an equally well-formed graph. Let us consider the example of the gluing condition. It states that a rule is
applicable whenever the match and the left morphism of the rule admits a pushout complement. When rewriting
graphs, the conditions can be reduced to the dangling condition that essentially ensures that no unmatched arc
loses its source or target. In the framework of nested application conditions, the gluing condition can be defined
as a condition on the left-hand side of the rule. Thus, when the condition is not fulfilled, the rule is inapplicable.
In our framework, the gluing condition can be checked on the rule (Fact 1). If L satisfies I(VL\VR),L(D), we
are guaranteed that any match to a D-combinatorial admits a pushout complement. Since we enriched DPO
rewriting with a functorial approach and product construction, we needed to lift the consistency preservation
from DPO-based rules to product-based rules. However, to our knowledge, there is no shift construction of nested
application conditions for functors. As seen in Section 10, our very specific class of graphs (D-combinatorial
graphs) support verification by static analysis, which essentially resides in a graph traversal. Thus, every possible
instantiation of a given rule scheme creates a consistency preserving production rule.

Our approach is similar to the one developed in [77] about consistent model transformations. In this article,
the authors tackle consistency preservation in the ECLIPSE Modeling Framework (EMF). They provide a
formalization of EMF model transformations that preserve EMF consistency (containment relations) with typed
attributed graph transformations. This formalization revolves around six ad hoc conditions that define allowed
transformations.

1In the sense of [76], the notation ∀(P,∃C) means that each occurrence of P lies within an occurrence of C

56

11.4. Graph transformations applied to topology-based geometric modeling

Numerous generic tools exploit the sound formalism of graphs transformations, such as PROGRES [78],
AGG [79], Groove [80], and GrGen.NET [81]. Graph transformations modify structures at a low level, making
rules self-contained and applicable with a single rule application engine. A single rule application engine
minimizes development and debugging needs and enables the development of dedicated tools, such as Fujaba [82]
to refactor code, DiaGen [83] to edit diagrams, GReTL [84] to manipulate metamodels, or Gremlin [85] to query
graph databases.

In computer graphics as well, formalizations have been accomplished with graph transformations. For
instance, graph grammars were used for 2D shapes classification [86], plants multiscale modeling [87], indoor
scenes reconstruction [88], tunnels modeling process [89]. Previous works introduced a graph-based repre-
sentation of G-maps for geometric modeling [15] and used DPO graph transformations to design modeling
operations [16]. In this article, we dealt with the topological part of geometric modeling. The representation of
objects also relies on other data, such as vertex positions, edge curvature, or volume density. In topology-based
geometric modeling, these data are referred to as embedding. In [33], embeddings were defined as a family of
node labels with appropriate consistency constraints and conditions. Since rules can modify both the topology
and the embeddings of an object, conditions to preserve the embedding consistency in meta-rules were studied
in [34]. In [15], DPO rewriting was enriched with variables to construct meta-rules instantiated with a set-based
operation similar to a pullback. In [16], sufficient consistency preservation conditions were introduced for DPO
transformations, and only the incident arcs condition was lifted to meta-rules.

Jerboa [17] has been developed, based on the work from [15] and [16]. This platform allows for the
prototyping of dedicated modelers for G-maps. To design a modeler with Jerboa, one has to specify the
dimensions of the objects (2D, 3D, 4D), the embeddings (position, curvature, density), and the rule-based
transformations. Jerboa has been successively used for several modelers: one dedicated to architecture [90], one
for the simulation of plant growth [91], and another one for the analysis of soils in geology [92]. In its current
iteration, Jerboa supports the definition of modeler kernels using G-maps in any dimension. In this paper, we
replaced the topological variables of [32] with a product construction. The new approach has a more substantial
relationship with categorical concepts thanks to graph products, terminal graphs, and functors. Our scheme rules
subsume previous works and allow us to deal with the more popular model of O-maps. Therefore, an evolution
of Jerboa seems conceivable to support both G-maps and O-maps, as well as the product construction of rule
schemes.

12. Conclusion

Towards defining topological operations on combinatorial maps, we studied three constraints on arc-labeled
graphs: the incident arcs constraint, the non-orientation constraint, and the cycle constraint. We defined constraint-
preserving DPO rules thanks to necessary and sufficient conditions allowing for rules to be statically checked.
Thus, the study englobes both the G-map and the O-map models. To our knowledge, this is the first time that
geometric modeling operations for O-maps are described using graph transformations.

Any framework dedicated to geometric modeling should be as unified as possible. Similar to certain
implementations that allow several combinatorial models to coexist, this framework should encompass several
combinatorial models. Hence, the unification of the G-maps and the O-maps in a single framework is already an
exciting result to promote formal methods and, more specifically, graph transformations in geometric modeling.

We also enriched DPO rewriting for arc-labeled graphs with categorical constructions so that the designed
rules are generic with respect to the underlying topology of the object. The extrapolation is based on functors
to embed the transformation in a different category of labeled graphs. Then, we encode functions to describe
how the operation should be carried out. Applying these functions is simulated with the categorical product to
instantiate the more abstract rule schemes. We discussed how to unambiguously instantiate such rule schemes
for a given combinatorial graph (and a fortiori for a given G-map or O-map). We also lifted the consistency
conditions from DPO rules to rule schemes, although we lost the necessity of the cycle condition. We provided

57

algorithms describing a static analyzer for consistency preservation. Finally, we gave a representative example of
a pipeline for the modeling of a geometric object.

As a result of our new approach, closer to algebraic transformation formalism, we plan to extend the current
version of the Jerboa platform. In order to be able to develop such a new platform, we will first need to provide
conditions to preserve the embedding consistency, i.e., ensure that the transformation of a geometrically correct
object yields an equally well-formed object.

References

[1] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Graphs, Typed Graphs, and the Gluing Construction, in:
Fundamentals of Algebraic Graph Transformation (Monographs in Theoretical Computer Science. An
EATCS Series), Springer, 2006, pp. 21–35. doi:10.1007/3-540-31188-2_2.

[2] S. Marschner, P. Shirley, Fundamentals of Computer Graphics, CRC Press, 2015.

[3] I. Baran, J. Popović, Automatic rigging and animation of 3D characters, ACM Transactions on Graphics
26 (3) (2007) 72–es. doi:10.1145/1276377.1276467.

[4] M. Perrin, J.-F. Rainaud, Shared earth modeling: knowledge driven solutions for building and managing
subsurface 3D geological models, Editions Technip, 2013.

[5] S. Horna, D. Meneveaux, G. Damiand, Y. Bertrand, Consistency constraints and 3D building reconstruction,
Computer-Aided Design (CAD) 41 (1) (2009) 13–27. doi:10.1016/j.cad.2008.11.006.

[6] J. Wu, R. Westermann, C. Dick, Physically-based Simulation of Cuts in Deformable Bodies: A Survey,
in: S. Lefebvre, M. Spagnuolo (Eds.), Eurographics 2014 - State of the Art Reports, The Eurographics
Association, 2014, pp. 1–19. doi:10.2312/egst.20141033.

[7] F. Ben Salah, H. Belhaouari, A. Arnould, P. Meseure, A Modular Approach Based on Graph Transformation
to Simulate Tearing and Fractures on Various Mechanical Models, Journal of WSCG 25 (1) (2017) 39–48.

[8] S. Campagna, L. Kobbelt, H.-P. Seidel, Directed Edges—A Scalable Representation for Triangle Meshes,
Journal of Graphics Tools 3 (4) (1998) 1–11. doi:10.1080/10867651.1998.10487494.

[9] K. Weiler, Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments, IEEE Com-
puter Graphics and Applications 5 (1) (1985) 21–40. doi:10.1109/MCG.1985.276271.

[10] P. Lienhardt, Topological models for boundary representation: a comparison with n-dimensional generalized
maps, Computer-Aided Design 23 (11) (1991) 59–82. doi:10.1016/0010-4485(91)90100-B.

[11] G. Damiand, P. Lienhardt, Combinatorial Maps: Efficient Data Structures for Computer Graphics and
Image Processing, CRC Press, 2014.

[12] A. Vince, Combinatorial maps, Journal of Combinatorial Theory, Series B 34 (1) (1983) 1–21. doi:
10.1016/0095-8956(83)90002-3.

[13] S. K. Lando, A. K. Zvonkin, Constellations, coverings, and maps, in: Graphs on Surfaces and Their
Applications, Encyclopaedia of Mathematical Sciences, Springer, 2004, pp. 7–77. doi:10.1007/
978-3-540-38361-1_2.

[14] P. Lienhardt, Subdivisions of N-dimensional Spaces and N-dimensional Generalized Maps, in: Proceedings
of the Fifth Annual Symposium on Computational Geometry, SCG ’89, Association for Computing
Machinery, New York, NY, USA, 1989, pp. 228–236. doi:10.1145/73833.73859.

[15] M. Poudret, J.-P. Comet, P. Le Gall, A. Arnould, P. Meseure, Topology-based geometric modelling
for biological cellular processes, in: International Conference on Language and Automata Theory and
Applications, 2007, pp. 497–508.

58

https://doi.org/10.1007/3-540-31188-2_2
https://doi.org/10.1145/1276377.1276467
https://doi.org/10.1016/j.cad.2008.11.006
https://doi.org/10.2312/egst.20141033
https://doi.org/10.1080/10867651.1998.10487494
https://doi.org/10.1109/MCG.1985.276271
https://doi.org/10.1016/0010-4485(91)90100-B
https://doi.org/10.1016/0095-8956(83)90002-3
https://doi.org/10.1016/0095-8956(83)90002-3
https://doi.org/10.1007/978-3-540-38361-1_2
https://doi.org/10.1007/978-3-540-38361-1_2
https://doi.org/10.1145/73833.73859

[16] M. Poudret, A. Arnould, J.-P. Comet, P. Le Gall, Graph transformation for topology modelling, in: H. Ehrig,
R. Heckel, G. Rozenberg, G. Taentzer (Eds.), Graph Transformations (ICGT 2008), Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, 2008, pp. 147–161. doi:10.1007/978-3-540-87405-8_11.

[17] H. Belhaouari, A. Arnould, P. Le Gall, T. Bellet, Jerboa: A Graph Transformation Library for Topology-
Based Geometric Modeling, in: H. Giese, B. König (Eds.), Graph Transformation (ICGT 2014), Lecture
Notes in Computer Science, Springer International Publishing, Cham, 2014, pp. 269–284. doi:10.1007/
978-3-319-09108-2_18.

[18] C. Dehlinger, J.-F. Dufourd, Formal specification and proofs for the topology and classification of combinato-
rial surfaces, Computational Geometry 47 (9) (2014) 869–890. doi:10.1016/j.comgeo.2014.04.007.

[19] P. Kraemer, L. Untereiner, T. Jund, S. Thery, D. Cazier, CGoGN: n-dimensional Meshes with Combinatorial
Maps, in: J. Sarrate, M. Staten (Eds.), Proceedings of the 22nd International Meshing Roundtable, Springer
International Publishing, Cham, 2014, pp. 485–503. doi:10.1007/978-3-319-02335-9_27.

[20] B. König, D. Nolte, J. Padberg, A. Rensink, A Tutorial on Graph Transformation, in: R. Heckel,
G. Taentzer (Eds.), Graph Transformation, Specifications, and Nets: In Memory of Hartmut Ehrig,
Lecture Notes in Computer Science, Springer International Publishing, Cham, 2018, pp. 83–104.
doi:10.1007/978-3-319-75396-6_5.

[21] S. Vigna, A Guided Tour in the Topos of Graphs, Tech. rep. (Jun. 2003).
URL http://arxiv.org/abs/math/0306394

[22] S. Lack, P. Sobociński, Adhesive Categories, in: I. Walukiewicz (Ed.), Foundations of Software Science
and Computation Structures, Lecture Notes in Computer Science, Springer, 2004, pp. 273–288. doi:
10.1007/978-3-540-24727-2_20.

[23] A. Habel, J. Müller, D. Plump, Double-pushout graph transformation revisited, Mathematical Structures in
Computer Science 11 (5) (2001) 637–688. doi:10.1017/S0960129501003425.

[24] H. Ehrig, M. Korff, M. Löwe, Tutorial introduction to the algebraic approach of graph grammars based
on double and single pushouts, in: H. Ehrig, H.-J. Kreowski, G. Rozenberg (Eds.), Graph Grammars and
Their Application to Computer Science, Vol. 532 of Lecture Notes in Computer Science, Springer, 1991,
pp. 24–37. doi:10.1007/BFb0017375.

[25] J. Engelfriet, G. Rozenberg, Node replacement graph grammars, in: Handbook of Graph Grammars
and Computing by Graph Transformation: Volume I. Foundations, World Scientific, 1997, pp. 1–94.
doi:10.5555/278918.278925.

[26] M. Bauderon, A uniform approach to graph rewriting: The pullback approach, in: M. Nagl (Ed.), Graph-
Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, Springer, 1995, pp. 101–115.
doi:10.1007/3-540-60618-1_69.

[27] P. Kraemer, D. Cazier, D. Bechmann, Extension of half-edges for the representation of multiresolution
subdivision surfaces, The Visual Computer 25 (2) (2009) 149–163. doi:10.1007/s00371-008-0211-6.

[28] C. J. Paulus, L. Untereiner, H. Courtecuisse, S. Cotin, D. Cazier, Virtual cutting of deformable objects
based on efficient topological operations, The Visual Computer 31 (6) (2015) 831–841. doi:10.1007/
s00371-015-1123-x.

[29] L. Untereiner, P. Kraemer, D. Cazier, D. Bechmann, CPH: a compact representation for hierarchical meshes
generated by primal refinement, Computer Graphics Forum 34 (8) (2015) 155–166. doi:10.1111/cgf.
12667.

[30] G. Damiand, F. Zara, Merge-and-simplify operation for compact combinatorial pyramid definition, Pattern
Recognition Letters 129 (2020) 48–55. doi:10.1016/j.patrec.2019.11.009.

59

https://doi.org/10.1007/978-3-540-87405-8_11
https://doi.org/10.1007/978-3-319-09108-2_18
https://doi.org/10.1007/978-3-319-09108-2_18
https://doi.org/10.1016/j.comgeo.2014.04.007
https://doi.org/10.1007/978-3-319-02335-9_27
https://doi.org/10.1007/978-3-319-75396-6_5
http://arxiv.org/abs/math/0306394
http://arxiv.org/abs/math/0306394
https://doi.org/10.1007/978-3-540-24727-2_20
https://doi.org/10.1007/978-3-540-24727-2_20
https://doi.org/10.1017/S0960129501003425
https://doi.org/10.1007/BFb0017375
https://doi.org/10.5555/278918.278925
https://doi.org/10.1007/3-540-60618-1_69
https://doi.org/10.1007/s00371-008-0211-6
https://doi.org/10.1007/s00371-015-1123-x
https://doi.org/10.1007/s00371-015-1123-x
https://doi.org/10.1111/cgf.12667
https://doi.org/10.1111/cgf.12667
https://doi.org/10.1016/j.patrec.2019.11.009

[31] J.-F. Dufourd, An Intuitionistic Proof of a Discrete Form of the Jordan Curve Theorem Formalized
in Coq with Combinatorial Hypermaps, Journal of Automated Reasoning 43 (1) (2009) 19–51. doi:
10.1007/s10817-009-9117-x.

[32] T. Bellet, M. Poudret, A. Arnould, L. Fuchs, P. Le Gall, Designing a Topological Modeler Kernel: A
Rule-Based Approach, in: 2010 Shape Modeling International Conference, 2010, pp. 100–112. doi:
10.1109/SMI.2010.31.

[33] T. Bellet, A. Arnould, P. Le Gall, Rule-based transformations for geometric modeling, in: R. Echahed
(Ed.), 6th International Workshop on Computing with Terms and Graphs (TERMGRAPH 2011), Vol. 48,
Saarbrücken, Germany, 2011, p. 20–37. doi:10.4204/eptcs.48.5.

[34] T. Bellet, A. Arnould, H. Belhaouari, P. Le Gall, Geometric modeling: Consistency preservation using two-
layered variable substitutions, in: J. de Lara, D. Plump (Eds.), Graph Transformation (ICGT 2017), Lecture
Notes in Computer Science, Springer, Cham, 2017, pp. 36–53. doi:10.1007/978-3-319-61470-0_3.

[35] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, D. Zorin, Quad-Mesh Generation and
Processing: A Survey, Computer Graphics Forum 32 (6) (2013) 51–76. doi:10.1111/cgf.12014.

[36] R. V. Book, F. Otto, String-Rewriting Systems, Text and Monographs in Computer Science, Springer, New
York, NY, 1993.

[37] P. Bourquat, H. Belhaouari, P. Meseure, V. Gauthier, A. Arnould, Transparent parallelization of enrichment
operations in geometric modeling, in: K. Bouatouch, A. A. de Sousa, J. Braz (Eds.), Proceedings of the
15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications, VISIGRAPP 2020, Volume 1: GRAPP, Valletta, Malta, February 27-29, 2020, SCITEPRESS,
2020, pp. 125–136. doi:10.5220/0008965701250136.

[38] H. Ehrig, Introduction to the algebraic theory of graph grammars (a survey), in: V. Claus, H. Ehrig,
G. Rozenberg (Eds.), Graph-Grammars and Their Application to Computer Science and Biology, Lecture
Notes in Computer Science, Springer, 1979, pp. 1–69. doi:10.1007/BFb0025714.

[39] M. Gyssens, J. Paredaens, J. van den Bussche, D. van Gucht, A graph-oriented object database model, IEEE
Transactions on Knowledge and Data Engineering 6 (4) (1994) 572–586. doi:10.1109/69.298174.

[40] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg, Handbook of Graph Grammars and Computing by
Graph Transformation: Concurrency, Parallelism, and Distribution, Vol. 3 of Concurrency, Parallelism, and
Distribution, World Scientific, 1999.

[41] L. Baresi, R. Heckel, Tutorial Introduction to Graph Transformation: A Software Engineering Perspective,
in: H. Ehrig, G. Engels, F. Parisi-Presicce, G. Rozenberg (Eds.), Graph Transformations (ICGT 2004),
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2004, pp. 431–433. doi:10.1007/
978-3-540-30203-2_30.

[42] M. Haeusler, T. Trojer, J. Kessler, M. Farwick, E. Nowakowski, R. Breu, ChronoSphere: a graph-based
EMF model repository for IT landscape models, Software and Systems Modeling 18 (6) (2019) 3487–3526.
doi:10.1007/s10270-019-00725-0.

[43] H. Ehrig, A. Habel, Graph Grammars with Application Conditions, in: G. Rozenberg, A. Salomaa (Eds.),
The Book of L, Springer, 1986, pp. 87–100. doi:10.1007/978-3-642-95486-3_7.

[44] A. Corradini, U. Montanari, F. Rossi, Graph processes, Fundamenta Informaticae 26 (3-4) (1996) 241–265.
doi:10.3233/FI-1996-263402.

[45] M. Löwe, M. Korff, A. Wagner, An algebraic framework for the transformation of attributed graphs, in:
R. Sleep, R. Plasmeijer, M. van Eekelen (Eds.), Term Graph Rewriting: Theory and Practice, John Wiley
and Sons Ltd., 1993, pp. 185–199.

60

https://doi.org/10.1007/s10817-009-9117-x
https://doi.org/10.1007/s10817-009-9117-x
https://doi.org/10.1109/SMI.2010.31
https://doi.org/10.1109/SMI.2010.31
https://doi.org/10.4204/eptcs.48.5
https://doi.org/10.1007/978-3-319-61470-0_3
https://doi.org/10.1111/cgf.12014
https://doi.org/10.5220/0008965701250136
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1109/69.298174
https://doi.org/10.1007/978-3-540-30203-2_30
https://doi.org/10.1007/978-3-540-30203-2_30
https://doi.org/10.1007/s10270-019-00725-0
https://doi.org/10.1007/978-3-642-95486-3_7
https://doi.org/10.3233/FI-1996-263402

[46] H. Ehrig, A. Habel, H.-J. Kreowski, F. Parisi-Presicce, From graph grammars to high level replacement
systems, in: H. Ehrig, H.-J. Kreowski, G. Rozenberg (Eds.), Graph Grammars and Their Application to
Computer Science, Vol. 532 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1991, pp.
269–291. doi:10.1007/BFb0017395.

[47] H. Ehrig, A. Habel, J. Padberg, U. Prange, Adhesive High-Level Replacement Categories and Systems,
in: H. Ehrig, G. Engels, F. Parisi-Presicce, G. Rozenberg (Eds.), Graph Transformations (ICGT 2004),
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2004, pp. 144–160. doi:10.1007/
978-3-540-30203-2_12.

[48] A. Corradini, T. Heindel, B. König, D. Nolte, A. Rensink, Rewriting Abstract Structures: Materialization
Explained Categorically, in: M. Bojańczyk, A. Simpson (Eds.), Foundations of Software Science and
Computation Structures, Lecture Notes in Computer Science, Springer International Publishing, Cham,
2019, pp. 169–188. doi:10.1007/978-3-030-17127-8_10.

[49] J. Bauer, R. Wilhelm, Static Analysis of Dynamic Communication Systems by Partner Abstraction, in:
H. R. Nielson, G. Filé (Eds.), Static Analysis, Vol. 4634 of Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2007, pp. 249–264. doi:10.1007/978-3-540-74061-2_16.

[50] A. Rensink, E. Zambon, Neighbourhood Abstraction in GROOVE - Tool Paper, in: J. de Lara, D. Varro
(Eds.), Proceedings of the Fourth International Workshop on Graph-Based Tools (GraBaTs 2010), CTIT
Workshop Proceedings, Centre for Telematics and Information Technology (CTIT), 2010, pp. 55–61.

[51] D. Steenken, H. Wehrheim, D. Wonisch, Sound and Complete Abstract Graph Transformation, in: A. Simao,
C. Morgan (Eds.), Formal Methods, Foundations and Applications, Vol. 7021 of Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2011, pp. 92–107. doi:10.1007/978-3-642-25032-3_7.

[52] P. Backes, J. Reineke, Analysis of Infinite-State Graph Transformation Systems by Cluster Abstraction,
in: D. D’Souza, A. Lal, K. G. Larsen (Eds.), Verification, Model Checking, and Abstract Interpretation,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2015, pp. 135–152. doi:10.1007/
978-3-662-46081-8_8.

[53] R. Heckel, J. M. Küster, G. Taentzer, Confluence of Typed Attributed Graph Transformation Systems,
in: A. Corradini, H. Ehrig, H.-J. Kreowski, G. Rozenberg (Eds.), Graph Transformation (ICGT 2002),
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2002, pp. 161–176. doi:10.1007/
3-540-45832-8_14.

[54] A. Habel, D. Plump, Relabelling in Graph Transformation, in: A. Corradini, H. Ehrig, H.-J. Kreowski,
G. Rozenberg (Eds.), Graph Transformation (ICGT 2002), Vol. 2505 of Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2002, pp. 135–147. doi:10.1007/3-540-45832-8_12.

[55] H. Ehrig, U. Golas, A. Habel, L. Lambers, F. Orejas, M-adhesive transformation systems with nested
application conditions. Part 1: parallelism, concurrency and amalgamation, Mathematical Structures in
Computer Science 24 (4) (Aug. 2014). doi:10.1017/S0960129512000357.

[56] P. Boehm, H.-R. Fonio, A. Habel, Amalgamation of graph transformations: A synchronization mechanism,
Journal of Computer and System Sciences 34 (2) (1987) 377–408. doi:10.1016/0022-0000(87)
90030-4.

[57] G. Taentzer, M. Beyer, Amalgamated graph transformations and their use for specifying AGG — an alge-
braic graph grammar system, in: H. J. Schneider, H. Ehrig (Eds.), Graph Transformations in Computer Sci-
ence, Lecture Notes in Computer Science, Springer, 1994, pp. 380–394. doi:10.1007/3-540-57787-4_
24.

[58] A. Rensink, J.-H. Kuperus, Repotting the Geraniums: On Nested Graph Transformation Rules, Electronic
Communications of the EASST 18 (Sep. 2009). doi:10.14279/tuj.eceasst.18.260.

61

https://doi.org/10.1007/BFb0017395
https://doi.org/10.1007/978-3-540-30203-2_12
https://doi.org/10.1007/978-3-540-30203-2_12
https://doi.org/10.1007/978-3-030-17127-8_10
https://doi.org/10.1007/978-3-540-74061-2_16
https://doi.org/10.1007/978-3-642-25032-3_7
https://doi.org/10.1007/978-3-662-46081-8_8
https://doi.org/10.1007/978-3-662-46081-8_8
https://doi.org/10.1007/3-540-45832-8_14
https://doi.org/10.1007/3-540-45832-8_14
https://doi.org/10.1007/3-540-45832-8_12
https://doi.org/10.1017/S0960129512000357
https://doi.org/10.1016/0022-0000(87)90030-4
https://doi.org/10.1016/0022-0000(87)90030-4
https://doi.org/10.1007/3-540-57787-4_24
https://doi.org/10.1007/3-540-57787-4_24
https://doi.org/10.14279/tuj.eceasst.18.260

[59] H. Ehrig, B. K. Rosen, Parallelism and concurrency of graph manipulations, Theoretical Computer Science
11 (3) (1980) 247–275. doi:10.1016/0304-3975(80)90016-X.

[60] A. Corradini, T. Heindel, F. Hermann, B. König, Sesqui-pushout rewriting, in: A. Corradini, H. Ehrig,
U. Montanari, L. Ribeiro, G. Rozenberg (Eds.), Graph Transformations (ICGT 2006), Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 2006, pp. 30–45. doi:10.1007/11841883_4.

[61] A. Corradini, D. Duval, R. Echahed, F. Prost, L. Ribeiro, Algebraic graph rewriting with controlled
embedding, Theoretical Computer Science 802 (2020) 19–37. doi:10.1016/j.tcs.2019.06.004.

[62] A. Corradini, D. Duval, R. Echahed, F. Prost, L. Ribeiro, The PBPO graph transformation approach, Journal
of Logical and Algebraic Methods in Programming 103 (2019) 213–231. doi:10.1016/j.jlamp.2018.
12.003.

[63] H. J. Schneider, Changing Labels in the Double-Pushout Approach Can Be Treated Categorically, in:
H.-J. Kreowski, U. Montanari, F. Orejas, G. Rozenberg, G. Taentzer (Eds.), Formal Methods in Software
and Systems Modeling: Essays Dedicated to Hartmut Ehrig on the Occasion of His 60th Birthday, Vol.
3393 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2005, pp. 134–149. doi:
10.1007/978-3-540-31847-7_8.

[64] L. Lambers, M. Navarro, F. Orejas, E. Pino, Towards a Navigational Logic for Graphical Structures, in:
R. Heckel, G. Taentzer (Eds.), Graph Transformation, Specifications, and Nets: In Memory of Hartmut
Ehrig, Lecture Notes in Computer Science, Springer International Publishing, Cham, 2018, pp. 124–141.
doi:10.1007/978-3-319-75396-6_7.

[65] M. Navarro, F. Orejas, E. Pino, L. Lambers, A navigational logic for reasoning about graph properties,
Journal of Logical and Algebraic Methods in Programming 118 (Jan. 2021). doi:10.1016/j.jlamp.
2020.100616.

[66] A. Habel, R. Heckel, G. Taentzer, Graph Grammars with Negative Application Conditions, Fundamenta
Informaticae 26 (3) (1996) 287–313. doi:10.3233/FI-1996-263404.

[67] A. Habel, K.-H. Pennemann, Correctness of high-level transformation systems relative to nested
conditions, Mathematical Structures in Computer Science 19 (2) (2009) 245–296. doi:10.1017/
S0960129508007202.

[68] A. Rensink, Representing First-Order Logic Using Graphs, in: H. Ehrig, G. Engels, F. Parisi-Presicce,
G. Rozenberg (Eds.), Graph Transformations (ICGT 2004), Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2004, pp. 319–335. doi:10.1007/978-3-540-30203-2_23.

[69] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

[70] B. Becker, D. Beyer, H. Giese, F. Klein, D. Schilling, Symbolic invariant verification for systems with
dynamic structural adaptation, in: Proceedings of the 28th international conference on Software engineering,
ICSE ’06, Association for Computing Machinery, New York, NY, USA, 2006, pp. 72–81. doi:10.1145/
1134285.1134297.

[71] B. Becker, L. Lambers, J. Dyck, S. Birth, H. Giese, Iterative Development of Consistency-Preserving
Rule-Based Refactorings, in: J. Cabot, E. Visser (Eds.), Theory and Practice of Model Transformations,
Vol. 6707 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp. 123–137.
doi:10.1007/978-3-642-21732-6_9.

[72] J. Dyck, H. Giese, Inductive Invariant Checking with Partial Negative Application Conditions, in: F. Parisi-
Presicce, B. Westfechtel (Eds.), Graph Transformation (ICGT 2015), Lecture Notes in Computer Science,
Springer International Publishing, Cham, 2015, pp. 237–253. doi:10.1007/978-3-319-21145-9_15.

62

https://doi.org/10.1016/0304-3975(80)90016-X
https://doi.org/10.1007/11841883_4
https://doi.org/10.1016/j.tcs.2019.06.004
https://doi.org/10.1016/j.jlamp.2018.12.003
https://doi.org/10.1016/j.jlamp.2018.12.003
https://doi.org/10.1007/978-3-540-31847-7_8
https://doi.org/10.1007/978-3-540-31847-7_8
https://doi.org/10.1007/978-3-319-75396-6_7
https://doi.org/10.1016/j.jlamp.2020.100616
https://doi.org/10.1016/j.jlamp.2020.100616
https://doi.org/10.3233/FI-1996-263404
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1145/1134285.1134297
https://doi.org/10.1145/1134285.1134297
https://doi.org/10.1007/978-3-642-21732-6_9
https://doi.org/10.1007/978-3-319-21145-9_15

[73] C. A. R. Hoare, An axiomatic basis for computer programming, Communications of the ACM 12 (10)
(1969) 576–580, 583. doi:10.1145/363235.363259.

[74] C. M. Poskitt, D. Plump, Hoare-Style Verification of Graph Programs, Fundamenta Informaticae 118 (1-2)
(2012) 135–175. doi:10.3233/FI-2012-708.

[75] D. Plump, The Graph Programming Language GP, in: S. Bozapalidis, G. Rahonis (Eds.), Algebraic
Informatics, Vol. 5725 of Lecture Notes in Computer Science, Springer, 2009, pp. 99–122. doi:10.1007/
978-3-642-03564-7_6.

[76] J. Kosiol, L. Fritsche, N. Nassar, A. Schürr, G. Taentzer, Constructing Constraint-Preserving Interaction
Schemes in Adhesive Categories, in: J. L. Fiadeiro, I. Ţuţu (Eds.), Recent Trends in Algebraic Development
Techniques, Vol. 11563 of Lecture Notes in Computer Science, 2019, pp. 139–153. doi:10.1007/
978-3-030-23220-7_8.

[77] E. Biermann, C. Ermel, G. Taentzer, Formal foundation of consistent EMF model transformations by
algebraic graph transformation, Software & Systems Modeling 11 (2) (2012) 227–250. doi:10.1007/
s10270-011-0199-7.

[78] A. Schürr, A. J. Winter, A. Zündorf, Graph grammar engineering with PROGRES, in: W. Schäfer, P. Botella
(Eds.), Software Engineering — ESEC ’95, Lecture Notes in Computer Science, 1995, pp. 219–234.
doi:10.1007/3-540-60406-5_17.

[79] G. Taentzer, AGG: A Graph Transformation Environment for Modeling and Validation of Software, in:
J. L. Pfaltz, M. Nagl, B. Böhlen (Eds.), Applications of Graph Transformations with Industrial Relevance,
Lecture Notes in Computer Science, 2004, pp. 446–453. doi:10.1007/978-3-540-25959-6_35.

[80] A. Rensink, The GROOVE Simulator: A Tool for State Space Generation, in: J. L. Pfaltz, M. Nagl,
B. Böhlen (Eds.), Applications of Graph Transformations with Industrial Relevance, Lecture Notes in
Computer Science, 2004, pp. 479–485. doi:10.1007/978-3-540-25959-6_40.

[81] R. Geiß, G. V. Batz, D. Grund, S. Hack, A. Szalkowski, GrGen: A Fast SPO-Based Graph Rewriting Tool,
in: A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Rozenberg (Eds.), Graph Transformations (ICGT
2006), Lecture Notes in Computer Science, 2006, pp. 383–397. doi:10.1007/11841883_27.

[82] U. Nickel, J. Niere, A. Zündorf, The FUJABA environment, in: Proceedings of the 22nd international
conference on Software engineering, ICSE ’00, Association for Computing Machinery, 2000, pp. 742–745.
doi:10.1145/337180.337620.

[83] M. Minas, G. Viehstaedt, DiaGen: a generator for diagram editors providing direct manipulation and
execution of diagrams, in: Proceedings of Symposium on Visual Languages, 1995, pp. 203–210. doi:
10.1109/VL.1995.520810.

[84] J. Ebert, T. Horn, GReTL: an extensible, operational, graph-based transformation language, Software and
Systems Modeling 13 (1) (2014) 301–321. doi:10.1007/s10270-012-0250-3.

[85] M. A. Rodriguez, The Gremlin graph traversal machine and language (invited talk), in: Proceedings of
the 15th Symposium on Database Programming Languages, DBPL 2015, 2015, pp. 1–10. doi:10.1145/
2815072.2815073.

[86] K. C. You, K.-S. Fu, A Syntactic Approach to Shape Recognition Using Attributed Grammars, IEEE
Transactions on Systems, Man, and Cybernetics 9 (6) (1979) 334–345. doi:10.1109/TSMC.1979.
4310222.

[87] Y. Ong, W. Kurth, A graph model and grammar for multi-scale modelling using XL, in: 2012 IEEE
International Conference on Bioinformatics and Biomedicine Workshops, IEEE, 2012, pp. 1–8. doi:
10.1109/BIBMW.2012.6470293.

63

https://doi.org/10.1145/363235.363259
https://doi.org/10.3233/FI-2012-708
https://doi.org/10.1007/978-3-642-03564-7_6
https://doi.org/10.1007/978-3-642-03564-7_6
https://doi.org/10.1007/978-3-030-23220-7_8
https://doi.org/10.1007/978-3-030-23220-7_8
https://doi.org/10.1007/s10270-011-0199-7
https://doi.org/10.1007/s10270-011-0199-7
https://doi.org/10.1007/3-540-60406-5_17
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/978-3-540-25959-6_40
https://doi.org/10.1007/11841883_27
https://doi.org/10.1145/337180.337620
https://doi.org/10.1109/VL.1995.520810
https://doi.org/10.1109/VL.1995.520810
https://doi.org/10.1007/s10270-012-0250-3
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1109/TSMC.1979.4310222
https://doi.org/10.1109/TSMC.1979.4310222
https://doi.org/10.1109/BIBMW.2012.6470293
https://doi.org/10.1109/BIBMW.2012.6470293

[88] S. Ikehata, H. Yang, Y. Furukawa, Structured Indoor Modeling, in: Proceedings of the IEEE International
Conference on Computer Vision (ICCV), IEEE, 2015, pp. 1323–1331. doi:10.1109/ICCV.2015.156.

[89] S. Vilgertshofer, A. Borrmann, Using graph rewriting methods for the semi-automatic generation of
parametric infrastructure models, Advanced Engineering Informatics 33 (2017) 502–515. doi:10.1016/
j.aei.2017.07.003.

[90] A. Cardot, D. Marcheix, X. Skapin, A. Arnould, H. Belhaouari, Persistent naming based on graph transfor-
mation rules to reevaluate parametric specification, Computer-Aided Design and Applications 16 (5) (2019)
985–1002. doi:10.14733/cadaps.2019.985-1002.

[91] E. Bohl, O. Terraz, D. Ghazanfarpour, Modeling fruits and their internal structure using parametric 3gmap
l-systems, The Visual Computer 31 (6) (2015) 819–829. doi:10.1007/s00371-015-1108-9.

[92] V. Gauthier, Développement d’un langage de programmation dédié à la modélisation géométrique à base
topologique, application à la reconstruction de modèles géologiques 3D, These de doctorat, Poitiers,
https://www.theses.fr/2019POIT2252 (Jan. 2019).

64

https://doi.org/10.1109/ICCV.2015.156
https://doi.org/10.1016/j.aei.2017.07.003
https://doi.org/10.1016/j.aei.2017.07.003
https://doi.org/10.14733/cadaps.2019.985-1002
https://doi.org/10.1007/s00371-015-1108-9

	Introduction
	Graph transformations in the category of labeled graphs
	Category of labeled graphs
	Graph transformations using double pushouts
	Graph modifications using products

	Geometric modeling
	Topological constraints
	Graph-based definitions of combinatorial maps
	Modeling operations as graph transformations
	Consistency preservation in modeling operations

	Necessary and sufficient condition for incident arcs preservation in DPO rewriting
	Consistency preservation in DPO rewriting for combinatorial graphs
	Non-orientation preservation
	Dealing with the cycle constraint
	Rule completion
	Alternating paths

	Preserving the cycle constraint

	Rule schemes using product
	Global extraction of paths
	Rule schemes
	Application of rule schemes

	Incident arcs consistency in rule schemes
	Non-orientation consistency in rule schemes
	Cycles consistency in rule schemes
	Global constraints on combinatorial graphs
	Path equivalence in combinatorial graphs
	Preservation of consistency in rule schemes

	Combinatorial maps
	Preservation of consistency for combinatorial maps
	Application example in topology-based geometric modeling

	Related works
	Rewriting in different categories
	Different kind of rewriting
	Consistency preservation in graph transformations
	Graph transformations applied to topology-based geometric modeling

	Conclusion

