
Preserving consistency in geometric modeling with
graph transformations

Agnès Arnould1, Hakim Belhaouari1, Thomas Bellet2, Pascale Le
Gall2, and Romain Pascual2,*

1Laboratory XLIM UMR CNRS 7252, Poitiers University, France
2Laboratory MICS, CentraleSupélec, Paris-Saclay University, France

*Corresponding author: romain.pascual@centralesupelec.fr

Abstract
Labeled graphs are particularly well adapted to represent objects in the

context of topology-based geometric modeling. Thus, graph transformation
theory is used to implement modeling operations and check their consistency.
This article defines a class of graph transformation rules dedicated to em-
bedding computations. Objects are here defined as a particular subclass of
labeled graphs in which arc labels encode their topological structure (i.e.„ cell
subdivision: vertex, edge, face, etc.) and node labels encode their embedding
(i.e.„ relevant data: vertex positions, face colors, volume density, etc.). Object
consistency is defined by labeling constraints which must be preserved by
modeling operations that modify topology and/or embedding. Dedicated
graph transformation variables allow us to access the existing embedding
from the underlying topological structure (e.g., collecting all the points of a
face) in order to compute the new embedding using user-provided functions
(e.g., compute the barycenter of several points). To ensure the safety of the
defined operations, we provide syntactic conditions on rules that preserve the
object consistency constraints.

Keywords— DPO graph transformation; topology-based geometric modeling; graph
transformation with variables; generalized maps; consistency preservation; static analysis

1 Introduction
Graphs can be used to represent geometric objects in 2D, 3D, or nD. For instance, a
polygon soup is typically used in lighting simulation software for animated movies or

Preprint submitted to Mathematical Structures in Computer Science 4 July 2022

mailto:romain.pascual@centralesupelec.fr

video games. In topology-based geometric modeling, semantic information is added to
the polygons to describe the topological relations between the object’s elements. For
instance, the tabletop and the legs of a table are linked together. More precisely, topology-
based geometric modeling deals with the representation and manipulation of objects
according to their topological structure (cell subdivision in vertices, edges, faces, etc.) and
their embedding (geometry and other types of information attached to their topological
cells). Using the topological model of generalized maps [38, 14], objects are defined
as a particular subclass of labeled graphs. In generalized maps, arc labels encode the
topological structure of the object while node labels store the embedding values. Defining
embeddings on topological cells implies two facts. First, each node in the graph may
have several embedding values. Secondly, all nodes that belong to the same cell must
have the same embedding value. To satisfy these two properties, the model can store
the embedding value either once per cell or once per node. In the first case, the object’s
modifications rely on the possibility of efficiently retrieving these embedding values. In
the second case, the application of a transformation operation can only be valid if it
guarantees that all elements are adequately labeled, i.e., every node has a value for each
embedding, and all nodes of a topological cell have the same value.

For instance, Figure 1(a) depicts the triangulation of a face and Figure 1(b) the
removal of an edge, both in a colored 2D object. In either figure, the topological
structure of the object contains four faces (two triangles, a square, and a pentagon)
glued together, and the embedding associates a color to each face. Note that both
operations simultaneously transform the topological structure and the embedding. The
face triangulation topologically subdivides the face into triangles. From the embedding
point of view, the new faces’ colors are computed as the mix of the subdivided face color
and the neighboring face color. Topologically, the edge removal merges two neighboring
faces by removing the shared edge, while the embedding modification mixes the two
original face colors. Note that, in the case of the edge deletion, if we simply modify the
graph nodes that describe this edge, we would create a unique face with two colors. Thus,
we need to propagate the local modification to the whole face. However, when we delete
an edge, we cannot assume the topology of the adjacent faces. These faces could have 3,
4, or arbitrary many edges and vertices. Therefore, we need a framework that ensures the
preservation of consistency on a global scale.

(a) Face triangulation (b) Edge removal

Figure 1: Two modeling operations.

2

Topology-based geometric modeling exploits mathematically well-defined structures
to specify algorithms expressing modeling operations. Proofs of correctness for these
algorithms have to be done manually [14] or with the help of a prover like Coq [52]. Each
new operation must be proven to preserve model consistency for such solutions. On the
other hand, procedural modeling relies on a small set of elementary rules that are shown
to be coherent. Any other transformation is decomposed in a sequence of elementary rules
and therefore preserves the model’s consistency. In this case, the rules are tailored to the
applicative domain and are not necessarily transposable to other domains. Capitalizing
on both approaches, we propose a framework in which transformations can be expressed
as rules that preserve the model consistency. Static analysis of the rules guarantees
consistency preservation. Therefore, we only need to prove that the rule conditions do
ensure the preservation of the model consistency.

As topological structures can be represented as a particular class of graphs, the use of
graph transformations to define modeling operations has already been studied [57, 50, 58,
46]. Derived from string and tree rewriting techniques, this rule-based approach offers
a natural way to describe complex transformations intuitively. Graph transformations
have applications in many areas such as software engineering [3, 31], concurrent and
distributed systems [20], database design [24], IT landscape modeling [29], and in our
case geometric modeling. Graph transformations mainly offer a sound framework to
express the preservation of domain-specific properties. For our concerns, they provide
a tool for constraint-preserving modeling operations. In [50], we introduced dedicated
rule variables to handle the topological genericity of modeling operations generically.
These variables abstract topological cells and their transformations. To extend their
usability, we showed that they offer a safer design of topological operations to produce
a topological-based geometric modeler [8], which was more accessible than traditional
ad hoc implementations that are fastidious to code and vulnerable to consistency bugs.
In [7], we defined a new graph category that allows nodes to have multiple labels in order
to represent the multiple embedding types simultaneously (e.g., a face being labeled by
both its color and its porosity). We proved the existence of graph transformations in
this category and introduced a new type of dedicated variables and operators to express
embedding transformations in rules.

In this article, we propose a generic graph transformation approach that allows the
implementation of any application domain’s modeling operations. More precisely, this
paper addresses the embedding aspect of modeling operations considering a representation
of embedded generalized maps as labeled graphs introduced in [7] and in which node labels
and associated labeling constraints encode the object embedding. Our first contribution
is to give conditions on the relabeling graph transformations of [28] to guarantee the
preservation of the embedding consistency. For example, in the case of the edge removal of
Figure 1(b), we will ensure that by construction, after the application of the corresponding
rules, all nodes of the resulting face end up labeled with the same color. Our second
contribution is the generic computation of the new embedding values created by a
transformation. This generic computation is achieved with a rule-based language-based
on [33]. For instance, the mix of face colors for any colored object will be computable.

3

The resulting rule schemes exploit dedicated graph transformation variables and terms
to access the existing embedding through the topological structure and apply functions
provided by the user with embedding data types. For example, the triangulation of
Figure 1(a) will be defined by a rule scheme in which the colors of the created faces are
computed by applying the user function “ mix of two colors” to the subdivided face color
and the respective adjacent face colors. The safety of this user-oriented language is as
essential as its expressiveness. Therefore, our last contribution is providing syntactic
conditions to guide rule scheme design and ensure the preservation of object consistency.

As a disclaimer, we wish to point out that we will refer to standard graph rewriting
techniques, more precisely about versions of double-pushout rewriting. However, based on
the specific needs of geometric modeling (e.g., orbit variables, computation of embedding
values), the presented constructions will be a hand-curated version of DPO-rewriting
exploiting element-based definitions to identify the various elements throughout the
derivations. Essentially, we use inclusions instead of standard monomorphisms.

The remainder of this paper is structured as follows. First, Section 2 presents related
works about L-system approaches of geometric modeling (usually referred to as procedural
modeling) and some successful graph transformation applications. Sections 3 and 4
then present the theoretical foundations supporting our work. In Section 3, we describe
relabeling in labeled graph transformations as introduced by [28] that will allow us
to modify objects. We also present the use of variables in graph transformations as
introduced by [33]. The context of topological-based geometric modeling is then presented
in Section 4. We focus on the topological model of generalized maps [38] and give
conditions from [50, 46] to preserve the model consistency. Section 5 then similarly
presents our embedded version of generalized maps and conditions under which graph
transformations preserve the embedding consistency. The subsequent three sections focus
on the rule-based language dedicated to embedding modifications. Section 6 introduces the
rule scheme syntax, in particular terms that allow generic computation of new embedding
values from existing ones in the object (e.g., to mix two unspecified face colors). Section 7
presents the rule scheme application, especially how schemes are instantiated to propagate
minimally defined modifications (e.g., automatically change the color of all nodes of
one face). Section 8 provides syntactic conditions on rule schemes to ensure embedding
consistency preservation. This article presents the final version of the variables as they are
implemented in the toolset Jerboa [4] that allows the generation of a geometric modeler
kernel from a set of rules. Some applications done with Jerboa are shown in Section 9,
while concluding remarks are given in Section 10.

2 Related Work
This section presents the motivations and the origins of our graph transformation-based
approach to geometric modeling.

Formal rule languages have been used for twenty-five years in the context of geometric
modeling and are usually referred to as procedural modeling techniques. These techniques
focus on creating a model from a rule set rather than editing the model via user input.

4

They are particularly useful for modeling objects that are too cumbersome to be modeled
by hand and for coping with the increasing level of details and size used to build complex
and realistic objects.

Intuitively, a transformation rule looks like A→ B and stands for the modification
of object A into object B. This description of modifications within the object is highly
visual and eases the design of geometric objects drastically. Indeed, this approach has
been successfully applied to generate objects such as plants [51], terrains (see the survey
done in [56]), buildings [42] or cities [45].

In all these applications, object modifications are defined by a limited set of high-level
operations such as creating a new branch, inserting a floor or subdividing a district with a
road. Such operations do not contain all the low-level transformations on the actual object
representation. Therefore, each high-level operation has its dedicated implementation and
consistency preservation mechanism. This lack of adaptability entails that any change
requires additional implementation and debugging efforts, which we avoid using graph
transformations.

Graph transformations commonly refer to rule-based languages designed to manipulate
graphs. The chosen framework for graph transformations is based on the definition of
graphs and graph morphisms described using category theory. In that sense, graphs are
defined by a set of objects, called nodes, and a set of links between these objects, called
arcs. Among all graph transformation approaches, we choose the so-called double-pushout
approach (or DPO) [13, 19]. We preferred double-pushout over single-pushout (or SPO)
because in the SPO approach dangling edges after the deletion of the left-hand pattern
are also deleted, which is less conservative. In other words, DPO eases the construction
of conditions on rules to preserve constraints. The main drawback is having to check
the dangling condition, which turns out to be doable in a static manner for our specific
class of graphs, as shown in [50]. Besides, we want to take advantage of the well-founded
DPO framework given in [28], which allows the relabeling of nodes and arcs in graph
transformations.

[27] showed that any computable function on graphs could be defined with a set
of graph transformation rules supporting a non-deterministic application of rules, their
composition, and their iteration. However, in practical applications, operations are
simpler to express and verify when defined as a single rule. Graph transformations
have been enriched with variables to make them more generic while customizable to
meet the various application needs. Intuitively, a rule with variables is a meta-level rule
that yields a concrete rule for each possible instantiation of the variables with concrete
elements. Different variable types have been introduced to enrich graph transformations
depending on the genericity purposes : node replacement graph grammars [21] and
hyperedge graph grammars [25, 17] somewhat generalized with cloning in adaptive star
graph grammars [16] or attribute graph grammars [48] and used for the interpretation of
schematic diagrams [11] or image parsing [30].

Extensions made to graph transformations ease their integration in generic tools,
such as GrGen.NET [23], Groove [53], AGG [59] or PROGRES [55]. Besides, graph
transformations operate at a low level on graph structures. Thus, rules are self-contained.

5

Therefore, a single rule application engine tailored to a given graph transformation class
enables the application of all domain-related rules. These engines justifies the development
of dedicated tools, such as Fujaba [43] for code refactoring, Gremlin [54] for queries in
graph databases, DiaGen [40] for the manipulation of diagrams, or GReTL [18] for the
parallel construction of metamodels and conforming models. This point is crucial in
designing a generic modeling tool as it minimizes the implementation and debugging
efforts.

In computer graphics, graph transformations have already been used for several
purposes. For instance, in [63, 60], attributed grammars were defined to describe and
classify the syntactic structures of two-dimensional shapes. More recently, indoor scenes
have been represented as graphs in [34], where graph grammars allowed the reconstruction
of scenes from images acquired by cameras. In [61], graphs describe the modeling process
of tunnels, and graph transformations specify modifications to this process. The main
idea is to handle consistency between different levels of detail in the infrastructure during
transformations. In [44], multiscale modeling of plants also takes advantage of a graph
grammar with the Relational Growth Grammar.

3 Graph Transformations
This section recalls the Double-PushOut (DPO) approach to graph transformations [19],
their specification in the category of partially labeled graphs [28] and their extension to
rules with variables [33].

3.1 Double-pushout graph transformations

a b(L)

1 3 a b
(K)

1
a b
(R)

13
2

3

a b

(G)

1 3

c5

a b

(D)

1 3

c5
a b

(H)

1 3

c5

(1) (2)

2
2

2 2
2

4 44

Figure 2: DPO graph transformation.

In the DPO approach, a transformation is expressed using two gluing diagrams defined
in terms of category theory. More precisely, these diagrams are pushouts in the category
of graphs and graph morphisms. To make the presentation more intuitive, let us consider
the simple example of a DPO graph transformation given in Figure 2. The rule is given

6

at the top of Figure 2 by the three graphs L, K, and R and by the two graph inclusions1

L ←↩ K ↪→ R where the symbol ↪→ (resp. ←↩) denotes the inclusion when the source
graph is given first (resp. secondly) and the target graph secondly (resp. first). In a rule,
L is called the left-hand side, R the right-hand side, and K the interface of r. In this
example, nodes are identified by letters (a, b or c) while arcs are anonymous. Nodes and
arcs are labeled by numbers (1, 3, or 5 for the nodes and 2 or 4 for the arcs). Intuitively,
the left-hand side of the rule L is the pattern to transform, the right-hand side R is the
transformed pattern, and the interface K is the preserved part common to both L and R.
The graph morphism L→ G allows the matched pattern (graph L) to be identified inside
the graph under modification (graph G). In Figure 2, the match morphism coincides with
the inclusion.

In the first pushout (1), all elements (nodes and arcs) in L that are not in K are
deleted from G to obtain D. In Figure 2, the two loops on nodes a and b are removed
from L and thus are also removed in D. In the second pushout (2), elements in K are
preserved while elements of R that are not already in K are added to D, yielding H.
In Figure 2, an arc is added in the graph H between the two preserved nodes a and
b. When the match morphism m : L→ G meets some conditions,2 the double-pushout
construction is well-defined and creates a unique graph H (up to graph isomorphism),
that is the result of the application of the graph transformation L←↩ K ↪→ R through
the match morphism L→ G.

a
1

b
(L)

7
a
1

(R)

32
a b
(K)

b
21

Figure 3: A relabeling rule.

As already pointed out in [28], graph morphisms have to preserve arc and nodes labels,
preventing relabeling in classical DPO transformation. Note that the relabeling of an arc
can still be achieved by removing it while adding an arc with a new label between the
same source and target nodes. However, this solution does not make the relabeling of a
node possible. Consequently, we prefer the DPO approach of [28] that allows relabeling
by considering partially labeled graphs. Let us take the example of the relabeling rule
of Figure 3. Node b is labeled 7 in the left-hand side L and 3 in the right-hand side R,
and therefore it is unlabeled in the interface K. Note that the two morphisms K ↪→ L
and K ↪→ R on partially labeled graphs L, K, R do not have to preserve labeling. In
particular, the undefined label of b in K is not preserved.

We now present the main definitions and results of [28] on partially labeled graph
transformations.

1One generally considers standard graph morphisms instead of only considering inclusions.
2These conditions, known as the dangling condition, mainly ensure that the removal of nodes

does not leave arcs without their node extremities.

7

3.2 Graph transformations on partially labeled graphs
A partially labeled graph G = (VG, EG, sG, tG, lG,V , lG,E) consists of two finite sets VG

and EG of nodes and arcs, two source and target functions sG, tG : EG → VG, and two
partial labeling functions3 lG,V : VG → CV for the nodes and lG,E : EG → CE for the arcs,
where CV and CE are fixed sets of node and arc labels. We say that G is totally labeled if
lG,V and lG,E are total functions. A path in a graph G is a sequence e1...ek of arcs from
EG with 1 ≤ k, such that tG(ei) = sG(ei+1) for each 1 ≤ i < k. sG(e1) and tG(ek) are
respectively called the path source and the path target and the word lG,E(e1)...lG,E(ek)
is called the path label. Moreover, if sG(e1) = tG(ek), the path is called a cycle. Moving
forward, we will amalgamate nodes and arcs in statements that hold for both sets by
omitting the indices E and V for labeling functions lG,V and lG,E . In the sequel, partially
labeled graphs will be simply called graphs.

A graph morphism g : G→ H between two graphs G and H consists of gV : VG → VH

and gE : EG → EH , two functions that preserve sources, targets and labels, i.e., sH ◦gE =
gV ◦ sG, tH ◦ gE = gV ◦ tG, and lH(g(x)) = lG(x) for all x in Dom(lG). A morphism g is
injective if gV and gE are injective and g is an inclusion if g(x) = x for all x in G. In
the latter case, the notation g : G ↪→ H is preferred to g : G → H. Finally, morphism
composition is defined componentwise as function compositions.

A diagram of graph morphisms, as Figure 4(a), is a pushout if (i) K → R → H =
K → D → H and (ii) for every pair of graph morphisms (R → H ′, D → H ′) with
K → R → H ′ = K → D → H ′, there is a unique morphism H → H ′ such that
R→ H ′ = R→ H → H ′ and D → H ′ = D → H → H ′. The same diagram is a pullback
if property (i) holds and (iii) if for every pair of graph morphisms (K ′ → R, K ′ → D)
with K ′ → R → H = K ′ → D → H, there is a unique morphism K ′ → K such that
K ′ → R = K ′ → K → R and K ′ → D = K ′ → K → D. A pushout is natural if it is also
a pullback.

Definition 1 (Rule). A rule r : L ←↩ K ↪→ R consists of two inclusions K ↪→ L and
K ↪→ R such that:

(1) for all x ∈ L, lL(x) = ⊥ implies x ∈ K and lR(x) = ⊥,

(2) for all x ∈ R, lR(x) = ⊥ implies x ∈ K and lL(x) = ⊥.

Conditions (1) and (2) prevent invalid modifications of labels when the rule is matched
to build a direct derivation.

Definition 2 (Direct derivation). A direct derivation from a graph G to a graph H via a
rule r : L←↩ K ↪→ R consists of two natural pushouts as Figure 4(b), where m : L→ G,
called the match morphism, is injective. We write G⇒r,m H if there exists such a direct
derivation.

3Given two sets A and B, a partial function f : A→ B is a function from subset A′ of A to B.
The set A′ is the domain of f and is noted Dom(f). We say that f(x) is undefined, and write
f(x) =⊥, if x is in A−Dom(f).

8

K

��

// R

��
D // H

0
(a)

L oo ? _

m (1)
��

K �
� //

(2)
��

R

��
G oo ? _D �

� // H
0

(b)

Figure 4: A diagram and a direct derivation.

In [28], the authors studied the category of partially labeled graphs as a way to express
relabeling in totally labeled graphs. In particular, given a rule r : L ←↩ K ↪→ R and
a match morphism m : L → G, they showed that (a) there exists a direct derivation
G ⇒r,m H as in Figure 4(b) if and only if m satisfies the following dangling condition:
no node in m(L)\m(K) is incident to an arc in G\m(L), (b) D and H are unique up to
isomorphism, and (c) H is totally labeled if and only if G is totally labeled.

We consider rules with two inclusions for both sides (instead of only one for the
left-hand side) as it yields a more conservative framework for us to express property
preservation over direct derivations. Indeed, enforcing the morphism K ↪→ R to be an
inclusion forbids that two nodes (resp. arcs) of L are transformed into a single node (resp.
arc) in R.

We will use the following simplifications throughout the present article. First, spans
of injective morphisms are considered spans of inclusions. Therefore, in a rule r : L←↩
K ↪→ R, if x is an element of K, we also write x ∈ L and x ∈ R. This simplification
is extended through the diagram of a direct derivation. In other words, for a element
x of D (in the diagram of Figure 4(b)), we also write x ∈ G and x ∈ H. Second, we
do not extensively write morphisms but express them throughout node naming. For
instance, a and b are node names in Figure 3. The morphism K → L maps the nodes a
and b in the graph K to the nodes a and b in the graph L. Unless explicitly given, the
depicted morphisms always map nodes with the same name. The arc part of the graph
morphism is obtained by considering that the morphism is the maximal inclusion that
respects node naming. When applying graph transformations on generalized maps, the
adjacent arcs condition will ensure the uniqueness of arcs adjacent to node per dimension,
unambiguously defining the arc part of the morphisms.

3.3 Graph transformations with variables
A framework for graph transformations with variables has been introduced in [33] revolving
around three guidelines: the rule scheme syntax, the instantiation of variables, and the
rule application process.
Rule scheme. The sets CV and CE of node and arc labels are extended by a set X of
variable names. Graphs built over4 X are called graph schemes. Then, a rule scheme is a

4Labels of nodes or arcs are either variables of X or expressions built over variables of X.

9

rule r : L←↩ K ↪→ R where L, K, and R are graph schemes. The kernel G of G is the
graph obtained by removing all labels that contain a variable occurrence.
Instantiation. A substitution function σ specifies how variable names occurring in a
rule scheme are substituted. From the instantiation of variables in the graphs L, K, and
R, yielding respectively the graphs Lσ, Kσ, and Rσ, the instantiation of a rule scheme
r : L←↩ K ↪→ R according to σ defines a particular rule instance rσ : Lσ ←↩ Kσ ↪→ Rσ.
Note that rσ is a rule without variables as defined in Definition 1.
Rule application. Let G be a graph, and r : L←↩ K ↪→ R be a rule scheme.

(1) Identify a kernel match m : L→ G of the kernel L of L in G (if it exists);

(2) If possible, find a substitution σ such that there exists a morphism m : Lσ → G
extending m;

(3) Construct the instance rσ : Lσ ←↩ Kσ ↪→ Rσ and apply the instance rσ to get the
direct derivation G⇒rσ ,m H.

The substitution and the instantiation may differ depending on the variable type,
but the generic framework remains valid. In [50, 8], we introduced variables that allow
generic transformations of topological structures using this framework. However, neither
of the previously defined variables exactly fits our usage: we need to access the node
labels through the node names to allow topological structure traversals (e.g., to access
the adjacent face color in the case of the colored triangulation given in the introduction).
In the sequel, we will introduce new dedicated variables alongside a specific instantiation
mechanism and ad hoc primitives for topological structure traversals.

3.4 Data types
In our setting, objects will be modeled by graphs labeled on nodes with geometric or
dedicated data that we will generically call embedding. For the theoretical part of this
paper, two examples of embeddings are considered, namely face colors and 2D positions
of points, but Section 9 will present additional embeddings. These data are typed and
provided with functions to perform computations on them.

As the same embedding value can appear multiple times in an object (e.g., in the
transformed object of Figure 1, two faces have the same color), we need to identify these
multiple occurrences when collecting object embedding values. We therefore consider for
each data type τ , the type τ•, which corresponds to the multiset of elements of type τ . A
multiset may be viewed as a function that associates its multiplicity (a natural number)
to each element. We use the following notation: JK for the empty multiset (of any type
τ•), Ja1, . . . , apK for a multiset with p occurrences of elements of type τ . For example,
the multiset that contains the element A with the multiplicity 1, the element B with the
multiplicity 2, and where all other elements are of multiplicity 0, is JA,B,BK. Similarly,
the multiset of face colors of the transformed object of Figure 1 is J , , , K where
each colored tablet directly encodes a particular color.

We then present the main elements of term construction and evaluation.

10

Signature. A data type signature Ω = (S, F) consists of a set S of type names and
a family of function names provided with a profile on S with S defined as the set
S ∪ {s• | s ∈ S}. A function name f provided with a profile s1 . . . sm+1 with si ∈ S for
i ∈ 1..m+ 1 is denoted by f : s1 × . . .× sm → sm+1.
Terms. For X = ∏s∈S Xs an S-indexed family of sets of variables, the set TΩ(X) =∏s∈S TΩ(X)s of terms over Ω is the least set satisfying:

• for all variables x in Xs, x ∈ TΩ(X)s;

• for all function names f : s1 × . . .× sm → sm+1 in F , for all terms t1 ∈ TΩ(X)s1 ,
. . . , tm ∈ TΩ(X)sm , then f(t1, . . . , tm) ∈ TΩ(X)sm+1

.

We note t : s a term t in TΩ(X)s.
Algebra. An Ω-algebra A consists of

• an S-indexed family of nonempty sets ∏s∈S As, canonically extended with the
family of sets ∏s∈S As• such that

As• = {Ja1, . . . , apK | 0 ≤ p,∀k ∈ 0..p, ak ∈ As}.

• and an F -indexed family of functions ∏f∈F fA such that for each function f : s1 ×
. . .×sm → sm+1 in F , the function fA has the profile fA : As1×. . .×Asm → Asm+1 .

Evaluation. For σ = ∏s∈S σs an S-indexed family of assignments σs : Xs → As, the
evaluation σ : TΩ(X)s → As of a term t : s is defined as:

• for all variables x in Xs, σ(x) = σs(x);

• for all function names f : s1 × . . . × sm → sm+1 in F and all terms t1 : s1, . . . ,
tm : sm,

σ(f(t1, . . . , tm)) = fA(σ(t1), . . . , σ(tm)).

In order to design a modeler, the user is expected to provide both a data type signature
Ω = (S, F) and an Ω-algebra A, with all the data types and functions required by its
application domain to define its modeling operations. In the sequel, the considered user
types are point_2D, vector_2D and color, that respectively model 2D positions, 2D
vectors and colors. They are provided with all classical functions such as

• + : point_2D× vector_2D → point_2D that represents the translation of a point
by a vector,

• midpoint : point_2D × point_2D → point_2D that computes middle point of a
line segment defined by its two endpoints,

• center : point_2D• → point_2D that computes the barycenter of a multiset of
points,

• or mix : color × color → color that defines the average color of two given colors.

11

From now on, the algebra A will be left implicit. When needed, the carrier set Aτ of a
data type τ will be simply written ⌊τ⌋.

By offering a concise and straightforward notation for multisets, our presentation
of data types minimally meets our needs. Multiset properties such as commutativity
of the element insertion or specification of the element multiplicity are semantically
imposed. Note that multisets could also have been introduced by considering a higher-
order approach as a starting point. We could have defined type constructions such as lists,
sets, or tuples of elements of the same type. However, the resulting data types would
have been more expressive than necessary, creating types such as sets of sets when we
only need a generic construction for denoting multisets of basic type elements.

In the rest of the article, signatures introduced by the user will be called user signatures.
As stated above, for the particular case of the example running throughout the paper,
the user signature will contain the user types point_2D, vector_2D, and color.

4 Topological Generalized Maps as Partially La-
beled Graphs

In topology-based modeling, objects are defined according to:

• their topological structure - i.e., their cell subdivision (vertices, edges, faces, volumes)
and the adjacency relations between these cells; for example, the three objects of
Figure 5 have the same topological structure: a closed face F that has four edges
and four vertices;

• their embedding, which includes all other types of information attached to their
topological cells, including the geometric information required to capture their
shape; for the objects of Figure 5, geometric points are attached to topological
vertices, and colors are attached to faces.

u w

v

x

A B

C D

A
D

C

B

v w

x
u

A

D

C

Bv
w

x
u

F F
F

Figure 5: Objects of same topological structure.

Many topological structures allow one to represent different classes of objects: tetra-
hedral [35] or polyhedral [39, 62, 14], fixed dimension (2D [39] or 3D [62]) or dimension-
independent [35, 14], and most of them can be seen as a particular class of graphs. Among
those, we choose the topological model of generalized maps (or G-maps) [38, 14] because

12

its mathematical definition can be rather easily encoded within a formal framework. In
G-maps, the topological structure is handled by both the graph structure and the arc
labels, while the node labels define the embedding.

(a) Topological inconsistencies

?

(b) Embedding inconsistencies

Figure 6: Object inconsistencies.

More precisely, the class of G-maps that represents valid objects is defined by labeling
constraints. Hence, to define modeling operations with graph transformations, we inves-
tigate under which conditions G-map constraints and object consistency are preserved
by transformations. Examples of inconsistencies are given in Figure 6. For instance, an
edge with a single extremity instead of two or two faces glued along a vertex instead of
an edge are topological inconsistencies (See Figure 6(a)). However, faces embedded with
two colors instead of one or without any defined color are embedding inconsistencies (See
Figure 6(b)).

4.1 Generalized maps

A

B C

D E

F

G

u v

w
x y

z

(a)

2

2

2

2

2

2

(b)

1

11

1 1

11

(c)

d
b

c
a

m n
l

j

k

i
g h

e f

0 0

0
0

0

00

(d)

d
b

c
a

m n
l

j

k

i
g h

e f

(e) Gtopo

Figure 7: Topological decomposition of a geometric 2D object.

The representation of an object as a G-map intuitively comes from its decomposition
into topological cells. For example, the 2D topological object of Figure 7(a) can be
decomposed into a 2-dimensional G-map. First, the object is split into faces in Figure 7(b).
These faces are linked along their common edge with a 2-relation: the index 2 means

13

that faces (cells of dimension 2) share a common edge. Similarly, faces are separated
into edges connected with the 1-relation in Figure 7(c). Finally, edges are divided into
vertices by the 0-relation yielding the 2-G-map of Figure 7(d). Nodes obtained at the end
of the process are the G-map ones, and the different i-relations become labeled arcs: for
a 2-dimensional G-map, labels i belong to {0, 1, 2}. Let Gtopo be the 2-G-maps obtained
from the decomposed of the topological object of Figure 7(a) and depicted in Figure 7(e).

Therefore, G-maps are graphs labeled on the arcs by integers. More precisely, for a
given dimension n, n-G-maps are graph with arcs totally labeled in CE = 0..n, where
0..n is the interval of integers between 0 and n. Moreover, G-maps are symmetric graph:
for each i-arc of source v and target v′, there is also a corresponding reversed i-arc of
source v′ and target v. Graphically, double reversed arcs are represented with lines (see
Figure 7(e)). Besides, instead of writing arc labels on the figures, we use the graphical
codes introduced in Figure 7: black line for 0-arcs, red dashed line for 1-arcs, and blue
double line for 2-arcs.

d
b

c
a

m n
l

j

k

i
g h

e f

(a) Vertex ⟨1 2⟩(e)

d
b

c
a

m n
l

j

k

i
g h

e f

(b) Edge ⟨0 2⟩(e)

d
b

c
a

m n
l

j

k

i
g h

e f

(c) Face ⟨0 1⟩(e)

d
b

c
a

m n
l

j

k

i
g h

e f

(d) Half-edge
⟨0⟩(e)

d
b

c
a

m n
l

j

k

i
g h

e f

(e) CC ⟨0 1 2⟩(e)

Figure 8: Orbits adjacent to e.

Topological cells are implicitly defined as subgraphs in G-maps. They are computed as
all elements reachable from a source node using a given set of arc labels. For example, in
Figure 8(a), the 0-cell (vertex) adjacent to e is the subgraph which contains e, the nodes
that can be reached from node e using 1-arcs or 2-arcs, and the arcs themselves. Note
that the grey parts of the graphs in Figure 8 (later on in Figures 9 and 21) do not belong
to the orbits and are only drawn to help with the visualization. In Figure 8(b), the 1-cell
adjacent to e (edge w in Figure 7(a)) is the subgraph that contains the node e and nodes
reachable through 0-arcs and 2-arcs (nodes e, f , g, and h), and the corresponding arcs.
Finally, in Figure 8(c), the 2-cell adjacent to e (face F in Figure 7(a)) is the subgraph built
from node e with 1-arcs and 2-arcs. The set of arc labels used to build the topological
cell as subgraphs is called an orbit type.

Definition 3 (Orbit type). Let n ∈ N be a dimension.
An orbit type of dimension n is a subset of 0..n, noted as a word o and placed in

square brackets ⟨o⟩. An element i of 0..n belongs to ⟨o⟩ if i occurs in o.

14

For instance, the orbit type {1, 2} can be noted indifferently ⟨1 2⟩ or ⟨2 1⟩. In the
sequel, the dimension of an orbit type is often left implicit.

Subgraphs built using graph traversals on an orbit type are called orbits. Formally,
an orbit is an equivalence class for the equivalence relation defined by the corresponding
orbit type. Based on this equivalence relation, we consider the notion of completion,
which can be seen as the union of equivalence classes generated by a subgraph. The
following definition formally introduces these notions together with topological graphs that
include G-maps and their transformation patterns. Note that the arc labeling function of
topological graphs is denoted by α according to the notation commonly used in geometric
modeling.

Definition 4 (n-topological graph and orbit). Let n ∈ N be a dimension.
A partially labeled graph G = (V,E, s, t, lV , α) is an n-dimensional topological graph

if the arc labeling function α is a total function with codomain CE = 0..n.
For an orbit type ⟨o⟩ of dimension n, let ≡G⟨o⟩ be the equivalence orbit relation defined

on V × V as the reflexive, symmetric and transitive closure built from arcs with labels in
o, i.e., ensuring that for each arc e of G labeled by a letter in o, we have s(e) ≡G⟨o⟩ t(e).

For any node v of G = (V,E, s, t, lV , α), the ⟨o⟩-orbit of G adjacent to v, denoted by
G⟨o⟩(v), is defined as the smallest subgraph (V ′, E′, s′, t′, l′V , α

′) of G such that

(1) the set V ′ of nodes includes {v} ∪ {v′ | v′ ∈ E, ∃w ∈ V ′, v′ ≡G⟨o⟩ w},

(2) the set E′ of arcs includes {e | s(e) ∈ V ′, t(e) ∈ V ′, α(e) ∈ o},

(3) and s′, t′, l′V and α′ are restrictions of corresponding functions in G to the sets V ′

or E′.

If the context is clear, G⟨o⟩(v) is simply denoted ⟨o⟩(v).
More generally, for any subgraph G′ ↪→ G, the ⟨o⟩-completion of G′ in G, denoted by

G⟨o⟩(G′), is defined as the smallest subgraph (V ′′, E′′, s′′, t′′, l′′V , α
′′) of G such that

(1) the set V ′′ of nodes includes VG′ ∪ {v′′ | v′′ ∈ E, ∃w ∈ V ′′, v′′ ≡G⟨o⟩ w},

(2) the set E′′ of arcs includes {e | s(e) ∈ V ′′, t(e) ∈ V ′′, α(e) ∈ o},

(3) and s′′, t′′, l′′V and α′′ are restrictions of corresponding functions in G to the sets
V ′′ or E′′.

The topological cells are particular instances of orbits. For instance, an orbit of type
⟨0 1⟩ is a face, an orbit of type ⟨0 2⟩ is an edge, and an orbit of type ⟨1 2⟩ is a vertex.
Some other standard topological objects can be expressed as orbits. For example, the
orbit ⟨0⟩(e) in Figure 8(d) represents the half-edge (also called face edge) adjacent to e,
and the orbit ⟨0 1 2⟩(e) in Figure 8(e) represents the whole connected component.

Let us now take two examples to illustrate the notion of completion. The topological
graph of Figure 9(a) is the ⟨1 2⟩-completion of ⟨0 2⟩(e), i.e the vertex completion of the
edge adjacent to node e. The edge adjacent to node e, already shown in Figure 8(b), is

15

d
b

c
a

m n
l

j

k

i
g h

e f

(a) Vertex comple-
tion of the edge of
e

d
b

c
a

m n
l

j

k

i
g h

e f

(b) Edge comple-
tion of the vertex
of e

Figure 9: Completions.

composed of the nodes e, f , g, and h with the 0-arcs and 2-arcs between them. The ⟨1 2⟩-
completion of this subgraph contains all nodes (and the corresponding arcs) reachable
from e, f , g, or h through 1-arcs and 2-arcs. From the initial subgraph, nodes c, d, i, and
j are added. Symmetrically, the Figure 9(b) presents the ⟨0 2⟩-completion of the vertex
⟨1 2⟩(e). The vertex ⟨1 2⟩(e) is illustrated on Figure 8(a) and the completion adds the
nodes a, f , h, and k. Note that the notions of orbit equivalence and orbit completion will
be helpful later in the article to handle embedding transformations.

Formally, a G-map is a topological graph satisfying some constraints that transcribe
the object consistency. The constraints are the following.

Definition 5 (Generalized map). An n-dimensional generalized map, or n-G-map, is
a totally labeled n-topological graph G = (V,E, s, t, lV , α) that satisfies the following
topological consistency constraints:

• Symmetry constraint: G is symmetric,

• Adjacent arc constraint: each node is the source node of exactly n+1 arcs respectively
labeled from 0 to n,

• Cycle constraint: for every i and j in 0..n such that i+ 2 ≤ j, there exists a cycle
labeled by ijij starting from each node.

These constraints ensure that objects represented by embedded G-maps are consistent
manifolds [38]. In particular, the cycle constraint ensures that in G-maps, two i-cells
can only be adjacent along (i− 1)-cells. For instance, in the 2-G-map of Figure 7(e), the
0202-cycle constraint implies that faces are glued along topological edges. Let us notice
that thanks to loops (see the 2-loops in Figure 7(d)), these three constraints also hold at
the border of objects.

16

4.2 Basic topological transformations
Within a geometric modeler, operations defined on objects are called topological (resp.
geometric) if their primary purpose is to change the topological structure (resp. the
embedding). Operations may fall under both aspects, such as the rounding operation
consisting of replacing a vertex or a sharp edge with a curved surface [36].

Intuitively, topological operations are applications that allow building new generalized
maps from generalized maps. The definition of topological operations by graph transfor-
mation rules advantageously facilitates the study of stating whether or not the resulting
graphs are also generalized maps. To achieve this, rules on generalized maps need to
preserve the topological constraints of Definition 5 by construction.

In previous work [50], we elaborated the following syntactic conditions that precisely
ensure the preservation of topological consistency:

Theorem 1 (Topological consistency preservation). Let r : L ←↩ K ↪→ R a graph
transformation rule, G an n-G-map and m : L→ G a match morphism.

The result H of the direct transformation G⇒r,m H is an n-G-map H if the following
conditions of topological consistency preservation are satisfied:

• Symmetry condition: the three graphs L, K, and R are symmetric n-topological
graphs.

• Adjacent arcs condition:

– preserved nodes of K are sources of arcs having the same labels in both the
left-hand side L and the right-hand side R;

– removed nodes of L\K and added nodes of R\K must be source of exactly
n+ 1 arcs respectively labeled from 0 to n.

• Cycle condition: for every i and j in 0..n such that i+ 2 ≤ j,

– any added node of R\K is the source of an ijij-cycle;

– any preserved node of K which is the source of an ijij-cycle in L, is also the
source of an ijij-cycle in R;

– any preserved node of K which is not the source of an ijij-cycle in L is source
of the same i-arcs and j-arcs in L and R.

The interested reader can find some discussion on the conditions presented in this
theorem in [50], with its proof. In particular, we demonstrated that the dangling condition
(see Subsection 3.2) is always ensured when a rule that satisfies those conditions is applied
to a G-map. Topological variables introduced in [50, 8] and the corresponding rule schemes
allow the abstraction of all orbits of a given type. Some syntactic conditions on the
rule schemes were also given to ensure that instantiated rules satisfy the conditions of
Theorem 1. These variables have been revisited with a functorial approach exploiting a
product-based construction in [46]. Here we aim to discuss geometric operations, meaning

17

that the embedding consistency is the issue tackled. Thus the topological consistency
will not be discussed more thoroughly, and we will use the more specific presentation
of [50]. Nonetheless, a watchful reader can notice that all the rules in this paper verify
the constraints of Theorem 1, which guarantees that generalized maps remain generalized
maps after transformations.

5 Embedded Generalized Maps and their Basic
Transformations

Our approach is generic in the dimension of the objects and nature of the considered
embedding. In the sequel, n-G-maps will be called G-maps, and orbit type will implicitly
be of dimension n. Moreover, all illustrative examples will present 2D objects with
one of the two embedding data types of Figure 5: either 2D positions on vertices (i.e.,
⟨1 2⟩-orbits) or colors on faces (i.e., ⟨0 1⟩-orbits).

5.1 Embedding representation
The topological structure of G-maps has been defined as graphs with arc labels. We
complete this definition here with node labels to represent the embedding. In Section 3.4,
we already sketched that every dedicated embedding has a data type and is defined on a
particular kind of topological cell.

A node labeling function defining an embedding will be typed both by an orbit type
and a data type. We characterize such a node labeling function as an embedding operation
π : ⟨o⟩ → τ where π is the operation name, τ is a data type, and ⟨o⟩ is an orbit type. Thus,
for a G-map embedded on π : ⟨o⟩ → τ , the node label set CV is the set of values ⌊τ⌋ of
type τ . When the profile of π is obvious, the node labeling function is noted π. Therefore,
an embedded5 G-map is a particular case of partially labeled graphs, generically denoted
as a tuple (V,E, s, t, π, α).

In this article, we consider the following embedding operations defined on the user
signature introduced in Section 3.4 (i.e., including types point_2D and color):

• pos : ⟨1 2⟩ → point_2D is the embedding that associates a 2D position to each
vertex. Figure 10(a) shows the embedded G-map Gpos = (V,E, s, t, pos, α) built on
Gtopo (see Figure 7(d)). The embedding operation pos maps the 2D positions A,
B, C, D, and E to the nodes of V ;

• col : ⟨0 1⟩ → color is the embedding that associates a color (values of type color) to
each face (⟨0 1⟩-orbits) of a 2-G-map. Figure 10(b) illustrates the embedded G-map
Gcol = (V,E, s, t, col, α) built on Gtopo, thus sharing its topological elements with
Gpos. The embedding operation col maps colors (and) to the nodes of V .

5To agree with the community of geometric modeling, we chose the term “embedded” instead
of the term “attributed”, most commonly used in the graph transformation community.

18

d
b

c
a

m n
l

j

k

i
g h

e f

A

B C

D E

A A

B

B C

C

C

C

B

B

D

D E

E

(a) Gpos, a 2-G-map with vertices embed-
ded by 2D positions

d
b

c
a

m n
l

j

k

i
g h

e f

(b) Gcol, a 2-G-map with faces embed-
ded by colors

Figure 10: Two embedding operations.

As mentioned in Section 3.4, data types used to specify embedding come with
operations to perform computations on the data. In the following, when referring to the
user signature attached to a given embedding π : ⟨o⟩ → τ , we will generically note it as
Ωπ = (Sπ, Fπ). In particular, Sπ contains the type τ and Fπ contains functions defined
on Sπ = Sπ ∪ {s•π | sπ ∈ Sπ}.

Moreover, as an embedding operation π : ⟨o⟩ → τ is characterized by its domain orbit,
all nodes of a common ⟨o⟩-orbit share the same label by π, also called π-label. For Gpos

of Figure 10(a), as pos is defined on orbit type ⟨1 2⟩ characterizing vertices, all nodes of a
same ⟨1 2⟩-orbit have the same value by pos. Thus, nodes c, e, g, and i that belong to
the same vertex orbit ⟨1 2⟩ are labeled by the same value B. Similarly, in Figure 10(b),
nodes a, b, c, d, e, and f that belong to the same face are labeled with the same yellow
color. This property is captured by an embedding constraint [7]:

Definition 6 (Embedded graph and embedded generalized map). Let π : ⟨o⟩ → τ be an
embedding operation with ⟨o⟩ an orbit type and τ a data type.

• Embedded graph: A graph embedded on π, or π-embedded graph, is an n-
topological graph G = (V,E, s, t, π, α) where π labels nodes on CV = ⌊τ⌋.

• Embedding consistency constraint: A π-embedded graph satisfies the embedding
consistency constraint if for all nodes v and w such that v ≡⟨o⟩ w, π(v) ̸= ⊥ and
π(w) ̸= ⊥, then π(v) = π(w).

• Embedded G-map: A π-embedded G-map is an n-G-map embedded on π satisfying
the embedding consistency constraint and such that π is a total function (i.e.,
Dom(π) = V).

Note that the embedding consistency constraint allows an ⟨o⟩-orbit to be partially
π-labeled as long as the defined π-labels are equal. Because embedded G-maps are totally
labeled, the constraint entails that all nodes of a ⟨o⟩-orbit share the same embedding

19

value, i.e., for all nodes v and w such that v ≡⟨o⟩ w, π(v) = π(w) with π(v) ̸= ⊥. Similar
to the construction of the DPO approach to graph transformation in [28], we consider
partially labeled objects in rules to ease the modification of totally labeled objects.

As we have already noticed with the embedded G-maps Gpos and Gcol, the topological
structure of a π-embedded graph G can then be found by forgetting its node labels. For
G = (V,E, s, t, π, α), Gα = (V,E, s, t,⊥, α) denotes the underlying topological structure
where the everywhere undefined function ⊥ replaces the node labeling function π.

Given an equivalence relation ≡ on a set X, [x] is the equivalence class of an element
x of X, i.e., {y ∈ X | y ≡ x}, whereas X/≡ is the quotient set {[x] | x ∈ X}. In a
π-embedded graph G, the relation ≡⟨o⟩ defines a partition of the nodes if it satisfies the
embedding consistency constraint. Consequently, the quotient of G by ≡⟨o⟩ is well-defined
and yields its ⟨o⟩-orbits. In a G, all nodes of a ⟨o⟩-orbit are unlabeled or share the same
π-label. Therefore, if this π-label exists, it is directly inherited by the resulting quotient
node. For the quotient set of arcs, we consider the set of arcs inherited from G, redefining
the source and target nodes with their corresponding quotient nodes and preserving their
labels.

For example, the quotient along ⟨1 2⟩-orbits of the embedded G-map Gpos of Fig-
ure 10(a) is the graph of Figure 11(a). As nodes c, g, e, and i belong to the same vertex
orbit, they share the same embedding B and give rise to the B-labeled quotient node v in
Figure 11(a). The quotient graph contains 5 nodes, one per ⟨1 2⟩-orbit, with a well-defined
π-label. Let us note that arcs in a ⟨1 2⟩-orbit become loops. For instance, all 1-arcs and
2-arcs adjacent to c, e, g, or i are transformed into loops on node v in the quotient graph.

Similarly, Figure 11(b) presents the quotient along ⟨0 1⟩-orbits of the 2-G-map of
Figure 10(b). Nodes a, b, c, d, e, and f of the triangle face generate the yellow quotient
node u while the nodes of the square face produce the blue quotient node v.

Definition 7 (Embedding quotient). Let π : ⟨o⟩ → τ be an embedding operation and let
G = (V,E, s, t, π, α) be a graph embedded on π that satisfies the embedding consistency
constraint.

The π-quotient graph of G is the graph

G/π = (V/π, E/π, s/π, t/π, π/π, α/π)

defined by:

• V/π = V/≡⟨o⟩;

• E/π = E such that for all e ∈ E/π, α/π(e) = α(e), s/π(e) = [s(e)] and t/π(e) =
[t(e)];

• for [v] in V/≡⟨o⟩, π/π([v]) = π(w) if there exists w in G⟨o⟩(v) such that π(w) ̸= ⊥,
otherwise π/π([v]) = ⊥.

The π-quotient morphism q : G → G/π is defined by: for all v in V , qV (v) = [v] and
qE = id.

Note that as embedded G-maps satisfy the embedding consistency constraint and are
totally labeled, their quotient graphs are also totally labeled.

20

A

B

D

C

E

u

w

x y

v

(a) (Gpos)pos: 2D po-
sitions quotient (ver-
tices)

u

v

(b) (Gcol)col:
colors quo-
tient (faces)

Figure 11: Quotients of the embedded 2-G-maps given in Figure 10.

5.2 Basic embedding transformations
The operations defined in this section introduce the notion of embedding transformation.
They are not the rules used in practice, as it would be too cumbersome to define all rules
for all possible cases. However, these transformations have the advantage of defining the
format in which our rules will be instantiated.

A

B C

D E

A

F

D E

C

(a) Vertex translation

D E

C

A

G

B

A

B C

D E

(b) Vertex insertion

Figure 12: Two operations on the position embedding.

We now investigate how modeling operations on embedded G-maps that modify their
geometry can be defined using graph transformation rules according to Definition 1. As
an example, we consider the two operations given in Figure 12 that apply to objects with
the position embedding pos. The vertex translation of Figure 12(a) is a purely geometric
operation as it does not affect the topological structure. Position B is translated to F .
Conversely, the vertex insertion of Figure 12(b) affects both the topological structure and
the embedding. An edge of the square face is split into two edges by introducing a new
vertex embedded by the point_2D value G.

The critical point in defining basic geometric modeling operations is to ensure that the

21

consistency constraints of embedded G-maps are preserved by rules applications, provided
that rules satisfy some syntactic conditions.

In the same way that we gave syntactic conditions for the preservation of topological
consistency constraints in Theorem 1, we here investigate syntactic conditions to ensure
that embedded G-maps are transformed into embedded G-maps. Let us take the example
of the vertex translation of Figure 12(a). Intuitively, we could consider the rule of
Figure 13(a). Unfortunately, such a rule is not appropriate for our needs. Indeed, by
matching node e of the rule of Figure 13(a) with node e of the G-map of Figure 10(a), its
application results in the graph given in Figure 13(b). This graph does not satisfy the
embedding consistency constraint as node e does not have the same label as the other
nodes of its vertex orbit (c, g, and i).

(L)
e

(K)
e

(R)
e
FB

(a) Translation rule of one node

d
b

c
a

m n
l

j

k

i
g h

e f

A A

B

F C

C

C

C

B

B

D

D E

E

(b) Incoherent ap-
plication

Figure 13: Incoherent translation.

All node labels of an embedding orbit should be modified simultaneously and in the
same manner. For example, the rule of Figure 14(a) matches (respectively rewrites) a full
vertex orbit in L (respectively in R): indeed, all nodes are connected with both 1-arcs
and 2-arcs. In fact, both L and R are full ⟨1 2⟩-orbits. Thus, the application of this rule
to the pos-embedded 2-G-map of Figure 10(a) along the identity match morphism gives
the pos-embedded 2-G-map of Figure 14(b).

The following theorem introduces syntactic conditions on rules that ensure embedding
consistency preservation.

Theorem 2 (Preservation of the embedding consistency). Let π : ⟨o⟩ → τ be an embedding
operation on an orbit type ⟨o⟩, let r : L←↩ K ↪→ R be a π-embedded graph transformation
rule that satisfies the conditions of topological consistency preservation (Theorem 1), let
G be a π-embedded G-map and let m : L→ G be a match morphism.

The result H of the direct transformation G⇒r,m H is a π-embedded G-map if the
following conditions of embedding consistency preservation are satisfied:

(A) Embedding consistency: L, K, and R satisfy the embedding consistency constraint
(Definition 6).

22

(L)

c

i
g

eB

B

B

B

(K)

c

i
g

e

(R)

c

i
g

eF

F

F

F

(a) Translation rule of one vertex

d
b

c

a

m n
l

j

k
i
g h

e f

A A

F

F
C

C

C

C
F

F

D

D E

E

(b) Coherent applica-
tion

Figure 14: Coherent translation.

g hq r
(R)

g h
(K)

g h
(L)

e f e fo pe f
B

B

C

C

C

C

B

B

F

F

B

B

G

G

C

C

(a) Non-consistent added vertex

b d

(K)

b d

(L)
b d
(R)

u
F G

v

(b) Unsafe extension of two vertices

Figure 15: Two non-consistent rules that break conditions of Theorem 2.

(B) Full match of transformed embeddings: if v is a node of K such that πL(v) ̸= πR(v),
then every node of R⟨o⟩(v) is labeled and is the source of exactly one i-arc for each i
of ⟨o⟩.

(C) Labeling of extended embedding orbits: if v is a node of K and there exists a
node w in R⟨o⟩(v) such that w is not in L⟨o⟩(v), then there exists v′ in K with
v′ ≡L⟨o⟩ v and v′ ≡R⟨o⟩ v such that πL(v′) ̸= ⊥.

Before giving the proof, let us now comment on the constraints given in Theorem 2.
The first of these conditions is straightforward: it requires that all parts of the rule

satisfy the embedding consistency constraint. For example, the rule of Figure 15(a) breaks
this condition as it adds a new vertex (nodes o, p, q and r) embedded with two different
positions F and G.

The second condition forbids the partial redefinition of the embedding shared by
an ⟨o⟩-orbit as it would break the embedding consistency. If a preserved node has a

23

transformed embedding, then its ⟨o⟩-orbit in R is a totally labeled full orbit. The rule
of Figure 13(a) falls in this case as node e has its label changed from B to F without
fully matching the topological vertex (1-arc and 2-arc are missing). Hence, an embedding
value can only be modified if it is modified for the whole support orbit.

The last condition forbids the extension of an ⟨o⟩-orbit (by adding new nodes or
merging with another ⟨o⟩-orbit) without matching the existing embedding value of the
orbit. For example, the rule of Figure 15(b) breaks this condition as a half-edge whose
embedding is unmatched is added to another half-edge whose vertices are embedded by
the two positions F and G. Therefore, applying this rule to the object of Figure 10(a)
along the identity morphism would break the embedding consistency. Indeed, node b
would be labeled A while its added 2-neighbor u would be labeled F . The third condition
entails that nodes b and d are labeled in L (and thus in R), meaning the rule labeling
should be completed. In R, nodes b and d should be labeled by F and G, respectively, due
to the embedding consistency condition. In L, these nodes should also be labeled by F
and G. Indeed, the condition of full match of transformed embeddings prevents changing
their labels while the two vertex orbits are not fully matched by the rule (1-neighbors of
b and d are not matched).

Let us now prove Theorem 2.

Proof. Consider π : ⟨o⟩ → τ an embedding operation on an orbit type ⟨o⟩, r : L←↩ K ↪→ R
a π-embedded graph transformation rule that satisfies the conditions of topological
consistency preservation and the conditions of embedding consistency preservation, G a
π-embedded G-map and m : L→ G a match morphism. Let H be the result of the direct
transformation G⇒r,m H according to the following diagram:

L oo ? _

m (1)
��

K �
� //

(2)
��

R

m′

��
G oo ? _D �

� // H

Note that m′ is the morphism from R to H. Because the rule r satisfies the conditions
of topological consistency preservation, the direct transformation G⇒r,m H is well-defined
and H is a totally labeled [28]. In particular, π is defined on every node of H.

It remains to prove that H is a π-embedded G-map. Since H is totally labeled, the
embedding constraint states that for every v, w in VH , v ≡H⟨o⟩ w implies πH(v) = πH(w).
Note that ≡H⟨o⟩ is an equivalence relation; thus, it suffices to show that for any i-arc e in
H with i ∈ ⟨o⟩,

πH(sH(e)) = πH(tH(e)).

Consider an i-arc e in H with i in ⟨o⟩, and let v be the source of e and w be the target
of e. In the following proof, when e, v, or w has an antecedent by m′ it will respectively
be denoted by e′, v′, and w′.

(1) If v and w are in G.

24

• Assume the π-labels of v and w are not changed by the rule. Since G satisfies
the embedding consistency constraint, πH(v) = πG(v) = πG(w) = πH(w).

• Otherwise, assume the π-labels of v or w is changed by the rule. Without
loss of generality, we can suppose that πG(v) ̸= πH(v). This means v′ is in
K and πL(v

′) ̸= πR(v
′). The subcondition (B) ensures v′ is the source of an

i-arc in R. The adjacent arcs condition from Theorem 1 guarantees that this
arc is the antecedent of e in m′(R), that πR(v

′) ̸= ⊥, and that πR(w
′) ̸= ⊥.

Since R satisfies the embedding consistency constraint (subcondition (A)),
πH(v) = πR(v

′) = πR(w
′) = πH(w).

(2) If one of v and w is in G and the other is not. Without loss of generality, assume
that v is in G and w′ in R \K. Because w′ is in R \K, e′ is in R \K and v′ is in
K, and πR(w

′) ̸= ⊥ (otherwise πH(w) = ⊥).

• Assume πR(v
′) ̸= ⊥. Since R satisfies the embedding consistency constraint

(subcondition (A)), πH(v) = πR(v
′) = πR(w

′) = πH(w).

• Otherwise, we have πR(v
′) = ⊥ and πH(v) = πG(v). Because w′ is not in K,

w′ is not in L. Therefore, subcondition (C) ensures the existence of a node x
in K such that x ≡L⟨o⟩ v

′, x ≡R⟨o⟩ v
′, and πL(x) ̸= ⊥. Since x ≡L⟨o⟩ v

′, we
can deduce that m(x) ≡G⟨o⟩ v and πG(v) = πG(m(x)) = πL(x). Moreover,
πR(v

′) = ⊥ and one node of R⟨o⟩(x) is unlabeled. The contraposition of
subcondition (B) ensures that πL(x) = πR(x). Similarly to the other cases,
subcondition (A) grants πH(v) = πR(x) = πR(w

′) = πH(w).

(3) If none of v and w is in G then e, v, w are in m′(R\K) and the embedding consistency
constraint satisfied by R ensures that: πH(v) = πR(v

′) = πR(w
′) = πH(w).

Thereafter H is a π-embedded G-map.

Let us illustrate some of the proof of Theorem 2. For example, Figure 16 details the
application of the vertex insertion operation presented in Figure 12(b) on the embedded
G-map of Figure 10(a). The 1-arc that links nodes a and b in H falls into the trivial case.
The arc and the two nodes belong to the graph G and are not matched by the rule. As G
satisfies the embedding consistency constraint of embedded G-maps, nodes a and b have
the same pos-label in G and, therefore, in H. In the case of the 1-arc between nodes i
and g in H, the rule does not match the arc and node g but matches node i. As the
vertex orbit containing both nodes i and g in G is not fully matched, the condition of the
full match of transformed embeddings prevents the rule from modifying the pos-labels of
node i. Thus, nodes i and g have the same pos-label in H as they have the same pos-label
in G. Finally, the 1-arc that links nodes u and v with defined labels in R is an added
arc between added nodes. Thus, the embedding consistency condition ensures that their
π-labels are equal in R.

25

(R)

d
b

c
a

m n l

j

k
i
g h

e f

A A

B

B

B
B

C

C

C
C

D
D E

E

u G

G

k

i
u
G

G

(K)
k

i

(L)
k

i

(H)

d
b

c
a

m n
l

j

k
i
g h

e f

A A

B

B

B

B

C

C

C

C

D

D E
E

(D)

d
b

c
a

m n
l

j

k

i
g h

e f

A A

B

B

B

B

C

C

C

C

D

D E
E

(G)

v

v

Figure 16: Application of the vertex insertion.

6 Rule Schemes
The transformation rules in Section 5 modify an object according to its particular
embedding values. The rule schemes introduced in this section create a level of abstraction
and allow us to define modeling operations independently of the object’s actual embedding
values.

6.1 Node variables
Computing new embedding values requires accessing the existing ones throughout the
topological structure. To access and store embedding values in the node labels, we
introduce new variables called node variables together with dedicated operators that allow
us to reach neighboring nodes. Instead of defining a new set of user variable names, our
approach uses the identifiers of the left-hand side’s nodes as default variable names.

Figure 12 illustrates two operations on the position embedding: the translation of a
vertex and the insertion of a vertex to fold an edge. Figure 14(a) gives the transformation
rule corresponding to the translation of vertex B to vertex F . To generalize this transfor-
mation, the position of vertices B and F are abstracted and the operation is described
as the translation by the vector −→v =

−−→
BF . This generalization yields the rule scheme

of Figure 17(a). Likewise, Figure 17(b) illustrates the folding of an edge by inserting a
vertex. The added vertex is the translation of the edge midpoint by −→w . By convention,
rule schemes will be identified by double dotted lines (see Figure 17). Conversely, single
dotted lines are used for instantiated rules (see Figure 14(a)).

Nodes are labeled with terms6 over node variables of L, allowing matching the existing

6Note that terms are detailed on top of the rules for readability purposes.

26

(L)

c

i
g

e

(K)

c

i
g

e

(R)

c

i
g

et

t

t

t

t = e. pos + vs = e. pos

s

s

s

s

(a) Vertex translation

t = midpoint (i. pos, k. pos) + w

(R)

k

i

v

u
t

t

(K)

k

i

(L)

k

i

(b) Vertex insertion

Figure 17: Rule schemes of the operations of Figure 12.

embedding values and expressing the computation of the new one. In Figure 17(a), the
term e.pos refers to the 2D position of the matched vertex, while the term e.pos + −→v
defines the new position of the translated vertex.7 At the scheme application, the node
variable e of L will be substituted by the node matched by e, and the operator .pos
will grant access to its pos-label in the transformed object. Similarly, in Figure 17(b),
i.pos and k.pos are the positions associated to the extremities of the matched edge and
midpoint(i.pos, k.pos) defines the corresponding midpoint position. More generally, an
operator .π is used to retrieve the π-label of a node.

As described in Section 4, n-G-maps are highly regular graphs. Every node has n+ 1
neighbors respectively connected by arc labeled 0, 1, . . . , n. Therefore, for all i in 0..n, we
can define a .αi operator on node variables that gives access to their unique i-neighbor.

Let us consider the face triangulation of Figure 18 in the case of the color embedding
col : ⟨0 1⟩ → color. Each created triangle is colored by the mix between the triangulated
face’s original color and the one of its adjacent face, smoothing face colors. This operation
is defined by the rule scheme of Figure 19(b) and uses the .α2 operator to access adjacent
faces. In the term v = mix(e.col, e.α2.col) of Figure 19(b), e.α2 allows the access to the
2-neighbor of e in the transformed object.

(a) (b)

Figure 18: Face triangulations.

At application on the object of Figure 19(a) along the identity morphism, this 2-
neighbor is g and the face color is defined as mix(e.col, g.col) = mix(,) = . The

7In accordance with Definition 1, rule nodes must be labeled in L in order to be relabeled.

27

l

j

k

i
g h

a b
dec f

(a) Transformed object

d
d

b

c

a

e f
(R)

t u

v

t

v

u

t

t u

u

vv

(L)

a b

e

c

f

d

(K)

a b

e

c

f

t

t u

u

v v

v = mix (e. col, e. α2. col)
u = mix (b. col, b. α2. col)
t = mix (a. col, a. α2. col)

s = e. col
r = b. col
q = a. col

q

q

r

r

s s

(b) Rule scheme

Figure 19: Face triangulations of Figure 18 on a col-embedded G-map.

regularity of G-maps covers the case of nodes without an adjacent face because such nodes
are source of a 2-loop. For instance, the term u = mix(b.col, b.α2.col) is evaluated as
mix(b.col, b.col) = mix(,) = . Finally, the scheme can be applied to any triangular
face via the proper match morphism, and the rule scheme of Figure 19(b) also defines the
triangulation of Figure 18(b).

Let us remark that in the rule scheme of Figure 19(b), the same terms occur several
times, e.g., the term u occurs 6 times in R. The term u refers to a color embedding.
The embedding col : ⟨0 1⟩ → color is carried out by a face orbit ⟨0 1⟩. Recall that the
embedding consistency requires that labels are equal in an embedding orbit. In this case,
the condition for the embedding consistency is trivially satisfied since all the terms of the
orbit are syntactically identical. The evaluation mechanism will compute the embedding
value associated with the term u and assign it to all the corresponding nodes. As a result,
the evaluation of this rule scheme will always result in a rule that preserves the embedding
consistency. By writing identical terms from an early stage, we avoid the question of
deciding on the equality of evaluated terms. In the rest of the paper, embedding labels of
rule schemes will be compared via the strict syntactic equality of terms, even if dedicated
embedding operators (_.π, _.αi or π⟨o⟩) and user-defined operations may induce other
equalities when considering evaluation.

We restrict ourselves to the syntactic equality of terms for simplicity and because we
have not yet studied the rewriting of terms modulo equivalence induced by dedicated
embedding operators.

6.2 Collect operators
Consider the triangulation operation in the case of the position embedding pos : ⟨1 2⟩ →
point_2D (Figure 19). The pre-existing vertices of the triangulated face have the same
position after the operation. This explains that nodes a, b, c, d, e, and f are unlabeled on
both left-hand side and right-hand side of the rule. However, we need to give a position to

28

the newly created vertex, i.e., to the 6 nodes created on the right-hand side. Commonly,
this created vertex is located at the barycenter of the triangulated face. For instance,
the triangulation of the top triangle in Figure 20(a) should add a vertex positioned at
the barycenter of A, B, and C. Thus, we need to fetch the positions of A, B, and C. In
other words, we need to retrieve the positions of all vertices of the face we are trying to
triangulate. To do so, we introduce operators that collect all the embedding values of a
given orbit.

To collect the positions carried by the adjacent face, the rule scheme of Figure 20(b)
uses the operator pos⟨0 1⟩. At scheme application, pos⟨0 1⟩(a) will collect the multiset
of positions in the ⟨0 1⟩-orbit adjacent to the node matched by a. For instance, in the
scheme application to the object of Figure 20(a) along the identity match morphism,
a from L is matched to a in G. Therefore, pos⟨0 1⟩(a) collects the multiset JA,B,CK.
Similarly, in the scheme application along the match morphism that sends respectively
a, b, c, d, e, and f in L to g, h, i, j, k, and l in G (i.e., the application to the bottom
triangle), pos⟨0 1⟩(g) collects the multiset JB,C,DK.

l

j

k

i
g h

a b
dec f

A A

C

C

C

B

B

A
A

E

E

F

F

D
D

D
D

D
D J

J

I

IC
C CB

BB

B

(a) Transformed object

t = center (pos (a))〈0 1〉

d
d

b

c

a

e f
(R)(L)

a b

e

c

f

d

(K)

a b

e

c

f

t t

t

tt
t

(b) Rule scheme

Figure 20: Face triangulation of Figure 18 on a pos-embedded G-map.

Intuitively, these operators are based on the quotient representation introduced in
Definition 7 that associates each embedding orbit to a single node and, therefore, to a
single label. Consequently, the multiplicity in the multiset does not depend on the orbit
sizes but depends on the number of embedding orbits sharing the same value. In the case
of the position embedding, each position value appears only in a single ⟨0 1⟩-orbit because
we do not want two vertices to coincide. Thus, any collection of position values would
result in a multiset having each position at most once. For instance, in Figure 20(a), A
appears 4 times and B appears 6 times but the evaluation of pos⟨0 1⟩(a) contains A and
B only once.

However, for most applicative data such as colors, quantities, or densities, it is expected
that one value appears multiple times in the modeled object. Let us consider the example
of the operator col⟨0 1 2⟩ that collects the face colors of the adjacent connected component.
The evaluation of col⟨0 1 2⟩(a) on the colored object of Figure 19(a) results in the multiset

29

J , , , K. In this multiset, has two occurrences as it labels two faces.
More generally, for all embeddings π : ⟨o⟩ → τ and for all orbit types ⟨o′⟩, we can

define an operator π⟨o′⟩ on nodes. For a node v, π⟨o′⟩(v) collects one embedding value for
each ⟨o⟩-orbit in G⟨o′⟩(v) (i.e., one value per ⟨o⟩-orbit in the ⟨o′⟩-orbit adjacent to v) and
stores the collected values in a multiset. Until now, the family of collect operators has
been introduced only from an intuitive point of view. We will formally define it in the
next sections, syntactically in Section 6.3 and semantically in Section 6.4.

6.3 Terms and schemes
To sum up, node variables are available as node identifiers on the left-hand side of the rule
scheme L. At the rule scheme application, these variables are substituted by particular
node identifiers of the G-map under transformation. New embedding values are defined
by terms over these nodes thanks to the introduced G-map operators: the embedding
access operators .π, the neighbor access operators .αi, and the collect operator π⟨o⟩. In
addition to these operators, terms may include various operators and types provided by
the user. For example, the translation scheme of Figure 17(a) uses the addition between a
point and a vector, and the triangulation scheme of Figure 20(b) uses the operator center
that defines the barycenter of a point multiset.

We define embedding terms on a user signature by considering node variables. A
dedicated type (called Node) provided with some predefined operations is introduced to
manipulate these variables. Variables of type Node coincide with node variables. Graph
nodes of rule schemes will therefore be labeled with terms of a signature (see Section 3.4)
built over a user signature extended by the type Node and the operators .π, .αi, and
π⟨o′⟩.

Definition 8 (Embedding terms signature, graph schemes, and rule schemes). Let
π : ⟨o⟩ → τ be an embedding operation. Let Ωπ = (Sπ, Fπ) be a user signature such that
Sπ is a set of type names including the π-type τ .
Embedding terms signature. ΩMap = (SMap, FMap) is the embedding term signature
extended on G-maps defined as SMap = Sπ ∪ {Node} and FMap = Fπ ∪ FNode with FNode
the set of function names that contains8 :

• _.π : Node→ τ ;

• _.αi : Node→ Node for all i ∈ 0..n;

• π⟨o′⟩ : Node→ τ• for all orbit type ⟨o′⟩.

Graph schemes. Let X be a set of node variables. A graph scheme G = (V,E, s, t, π, α)
on (Ωπ, X) is a graph embedded on π : ⟨o⟩ → TΩMap(X)τ .
Rule schemes. A rule scheme r : L ←↩ K ↪→ R on Ωπ is a rule on graph schemes on
(Ωπ, VL) with VL the node set of L.

8As sketched previously in the paper, the first two are used with a postfixed notation, while
the third is used with a prefixed notation.

30

When this eases reading, we will make the set of variables explicit in the notation of
graph schemes or rule schemes, using G(X) instead of G or r(VL) instead of r.

Figures 19(b) and 20(b) provide two versions of a face triangulation rule scheme on
Ωcol = (Scol, Fcol) and Ωpos = (Spos, Fpos), respectively, with: color in Scol, point_2D in
Spos, mix : color × color → color in Fcol, and center : point_2D• → point_2D in Fpos.

6.4 Evaluation of embedding terms
At the rule scheme application, embedding terms are evaluated on the embedded G-map.
For instance, when the triangulation scheme of Figure 20(b) is applied to the top triangle
of Figure 20(a), the term pos⟨0 1⟩(a) has to be evaluated by the point multiset JA,B,CK
in order to compute the barycenter. The evaluation of terms on G-maps operators is an
extension of the user algebra on the signature Ωπ. More precisely, given a π-embedded
G-map and a Ωπ-algebra, we define the extended ΩMap-algebra on embedding terms (see
Section 3.4).

Definition 9 (Algebra extension by a G-map). Let G = (V,E, s, t, π, α) be an n-G-map
embedded on π : ⟨o⟩ → τ , Ωπ = (Sπ, Fπ) be a user signature, and A be a Ωπ-algebra.

The extended algebra AG from A by G is the ΩMap-algebra defined as:

• (AMap)s = As for s ∈ Sπ with Sπ = Sπ ∪ {s•π | sπ ∈ Sπ};

• (AMap)Node = V ;

• for each f of Fπ, fAMap = fA;

• .πAMap is the labeling function π;

• for all i ∈ 0..n, for each node v ∈ V , there exists a unique i-arc e ∈ E such that
s(e) = v and the function .αi

AMap associates v to t(e);

• for all orbit types ⟨o′⟩, for each node v ∈ V , the function π⟨o′⟩
AMap associates v to

the multiset of labels from the quotient of the ⟨o′⟩-orbit of v 9 Jπ′(v′) | v′ ∈ V ′K,
where G⟨o′⟩(v)/π = (V ′, E′, s′, t′, π′, α′).

Note that topological constraints of G-maps ensure that a node is the source of
a unique i-arc. Therefore, αAG

i is a well-defined function. Consequently, the collect
operators are also well-defined functions, and the algebra extension by a G-map is a valid
construction.

The evaluation of the collect operators is defined with the graph quotient introduced in
Definition 7. For example, to evaluate the term pos⟨0 1⟩(a) for the object of Figure 21(a),
we construct the quotient ⟨0 1⟩(a)/pos of the orbit ⟨0 1⟩(a) of Figure 21(b). The term
evaluation is then defined as the multiset of node labels of that quotient, i.e., JA,B,CK.

9We write Jπ′(v′) | v′ ∈ V ′K the multiset of type τ• such that for all x : τ , the multiplicity of
x is equal to the number of node of V ′ labeled by x.

31

l

j

k

i
g h

a b
dec f

A A

C

C

C

B

B

A
A

E

E

F

F

D
D

D
D

D
D J

J

I

IC
C CB

BB

B

(a) Orbit ⟨0 1⟩(a)

D

u

I

J

E

F

v

w

A

B C

(b) Quotient ⟨0 1⟩(a)/pos

Figure 21: Evaluation of the multiset of the face positions.

Here again, the graph’s grey parts do not belong to the orbit or the quotient but are
displayed for clarity.

As described in Subsection 3.3, a scheme only requires a kernel match to be evaluated.
We use a match morphism from the topological structure of the left-hand side m : Lα → G.
Recall that for a labeled graph L, Lα denotes the graph L for which all node labels are
undefined, and the arc labels are those of L. In other words, Lα defines the topological
structure underlying L. The match morphism m : Lα → G removes variable occurrences
but keeps the arc labels, allowing the match of the topological structure specified in the
left-hand side of the rule scheme. Practically, pointing out that the set of variables X
coincides with the set of node names of the left-hand side graph L of the rule, the node
matching part mV : VL → VG of this morphism will be directly used for the substitution
σ : X → VG. For example, an identity match morphism between the rule scheme and the
object of Figure 19 assigns the variables a, b, and e to the nodes a, b, and e of the object,
resulting in the rule of Figure 22(a). Similarly, the rule of Figure 22(b) results from a
match morphism assigning the variables a, b, and e to the nodes i, g, and l of the object.

Definition 10 (Rule scheme evaluation). Let G be a π-embedded G-map, Ωπ a user
signature, and A an Ωπ-algebra.
Graph scheme evaluation. Let S = (V,E, s, t, π, α) be a graph scheme on (Ωπ, X) and
σ : X → VG an assignment of X. The evaluated graph Sσ of S along σ is the π-embedded
graph (V,E, s, t, πσ, α) such that πσ(v) = σ(π(v)) for each node v ∈ V .
Rule scheme evaluation. Let r : L←↩ K ↪→ R be a rule scheme on Ωπ and m : Lα → G
a kernel match morphism. The evaluated rule of r along m is the π-embedded rule:

rmV : LmV ←↩ KmV ↪→ RmV

The evaluated rules in Figure 22 match a face, which is precisely the orbit corresponding
to the color embedding. However, a rule scheme is likely to match any piece of the G-
map. In particular, it might not match precisely an orbit. To circumvent such cases,

32

d
d

b

c

a

e f
(R)(L)

a b

e

c

f

d

(K)

a b

e

c

f

(a)

d
d

b

c

a

e f
(R)(L)

a b

e

c

f

d

(K)

a b

e

c

f

(b)

Figure 22: Two evaluations of the rule scheme Figure 19.

Section 7 introduces completion mechanisms on rule schemes to automatically recover
full embedding orbits.

7 Rule Scheme Instantiation
In this section, we define how rule schemes are instantiated without considering the
consistency preservation, which is postponed to Section 8.

7.1 Need for simplicity
So far, every considered operation has been defined based on the transformed object’s
specific topological structure. For instance, the rule of Figure 14 explicitly defines the
translation of a vertex adjacent to three edges. Operations based on such a specific
structure are very restrictive and counter-intuitive from a user-end perspective. The
vertex translation has a single meaning on a semantic level, independent of the number
of adjacent edges. A user-friendly rule scheme should be as simple as in Figure 23 in
which a single node relabeling encodes a single embedding transformation. The rule
scheme matches a node, catches the value of its pos-embedding using the node variable
a and replace it with a new position, namely a.pos + −→v . Nonetheless, the discussion
of Section 5.2 holds, and, similarly to the rule of Figure 13(a), the application of an
evaluated rule based on this scheme can produce an inconsistent object.

Let us take a more significant case with the edge removal of Figure 24. This operation
will be this section’s guiding example and involves topological and embedding modifications.

33

(L)
a

t = a. pos + vs = a. pos

s

(K)
a

(R)
a
t

Figure 23: Expected rule scheme of a vertex translation.

On the topological aspect, the edge is removed, and the two adjacent faces are merged.
On the embedding aspect, the resulting face’s color is obtained by mixing the colors of
the two original faces.

(a) (b)

Figure 24: Edge removal on the color embedding.

Semantically, this operation does not depend on the configurations of the two faces.
It corresponds to the simple rule scheme of Figure 25(a). But similarly to the translation,
the application of the evaluated rule of Figure 25(b) to the object of Figure 19(a) results
in the inconsistent object of Figure 25(c). This inconsistent application yields a face
where some nodes are labeled with the color yellow, some with the color blue, and others
with the color green. The expected behavior is that all nodes should have green as their
col-label. The embedding modifications must be propagated to all nodes of the two faces
to preserve the G-map consistency.

Therefore, the instantiation process must extend the evaluated rule to propagate
embedding modifications. In our example, the evaluated rule of Figure 25(b) has to be
extended into the correct rule of Figure 25(d). This extension is realized in two steps:
the topological extension that matches all required nodes and the embedding propagation
that ensures consistent relabeling.

The complete pipeline is presented in Figure 26, introducing the notion of topological
extension, denoted by ⊕m, and the embedding propagation, denoted by ⊙π.

Step 1 corresponds to the evaluation process already defined in Section 6. At the
end of step 1 (in the rule rmV), all terms with variables are evaluated using the match
morphism. Thus, terms with variables in the rule scheme are replaced by values in the
evaluated rule.

Since the col-embedding is defined on faces (orbit ⟨0 1⟩), it is necessary to consider
nodes reachable by arcs labeled in ⟨0 1⟩. The topological extension’s role is, precisely,
to retrieve the missing nodes for all ⟨0 1⟩-orbits. In step 2 , the topological extension

34

dc

ji g h

e f
dc

ji

(K)(L)

dc

ji

(R)

t = mix (e. col, g. col)

t

t t

t

u = e. col v = g. col
u

u u
u

v
v v

v

(a) Rule scheme

dc

ji g h

e f
dc

ji

(K)(L)

dc

ji

(R)

(b) Evaluated rule

l

j

k

i

a b

dc

(c) Inconsistent application

(L)

l

j

k

i
g h

a b
dec f

l

j

k

i

a b
dc

l

j

k

i

a b
dc

(K) (R)

(d) Correct rule

Figure 25: Rule scheme of the edge removal and its evaluation.

t

t t

t
u
u u

u

v
v v

v

r m

r

V

(r m) V ⊕m

⊙π((r m)) V ⊕m

1

2

3

Figure 26: Rule scheme evaluation and instantiation.

matches the nodes corresponding to the yellow and blue faces in the original object.
These gathered nodes are also added to the interface and the right-hand side of the rule
(denoted (rmV)⊕m). Note that these nodes are matched without their embedding value
because otherwise, the topological extension would produce a rule that does not satisfy
the embedding consistency of Theorem 2. All nodes added by the topological extension

35

have undefined embedding values (depicted as white nodes).
The embedding propagation depicted in step 3 relabels the nodes added by the

topological extension using the embedding values computed on nodes matched from
the evaluated rule. Notice that as the evaluated rule rmV satisfies the conditions of
Definition 1, both the topological extension ((rmV)⊕m at step 2) and the embedding
propagation (((rmV)⊕m)⊙π at step 3) produce well-defined rules.

7.2 Topological extension
Intuitively, the topological extension (step 2 in Figure 26) uses the match morphism
to complete the partial embedding orbits defined by the evaluated rule with the actual
full orbits of the transformed G-map. First, the extension L⊕m of the left-hand side is
computed in Figure 27(a) by pushout between the topological structure of the ⟨o⟩-orbit
adjacent to the matched pattern Gα⟨o⟩(m(Lα)α), and the left-hand side of the evaluated
rule L. The pushout relies on the inclusion Lα ↪→ L to transpose the embedding values
and on the morphism m : Lα → G and the orbit completion to extract the missing orbit
nodes. The evaluated rule is then applied to the extension L⊕m of the left-hand side.
Here we are not only interested in the result graph L⊕m ⇒r,m′ R⊕m but in the three
graphs L⊕m, R⊕m, and K⊕m as they define a new rule called the full extended rule r⊕m.
As shown in Figure 27(b), the full extended rule L⊕m ←↩ K⊕m ↪→ R⊕m is then computed
using a DPO transformation : the nodes a, b, k, and l and their adjacent arcs from L⊕m

are added in K⊕m and R⊕m.

(L⊕m)

l
j

k
i

g h

a b
dec f

(L)

l
j

k
i

g h

a b
dec f

(G ⟨o⟩ (m(L)))α

α (L)

dc

ji g h

e fdc

ji g h

e f

α α

m⟨o⟩

(a) Extension of the left-hand side

(L⊕m)

l
j

k
i

g h

a b
dec f

dc

ji g h

e f
dc

ji

(K)(L)

dc

ji

(R)

l
j

k
i

a b
dc

l

j

k
i

a b
dc

(K⊕m) (R⊕m)

(b) Application of the evaluated rule

Figure 27: Construction of the topological extension.

Definition 11 (Topological extension). Let π : ⟨o⟩ → τ be an embedding operation, let
r : L←↩ K ↪→ R be a π-embedded graph transformation rule, and let m : Lα → G be a
kernel morphism on a π-embedded G-map G for the rule r.

36

Let L⊕m be the result of the pushout between the inclusion Lα ↪→ L and m⟨o⟩ : Lα → Gα⟨o⟩(m(Lα)α),
the restriction of m to the topological structure of the ⟨o⟩-orbit adjacent to the matched
pattern:

Lα
� � //

m⟨o⟩
��

L

m′

��
Gα⟨o⟩(m(Lα)α)

� � // L⊕m

The topological extension of r along the match morphism m is the rule r⊕m :
L⊕m ←↩ K⊕m ↪→ R⊕m defined by the following direct transformation:

L oo ? _

m′
��

K �
� //

mK

��

R

mR

��
L⊕m oo ? _K⊕m � � // R⊕m

The pushout construction of L⊕m is well-founded since the morphisms Lα ↪→ L and
m : Lα → G meet the conditions given in [28] ensuring the existence of natural pushouts.
Also, note that the resulting rule of Figure 27 would still produce the inconsistent result
of Figure 25(c) as extended parts’ nodes are not relabeled.

By abusing the notation, the superscript ⊕m has two distinct roles: affixed to L,
it refers to a pushout construction, whereas affixed to K and R, it refers to a DPO
construction with L⊕m as the graph under transformation.

7.3 Embedding propagation
The final step of rule scheme instantiation consists in propagating node labels of the
extended rule (step 3 in Figure 26). For example, in the extended rule of Figure 27(b),
node labels have to be propagated in order to obtain the final of rule Figure 25(d). This
step is a direct application of the quotient representation. For all graphs of the extended
rule, each node is relabeled with its image label in the quotient graph. For example, in
Figure 28 the three quotient graphs allow the embedding propagation of the extended
rule of Figure 27(b) - e.g., node a unlabeled in L⊕m can be labeled with the label of its
image u in L⊕m

/π .

Definition 12 (Embedding propagation). Let π : ⟨o⟩ → τ be an embedding operation,
G = (V,E, s, t, π, α) be a graph embedded on π : ⟨o⟩ → τ such that G satisfies the
embedding consistency constraint, and q : G→ G/π the quotient morphism with G/π =
(V/π, E/π, s/π, t/π, π/π, α/π).

The π-embedding propagation of G is the π-embedded graph G⊙π = (V,E, s, t, π′, α)
such for each node v in V , π′(v) = π/π(qV (v)).

Given an n-topological π-embedded rule r : L←↩ K ↪→ R, the π-embedding propagation
of r is the rule L⊙π ←↩ K⊙π ↪→ R⊙π, denoted r⊙π.

37

(L)

u

v

/π
⊕m

(a)

u

(K)/π
⊕m

v

(b)

w

(R)/π
⊕m

(c)

Figure 28: Quotients for the embedding propagation.

dc

ji g h

e f
dc

ji

(K)(L)

dc

ji

(R)

u

v v

u

u = e. col v = g. col
u

u u
u

v
v v

v

u

v

u

v

(a) Rule scheme

(L)

l

j

k

i
g h

a b
dec f

l

j

k

i

a b
dc

l

j

k

i

a b
dc

(K) (R)

(b) Extended rule

Figure 29: Inconsistent edge removal.

Conversely to the construction of the topological extension, the embedding extension’s
construction is the same for L, K, and R. Besides, as the quotient existence depends
on the satisfaction of the embedding consistency constraint, the embedding propagation
only applies to rules for which all parts satisfy the constraint. The extended patterns
must contain only one label value per embedding orbit for their quotient representation to
preserve these unique labels. Let us consider the counterexample of Figure 29. The rule
scheme defines the edge removal without consistently relabeling the face colors. Therefore,
the face can be labeled with two distinct colors from the extended evaluated rule’s right-
hand side. As this prevents the quotient’s existence, the embedding propagation cannot
be applied.

7.4 Rule scheme application
Regardless of consistency preservation, the instantiation of a rule scheme r(VL) : L←↩
K ↪→ R to an object defined as an embedded G-map G along a kernel match morphism
m : L→ G consists in the three instantiation steps of Figure 26:

(1) the evaluation rmV of the rule scheme r along mV to substitute node variables by
nodes of G and evaluate the embedding expressions ;

(2) the topological extension (rmV)⊕m along m of the evaluated rule rmV ;

(3) the embedding propagation ((rmV)⊕m)⊙π) along the extended rule (rmV)⊕m.

38

The final rule ((rmV)⊕m)⊙π is then applied on the targeted object G by DPO transfor-
mation, such as in Figure 30.

Note that the embedding propagation existence depends on the satisfaction of the
embedding consistency constraint by all extended rule parts. This existence will be
ensured by conditions on rule schemes provided in Section 8 to preserve G-map consistency.
Therefore, rule schemes satisfying those conditions can always be instantiated for any
kernel match morphism.

Definition 13 (Instantiation of rule scheme, application of rule scheme). Let r(VL) :
L←↩ K ↪→ R be a rule scheme on a user signature Ωπ, and m : Lα → G a kernel match
morphism on a π-embedded G-map G.

Let rmV = LmV ←↩ KmV ↪→ RmV be the evaluation of r along m (Definition 10).
Let (rmV)⊕m be the topological extension of rmV along m (Definition 11).
If all parts of (rmV)⊕m satisfy the embedding consistency constraint, let ((rmV)⊕m)⊙π

be the π-embedding propagation of (rmV)⊕m (Definition 12).
The instantiation of r along m is ((rmV)⊕m)⊙π denoted rm : Lm ←↩ Km ↪→ Rm.
If there exists a morphism m∗ : Lm → G extending m, the application of r to G along

m denoted by G⇒r,m H is defined by the direct transformation G⇒rm,m∗ H.

(G) (H)

Figure 30: Rule scheme application.

Thanks to Definition 10 of graph scheme evaluations, the underlying topological
structure of a rule scheme and any of its evaluations are equal. Thus, the rule can be

39

directly extended along m. Finally, remark that similarly to the approach of [33] recalled
in Subsection 3.3, the substitution given by the kernel match morphism cannot always
result in an extended full match of the instantiated rule.

dc

ji g h

e f
dc

ji

(K)(L)

dc

ji

(R)

u

u u

u

u = e. col
u

u u
u

u
u u

u

u

u u

u

(a) Rule scheme

(L)

l

j

k

i
g h

a b
dec f

l

j

k

i

a b
dc

l

j

k

i

a b
dc

(K) (R)

(b) Instantiated rule

Figure 31: Edge removal between two faces of same color.

Let us take an example with the operation of edge removal of Figure 31. This time,
the rule scheme of Figure 31(a) removes an edge between two faces of the same color e.col.
The rule scheme instantiation along the identity morphism on the object G of Figure 30
yields the rule of Figure 31(b) where the term e.col has been evaluated to yellow. As the
extension process rests on the kernel match, the rule can always be extended regardless of
the matched object’s labels. However, the resulting rule cannot be applied to the object
as an application match morphism cannot be induced because nodes g, h, i, j, k, and l of
the object are blue.

8 Consistency Preservation
This section establishes and proves the conditions on rule schemes to preserve G-map
constraints. Subsection 8.1 addresses the topological consistency while Subsections 8.2
and 8.3 focus on the embedding consistency. More precisely, we show that rule schemes
that satisfy some given conditions can always be instantiated and that the instantiated
rules satisfy the original conditions of embedding consistency preservation of Theorem 2.

8.1 Topological consistency preservation
The topological extension transforms the topological structure of the rule. It is the only
part of the instantiation process that modifies the rule’s topological structure. Thus,
let us show that it preserves the conditions of topological consistency preservation of
Theorem 1.

Lemma 1 (Topological consistency preservation of topological extension). Let r : L←↩
K ↪→ R be a rule embedded on π : ⟨o⟩ → τ and m : Lα → G a kernel match morphism on
a π-embedded G-map G.

If r satisfies the conditions of topological consistency preservation of Theorem 1, then
the topological extended rule r⊕m also satisfies these conditions.

40

Proof. Let π : ⟨o⟩ → τ be an embedding operation, let r : L ←↩ K ↪→ R be a rule
embedded on π, and let m : Lα → G a kernel match morphism on a π-embedded G-map
G.

The topological extension of r along the match morphism m suppose the computation
of L⊕m by ⟨o⟩-completion of m(Lα)α in G and the computation of K⊕m and R⊕m via
the application of r on L⊕m. Thus, elements in the graphs of r⊕m either come from r and
may be modified or come from the ⟨o⟩-completion and are preserved elements of K⊕m.
Therefore, properties from ⟨o⟩-orbits of a n-G-map and properties from L, K, and R are
passed on to L⊕m, K⊕m, and R⊕m.
Symmetry

For instance, ⟨o⟩-orbits are symmetric graphs and so are L, K, and R. Thus, L⊕m,
K⊕m, and R⊕m are symmetric graphs and r⊕m satisfies the symmetry condition.
Adjacent arcs

When preserved nodes of K⊕m are nodes coming from the ⟨o⟩-completion, then they
and their corresponding nodes in L⊕m and R⊕m are sources of arcs having the same
labels (those added with the ⟨o⟩-completion of m(Lα)α). When preserved nodes of K⊕m

come from preserved nodes of K, they may have arcs built from the ⟨o⟩-completion and
may have arcs coming from r. If the arcs come from K or the ⟨o⟩-completion, they are
preserved as in the previous case. Otherwise, the adjacent arcs condition verified by r
guarantees that the preserved nodes are sources of arcs having the same labels in L and
R. These arcs are kept in L⊕m and R⊕m.

In both cases, preserved nodes of K⊕m are sources of arcs having the same labels in
both L⊕m and R⊕m.

Nodes modified from L⊕m to R⊕m are issued from nodes modified from L to R
(removed nodes of L \K or added nodes of R \K). By hypothesis on the rule r, they
have exactly n+ 1 arcs labeled from 0 to n, that remain present in the rule r⊕m.

Therefore, r⊕m satisfies the adjacent arc condition.
Cycle condition

Finally, the cycle condition holds likewise. Consider i and j in 0..n, such that i+ 2 ≤ j.

• Added nodes of R⊕m\K⊕m come from R\K and the existence of an ijij-cycle is
guaranteed by the cycle condition on r, i.e., added nodes of R \K are sources of
an iji-cycle.

• Preserved nodes of K⊕m, sources of an ijij-cycle in L⊕m that comes partly from
the ⟨o⟩-completion, yield nodes in K that are not sources of an ijij-cycle in L.
Then, due to the cycle condition on r, the old arcs of L are preserved in R and are
also in L⊕m and R⊕m. Together with the elements from the ⟨o⟩-completion, they
build back the cycle in R⊕m.

• Preserved nodes of K⊕m, not sources of an ijij-cycle in L⊕m, are sources of arcs
coming either from the ⟨o⟩-completion or directly from r. The preservation of
elements built from the orbit completion and the cycle condition hypothesis on r
ensure the preservation of i-arcs and j-arcs necessary for the cycle condition for
ijij-cycles.

41

Thus, r⊕m satisfies the cycle condition.
Consequently, r⊕m satisfies the conditions of topological consistency preservation of

Theorem 1.

As the embedding propagation only modifies the node labeling, it does not alter the
topology, and thus, it preserves the topological consistency.

Lemma 2 (Topological consistency preservation of the embedding propagation). Let
r : L ←↩ K ↪→ R be a rule embedded on π : ⟨o⟩ → τ and m : Lα → G a kernel match
morphism on a π-embedded G-map G.

If r satisfies the conditions of topological consistency preservation of Theorem 1
then the embedding propagated rule r⊙π satisfies the conditions of topological consistency
preservation of Theorem 1.

Proof. As previously said, the embedding propagation step only modifies node labeling.
Thus, r : L←↩ K ↪→ R also satisfies the topological consistency conditions of Theorem 1.

From Lemmas 1 and 2, the preservation can be extended to the whole evaluation and
instantiation process.

Theorem 3 (Topological consistency preservation of instantiation). Let r(VL) : L ←↩
K ↪→ R be a rule scheme on a user signature Ωπ, and m : Lα → G a kernel match
morphism on a π-embedded G-map G.

If r(VL) satisfies the conditions of topological consistency preservation of Theorem 1,
then the instantiated rule rm = ((rmV)⊕m)⊙π, if it exists, also satisfies these conditions.

Proof. As rmV has the same topological structure as r(VL), rmV satisfies the conditions
of topological consistency preservation. Then, according to Lemma 1, (rmV)⊕m also does.
Finally, according to Lemma 2, rm = ((rmV)⊕m)⊙π also satisfies these conditions.

8.2 Condition of non-overlap
Before we study the embedding consistency preservation, we mention a particularly
undesirable situation likely to occur with the topological extension: the overlap of
embedding orbits. By considering a minimal match of the transformed embeddings that
relies on the automatic completion of transformed embedding orbits, we are exposed to
unexpected merges of different embedding orbits. Let us consider the face stretching
defined by the rule scheme of Figure 32.

The operation consists of matching two edges, defined by the orbits resp. ⟨0⟩(p) and
⟨0⟩(o), to translate vertices at their extremities, as defined by the pos embedding, in the
two opposite directions, −→v and −−→v . When the rule scheme is applied to the square
face (BDCE), the extended rule of Figure 33 contains four vertices in R respectively
embedded by B′ = B −−→v , D′ = D −−→v , C ′ = C +−→v and E′ = E +−→v .

42

(L)

o

q

p

r

u (x) = x. pt + vs (x) = x. pt

s (o)

s (q)

s (p)

s (r)
(K)

o

q

p

r
(R)

o

q

p

r

t (o)

t (q)

u (p)

u (r)

t (x) = x. pt - v

Figure 32: Face stretching rule scheme.

(L⊕m)

dc

m n
r

p

q

o
g h

e f

B C

D E

(K⊕m)

dc

m n r

p

q

o g h

e f

(R⊕m)

dc

m n r

p

q

o
g h

e f

B’ C’

D’ E’

(L) (K) (R)
r

p

q

oB C

D E r

p

q

o

r

p

q

oB’

D’

C’

E’

(a) Consistent extended rule

A

B C

D E

A

B’ C’

D’ E’

(b) Intuition

Figure 33: Consistent face stretching..

r
p

q
o

ji
g h

e f

A A

B C r
p

q
o

ji
g h

e f r
p

q
o

ji
g h

e f

A’ A’ ’

B’ C’

(L) (K) (R)
r

p

q

oA A

B C r

p

q

o

r

p

q

oA’

B’

A’ ’

C’

(L⊕m) (K⊕m) (R⊕m)

(a) Inconsistent extended rule

A

B C

D E

A’

B’ C’

D E

A’’

(b) Intuition

Figure 34: Inconsistent face stretching..

However, when the rule is applied to the triangle face (ABC), nodes o and p are
instantiated with nodes with the same pos embedding (A) and the extended rule of
Figure 34 is inconsistent as the top vertex ends up embedded in R with two different
values A′ = A−−→v and A′′ = A+−→v . Such an example is a clear case of misapplication
as we wanted to match and translate four vertices but only match three. We call an
overlap such a situation where different embedding orbits manipulated in the rule end up
merged in the extended rule. We define a condition on the kernel morphism that prevents

43

it. This condition can be seen as an extension of the injective condition on the match
morphism to the embedding orbits.

Lemma 3 (Non-overlap). Let r(VL) : L←↩ K ↪→ R be a rule embedded on π : ⟨o⟩ → τ
and m : Lα → G a kernel match morphism on a π-embedded G-map G.

We say that the topological extension of r along m produces an overlap in L if for v
and w two nodes of L such that v ̸≡L⟨o⟩ w then m′(v) ≡L⊕m⟨o⟩ m

′(w), where the morphism
m′ : L→ L⊕m was defined in Definition 11.

This definition is extended to K and R using the appropriate equivalence relations
and morphisms. We say that the topological extension of r along m does not produce
overlap if it produces no overlap in L, K, and R.

The topological extension of r along m does not produce overlap if m satisfies the
following condition of non-overlap: for two nodes v and w of L, v ̸≡L⟨o⟩ w implies that
m(v) ̸≡G⟨o⟩ m(w).

Proof. Let us show that L⊕m does not contain overlap. Let us suppose that there exist v
and w two nodes of L such that v ̸≡L⟨o⟩ w and m′(v) ≡L⊕m⟨o⟩ m

′(w). Then, the overlap
comes from the topological extension, i.e the node images m(v) and m(w) belong to the
same orbit in G:

m(v) ≡G⟨o⟩ m(w).

This contradicts the condition of non-overlap. The proof is similar for K⊕m and R⊕m.

The condition of non-overlap will be required to prevent such undesirable applications
before considering embedding consistency preservation in Section 8.3.

8.3 Embedding consistency preservation
We now study how the non-overlap condition combined with the conditions of embedding
consistency preservations on evaluated rule schemes ensure that the instantiated rules
satisfy the 3 conditions (identified resp. by (A), (B), and (C) in Theorem 2) of embedding
consistency preservation on rules given in Theorem 2. In particular, we will release the
condition (B) of full match of transformed embeddings in a weak version, identified by
(B’), as it was the goal of the automatic orbit completion of transformed embeddings
(step 2 of the pipeline given in Figure 26).

We start with the topological extension step, i.e., step 2 . Note that as the topological
extension nodes are not labeled, the extended rule is only expected to satisfy a weak
version of the full match of transformed embeddings of Theorem 2 that does not require
total labeling of the orbit.

Lemma 4 (Embedding consistency preservation of topological extension). Let r : L←↩
K ↪→ R be a rule embedded on π : ⟨o⟩ → τ and m : Lα → G a kernel match morphism on
a π-embedded G-map G. If:

(1) r satisfies the conditions of topological consistency preservation of Theorem 1,

44

(2) r satisfies the conditions of embedding consistency and of labeling of extended
embedding orbits of Theorem 2 (conditions (A) and (C)),

(3) and m satisfies the condition of non-overlap of Lemma 3,

then the topological extended rule r⊕m satisfies the following conditions:

(A) Embedding consistency of Theorem 2: L⊕m, K⊕m, and R⊕m satisfy the embedding
consistency constraint of Definition 6.

(B’) Weak full match of transformed embeddings: if a preserved node v of K⊕m has
a transformed embedding, then R⊕m⟨o⟩(v) is a full orbit; i.e., if v is a node of
K⊕m such that πL⊕m(v) ̸= πR⊕m(v), then every node of R⊕m⟨o⟩(v) is the source
of exactly one i-arc for each i of ⟨o⟩.

(C) Labeling of extended embedding orbits of Theorem 2: if v is a node of K⊕m and
there exits a node w in R⊕m⟨o⟩(v) such that w is not in L⊕m⟨o⟩(v), then there exist
v′ in K⊕m with v′ ≡L⊕m⟨o⟩ v and v′ ≡R⊕m⟨o⟩ v such that πL⊕m(v′) ̸= ⊥.

Proof. Let us show that the three conditions of the Lemma 4 hold.
(A) Embedding consistency

Let v and w be two nodes of L⊕m such that v ≡L⊕m⟨o⟩ w, πL⊕m(v) ̸= ⊥, and
πL⊕m(w) ̸= ⊥. L⊕m results from the pushout between m⟨o⟩ : Lα → Gα⟨o⟩(m(Lα)α) and
the inclusion Lα ↪→ L. As nodes of Gα⟨o⟩(m(Lα)α) are unlabeled, node labels in L⊕m

necessarily come from L. Because of the condition of non-overlap, the antecedent of v
and w by m′ : L→ L⊕m are two nodes of L such that m′−1(v) ≡L⟨o⟩ m

′−1(w). m′−1(v)
and m′−1(w) are both labeled and L satisfies the embedding consistency constraint, then
πL(m

′−1(v)) = πL(m
′−1(w)). Therefore πL⊕m(v) = πL⊕m(w).

The proof is the same for K and R. Therefore, r⊕m satisfies the embedding consistency
condition.
(B’) Weak full match of transformed embedding.

Let v be a node of K⊕m such that πL⊕m(v) ̸= πR⊕m(v), Let w be a node in R⊕m⟨o⟩(v).
We have to consider where w comes from: it can either be a node added by the orbit
completion, the image of an added node in R \K, or the image of a preserved node in K.

Assume w is a node added by the orbit completion, i.e., a node of K⊕m. Then,
because G is a G-map and satisfies the adjacent arc constraint, the topological extension
ensures that w is the source of exactly one i-arc per i in ⟨o⟩.

Otherwise w admits a unique antecedent by morphism mR : R → R⊕m. Denote
wR the node in R such that mR(wR) = w. If wR is an added node of R \K, the adjacent
arc condition of Theorem 1 on r guarantees that wR is the source of exactly one arc per
label in 0..n. In particular, wR is the source of exactly one i-arc for each i of ⟨o⟩.

Finally, consider that wR is a preserved node of K and let i be a label from ⟨o⟩.

• Thanks to the adjacent arc condition of Theorem 1 on r, if wR is the source of an
i-arc in L then it is also in R and w is the source of an i-arc in R⊕m.

45

• Otherwise, the ⟨o⟩-completion adds an i-arc of source w in L⊕m. By construction
of the topological extension of r along m, this i-arc is also in R⊕m.

Either way, w is the source of an i-arc in R⊕m. Because G is a G-map and because
m : L→ G is an injective morphism, w is not the source of another i-arc in R⊕m.

Therefore, r⊕m satisfies the weak full match of transformed embedding.
(C) Labeling of extended embedding orbits.

Let v be a node of K⊕m. By construction of the topological extension, there is a
node u in K such that the image mK(u) of u in K⊕m is in the same ⟨o⟩-orbit as v, i.e.,
mK(u) ≡L⊕m⟨o⟩ v, mK(u) ≡K⊕m⟨o⟩ v, and mK(u) ≡R⊕m⟨o⟩ v. Suppose there is a node
w in R⊕m⟨o⟩(v) such that w is not in L⊕m⟨o⟩(v). The topological extension definition
ensures that w has an antecedent by mR. Because r satisfies the labeling of extended
embedding orbits, there exists v′ in K such that v′ ≡L⟨o⟩ u, v′ ≡R⟨o⟩ u, and πL(v

′) ̸= ⊥.
Then, mK(v′) ≡L⊕m⟨o⟩ v, mK(v′) ≡R⊕m⟨o⟩ v, and πL(v

′) ̸= ⊥. Therefore, r⊕m satisfies
the labeling of extended embedding orbits.

Let us show that the embedding propagation step, i.e., 3 , restores the original
embedding consistency conditions.

Lemma 5 (Embedding consistency preservation of the embedding propagation). Let
r : L ←↩ K ↪→ R be a rule embedded on π : ⟨o⟩ → τ and m : Lα → G a kernel match
morphism on a π-embedded G-map G.

If r satisfies the conditions (A), (B′), and (C) of Lemma 4, then the embedding
propagated rule r⊙π satisfies the conditions of embedding consistency preservation of
Theorem 2.

Proof. By construction of the embedding propagation, we have L ↪→ L⊙π and Lα = L⊙π
α

(and the corresponding relations for K and R). Besides, the embedding propagation is
well-defined as r satisfies the conditions (A) of embedding consistency of Theorem 2.

Because the embedding propagation does not change the topology, the condition (C)
of labeling of extended embedding orbits is preserved.

The π-embedding propagation step propagates each embedding label along the full
⟨o⟩-orbit without changing the topology. Thus, the conditions of embedding consistency
(A) are preserved.

Thanks to the π-embedding propagation, every node v such that πR(v) ̸= ⊥ has it
⟨o⟩-orbit fully embedded in R⊙π, i.e., for all node v′ in R⊙π⟨o⟩(v), πR⊙π(v′) ̸= ⊥. This
extends the condition (B′) of weak full match of transformed embeddings to the condition
(B) of full match of transformed embeddings.

Therefore, the embedding propagated rule r⊙π satisfies the conditions of embedding
consistency preservation of Theorem 2.

Finally, we can extend this result to the whole rule instantiation and show that
it always exists if the following conditions of embedding consistency preservation are
satisfied.

46

Theorem 4 (Embedding consistency preservation of instantiation). Let r(VL) : L(VL)←↩
K(VL) ↪→ R(VL) be a rule scheme on a user signature Ωπ and m : Lα → G be a kernel
match morphism on a π-embedded G-map G.

The instantiated rule ((rmV)⊕m)⊙π exists and satisfies the conditions of embedding
consistency preservation of Theorem 2 if the following conditions are satisfied:

(1) r(VL) satisfies the conditions of topological consistency preservation of Theorem 1,

(2) r(VL) satisfies the conditions of embedding consistency and of labeling of extended
embedding orbits of Theorem 2 (conditions (A) and (C)),

(3) and m satisfies the condition of non-overlap of Lemma 3,

Before giving the proof, let us point out that, as already indicated in Section 6, rule
schemes meet the conditions of Theorems 1and 2 subject to considering the syntactic
equality of the terms used for embedding labels.

Proof. As equal terms are evaluated by equal values, if r(VL) satisfies conditions of
Theorem 4, so does the evaluated rule rmV . Then, the extended rule (rmV)⊕m satisfies the
condition of Lemma 4. Therefore, the propagation ((rmV)⊕m)⊙π exists. Finally, according
to Lemma 5, the instantiated rule ((rmV)⊕m)⊙π satisfies the conditions of embedding
consistency preservation.

Properties of Theorem 4 are sufficient but not necessary to ensure the preservation of
the embedding consistency. The main issue is the possibility of several terms having the
same evaluation based on semantic information of user-defined functions on embeddings.
One solution could be to relax the embedding consistency condition. However, this would
lead to inconsistent rules not being discarded. Another solution could be equational
unification, as discussed in [2]. Nevertheless, in this case, the user would have to specify
the identities that axiomatize the function properties, which can be challenging. In
practice, these properties are similar to compilation warnings provided by code editors.
Thus, if a property is unsatisfied because of the algebraic properties of user-defined
functions, the user should assess the rule’s validity by themselves. In the paper, we
avoided the difficulty of assessing term equivalence by minimally labeling graphs of rule
schemes. On each orbit, we either put at most one label or the same term for labeling
several nodes of an orbit. By noticing that we have carefully labeled all the nodes of an
orbit with the same term, rules schemes given in Figure 19(b) and 20(b) meet conditions
of Theorem 4.

One common way to ensure consistency preservation is to forbid particular rules’
applications, corresponding to Negative Application Conditions [19]. Nevertheless, NACs
rely on morphisms on the left-hand side of the rule to be applied, while embedding
constraints concern subgraphs of arbitrary size (depending on the modeled object). In
other words, the embedding constraint cannot be verified statically at a local scale at
the rule level. NACs have been extended to a nested framework [26]. Nested conditions
are equivalent to first-order graph formulas and have been used to show the correctness

47

of transformation systems. The first solutions for correctness are the computation of a
weakest precondition relative to a post-condition [15]. The second one is the specification
of a proof system sound with respect to the operational semantics of the language [32].
Nested conditions support both solutions: see [26] for the computation of the weakest
precondition and [49] for proof of partial correctness of the language GP [47].

One avenue of research could be to study the constraints of Definition 5 and Theorem 1
using nested conditions. However, the presented work studied the preservation of the
embedding consistency. A generalized map G is correctly embedded on π : ⟨o⟩ → τ if
all nodes share the same τ -value within each ⟨o⟩-orbit of G. Since an orbit corresponds
to a subgraph induced by a set of arc labels, the embedding consistency constraint of
Definition 6 is not expressible in first-order logic but requires monadic second-order logic.
However, there is no extension of nested conditions encapsulating monadic second-order
logic (at least to our knowledge).

As a final remark, let us point out that in general, G-maps are provided with several
embeddings simultaneously, for instance, with col and pos embeddings for our running
example of triangulation. Instead of a unique partial node labeling function πV , we have
then to consider an I-indexed family (πV,i)i∈I of partial labeling functions, where I is a
given set of indexes [7]. Rule application then requires superimposing several topological
extensions, which is implemented in Jerboa (see Section 9.2), but which would make the
explanations more intricate.

9 Applications
This section gives a presentation of applications done using the Jerboa framework, [1] that
highlights the embeddings consistency preservation. As mentioned in the introduction,
the primary motivation for our rule-based approach is developing the Jerboa platform to
support the design of modelers dedicated to different application areas. Jerboa provides a
rule editor where the modeler designer can define each specific operation. The operation
is written as a rule statically analyzed to check the topological and geometric consistency
preservation. The rule is then compiled to become a ready-to-use operation. Section 9.1
presents a new operation involving several embeddings. This operation computes exploded
views of objects and allows better visualization of their structure. Section 9.2 illustrates
exploded views of two 3D objects, a nightstand, and a hydraulic circulator pump, using
the Jerboa platform. Section 9.3 gives some insights on other concrete applications
implemented with Jerboa and exhibits some advantages of our rule-based approach for
prototyping modelers.

9.1 Exploded view
The manipulation of objects often requires visualizing their topological structure. Thus,
some software offers exploded views supporting the splitting of volumes, faces, etc. of the
modeled object [41, 37]. We introduce the notion of exploded view in a simplified way, in
the context of 2D objects, to ease the reading of figures. A square face is often displayed as

48

4 edges connected to the 2D points associated with the face’s vertices. An exploded view of
the face slightly separates the edges, preserving as much as possible the appearance of the
initial object in 2D. For an edge endpoint, its explosion is obtained by moving it slightly
towards the second edge endpoint. Practically, each node is provided with two embeddings,
pos : ⟨1 2⟩ → point_2D for the default display of objects and exp_pos : ⟨2⟩ → point_2D
for the display in exploded views. For a node a, the computation of the 2D position in
the exploded view relies on the position in the default display and looks like:

barycenter(a.pos, coef1, center(pos⟨0⟩(a)), coef2)

with:

• barycenter : point_2D× float× point_2D× float → point_2D function, that
computes the weighted barycenter of two positions;

• center : point_2D• → point_2D function, that computes the geometric center of
a multiset of positions;

• coef1 and coef2 two coefficients useful to modulate the display in exploded views.

Figure 35 presents a rule scheme to compute the exploded view of a vertex incident to
two adjacent edges. In our structure, this explosion puts the α1-links forwards. The rule
scheme is illustrated in Figure 35(a). In Jerboa, the syntax is more compact, and the rule
scheme shown in Figure 35(b) is of the form L→ R. Indeed, the interface graph K can
be restricted to L ∩R and the complete rule L←↩ K ↪→ R can be reconstructed (see [6]).

In Figure 35(b), the left-hand side matches a node a. The right-hand side looks
similar to the matched pattern because there is no topological modification. However, the
labels indicate a computation on the exp_pos embedding. As we see at the bottom of the
window, the operator calls the weighted barycenter between the node a and the center of
the ⟨0⟩-orbit that contains a. This expression is the same as depicted in Figure 35(a).
Note that embeddings are implicit in the left-hand side of the rule scheme since we can
retrieve the nodes with modified embeddings from an analysis of the right-hand side.

The editor checks the conditions for preserving the topological and the embedding
consistency as the rules are being written. When the design of this rule is complete, the
editor generates the final code. Then, Jerboa’s generic viewer offers an interactive way
to visualize the G-map and apply the designed operation. Figure 36 shows this viewer
where the G-map encodes a square face. The left picture displays the default geometry of
a vertex at a corner of the square face (Figure 36(a)) that forms two consecutive edges.
All operations of the modeler are listed on the left of the window. We can apply the
operation presented in Figure 35(b) to a node of the vertex, producing the exploded
geometry of Figure 36(b). The vertex is exploded, and we see the α1-link between the
orbit formed by the two darts which compose the vertex.

With this operation, to obtain the complete exploded view of the square, the previous
operation is applied to each face’s node. Since a face is a ⟨0 1⟩-orbit, its explosion can
be realized directly: the transformation is simultaneously applied to each node of the

49

(L)
a

t = barycenter(a.pos, coef ,
center(pos (a), coef.)s = a. exp_pos

s

(K)
a

(R)
a
t

〈0〉

1

2

(a) Formal rule scheme

(b) Concret rule scheme created with the Jerboa editor

Figure 35: Rule scheme to update the exp_pos embedding value of a node.

(a) Two consecutive edges with one vertex (b) Exploding the vertex highlights the α1-
link

Figure 36: Exploded view of two edges incident to the same vertex in 2D.

orbit. To retrieve these orbits, Jerboa uses topological variables [6]. The following section

50

<α0, α1, α2>

n0

<α0, α1, α2>
exp_pos

n0

Figure 37: Rule scheme to compute the exploded view of a whole volume.

presents the explosion of volumes in 3D, relying on such variables. The operation is
illustrated in Figure 37, where the whole volume is exploded at once. The node n0
is preserved between the left-hand and right-hand sides. As previously, it is labeled
with the term exp_pos that calls for a more global computation (not given here), still
using the barycenter notion. As a final remark, Jerboa’s rule schemes do not support
the affectation of an embedding value on the left-hand side. Therefore, if we want to
restrict the exploded view’s computation to vertices adjacent to a red-colored face, we
use application conditions.word

9.2 Jerboa
In this section, we briefly discuss the implementation of the rules in the Jerboa platform.
The design and architecture of the Jerboa platform have been presented in [8, 6]. Jerboa
is also available on a website [1].

Figure 38 illustrates exploded views of a nightstand made by an artist. This object
has 112 vertices for 152 faces on 14 volumes and corresponds to a small object to be
included in a room for architectural purposes. In our structure, this object counts 608
nodes.

The object is encoded in OBJ file format. This file format is widespread in computer
graphics and offers additional information such as texture coordinates and materials.
Even though this information is not relevant for our work, all these characteristics must be
preserved when computing the exploded view, i.e., the topological structure must handle
all these elements without modifying their values. Besides, this format may contain
topological aberrations. Thus, we use the algorithm developed in [5] to reconstruct the
G-map before applying the explosion operation. Figure 38(a) shows a textured nightstand
where texture coordinates are preserved during the explosion (Figures 38(b) and 38(c)).

Concretely, we made a command-line interface application with the Java version of
Jerboa. We designed a modeler for 3-G-maps with the following embeddings:

• pos : ⟨1 2 3⟩ → point_3D stands for the original coordinates from the file.

• exp_face : ⟨1 3⟩ → point_3D represents the computed coordinates after face
explosion.

• exp_vol : ⟨1 2⟩ → point_3D represents the computed coordinates after volume
explosion.

51

(a) Original (b) Explosion per volumes (c) Explosion per faces

Figure 38: Exploded views of a nightstand.

• orient : ⟨⟩ → boolean is dedicated to the reconstruction of the topology.

• tex : ⟨1 2 3⟩ → vector_2D memorizes texture coordinates from the file.

• mat : ⟨⟩ → string memorizes materials from the file.

The application takes an OBJ file and various weights and produces a new OBJ file
with the exploded geometry. The filename reflects the name of the original file and the
given weights. The application is available on the Jerboa website10.

9.3 Other applications
Table 1 summarizes information on some modelers designed using Jerboa and respectively
called JerboaArchi, Jermination, Jeolog, and Japhy. Figure 39 gives a brief overview of
these tools.

Modeler JerboaArchi Jermination Jeolog Japhy
Rule count 23 10 109 89

Embedding count 6 8 7 51
Object size 20 500 4560 160 000 850

Design time (average) 1 month 14 days 3 months 2 months

Table 1: Metrics for various modelers made with Jerboa

JerboaArchi is a modeler dedicated to architecture (Figure 39(a)), providing basic
operations for elevating/extruding a 2D map (done by an architect) into a 3D map, for
example, operations to add doors or windows. This modeler has been used to experiment

10Link to website (last consulted on July 4th, 2022): http://xlim-sic.labo.univ-poitiers.
fr/jerboa/

52

http://xlim-sic.labo.univ-poitiers.fr/jerboa/
http://xlim-sic.labo.univ-poitiers.fr/jerboa/

(a) JerboaArchi (b) Jermination

(c) Jeolog (d) Japhy

Figure 39: Various modelers done with Jerboa.

with the reevaluation of rule sequences [12]. It allows the recording of an interactive
construction to be reevaluated with new geometric parameters, creating a new model.

Jermination follows L-system mechanisms [10] appreciated by botanists, who usually
write rules reflecting the elementary steps of plant growth. Jermination implements
similar rules and allows the display of the growth stages of a plant (Figure 39(b)).

Jeolog is dedicated to geology (Figure 39(c)). Here again, the flexibility of embeddings
allows a double representation of geometric points (one at sedimentation times and
another at present times) [22]. This feature eases the comprehension of Earth layers and
fault displacements. Topological cells store data, which simplifies the design of complex
operations.

Japhy stands for Jerboa animation-based physics and provides a library for physic
simulations (Figure 39(d)). Currently, it supports some physics models such as mass-
spring, finite element method, or mass-tensors among several meshes (triangle, quad,
tetrahedron, hexagon). Rules help developers correctly design the location of force
interactions [9], while runtime verification helps them write correct computations when
designing new forces.

To assess the added value of Jerboa, we now briefly comment on metrics provided
by Table 1. Rule count gives the number of main rules defined inside the modeler,
leaving out operations not issued from the rule application engine. The embedding count

53

indicates the number of considered distinct embeddings. Then we give the average size
of objects manipulated with the modeler: geology has the largest object size because of
the complexity of the data. The design time gives the average designing time to create
all the rules associated with the modeler. This indicator shows that Jerboa can be used
either for fast development or step-by-step prototyping.

10 Conclusion
To cope with the variety of embeddings used in geometric modeling, we introduced a new
kind of graph transformation variables, called node variables, dedicated to embedding
computations in topology-based geometric modeling. These node variables are equipped
with operators that can be extended with user-defined data types, providing a general
framework supporting the definition of object transformations for any application do-
main. Our operators allow the topological structure’s traversal without matching the
precise configuration of the pattern. The rule instantiation mechanism allows embedding
modifications to propagate to the object’s corresponding cells. Therefore, embedding
computation does not depend on the underlying concrete topology.

The application mechanism presented in Figure 26 is structured in several layers.
Graph transformation conditions that guarantee the preservation of the embedding
consistency are directly extendable to rule schemes with node variables. A single rule
application engine has been implemented to handle any operation, such as the computation
of exploded views. Jerboa supports a static verification of the syntactic conditions that
ensure the preservation of the object’s embedding.

As stated in Section 6, we restricted ourselves to the syntactic equality of terms.
However, different terms may have the same value. For instance, consider two nodes a
and b in the same ⟨0 1⟩-orbit. These two nodes have the same color but the terms a.col
and b.col differ. Besides, user-defined operators may be associative or commutative. For
example mix(,) = mix(,) = . An interesting yet challenging work could be to
study rewriting of terms modulo equivalence induced by the joint use of user-defined
operators and dedicated embedding operators.

At first glance, topological conditions defining generalized maps could be expressed
with first-order graph formulas, thereof equivalent to nested conditions on graphs. Geo-
metric modeling provides an application field that goes beyond the first order. Indeed, the
present paper illustrates an application of graph rewriting requiring monadic second-order
formulas. We believe that geometric modeling represents a motivating application domain
to promote the definition of a new framework inspired by nested conditions, expressing
monadic second-order formulas.

Competing Interests Declaration
The authors did not receive support from any organization for the submitted work. All
authors certify that they have no affiliations with or involvement in any organization

54

or entity with any financial interest or non-financial interest in the subject matter or
materials discussed in this manuscript.

References
[1] A. Arnould, H. Belhaouari, T. Bellet, P. Le Gall, and M. Poudret. Jerboa, 2019.

http://xlim-sic.labo.univ-poitiers.fr/jerboa/.

[2] F. Baader and T. Nipkow. Equational Unification. In Term rewriting and all that,
chapter 10, pages 223–234. Cambridge university press, Aug. 1999.

[3] L. Baresi and R. Heckel. Tutorial Introduction to Graph Transformation: A Software
Engineering Perspective. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg,
editors, Graph Transformations (ICGT 2004), volume 3256 of Lecture Notes in
Computer Science, pages 431–433, Berlin, Heidelberg, 2004. Springer.

[4] H. Belhaouari, A. Arnould, P. Le Gall, and T. Bellet. Jerboa: A Graph Transforma-
tion Library for Topology-Based Geometric Modeling. In H. Giese and B. König,
editors, Graph Transformation (ICGT 2014), volume 8571 of Lecture Notes in
Computer Science, pages 269–284, Cham, 2014. Springer International Publishing.

[5] H. Belhaouari and S. Horna. Reconstruction of Volumes from Soup of Faces with
a Formal Topological Approach. Computer-Aided Design and Applications, 16(5),
2019.

[6] T. Bellet, A. Arnould, H. Belhaouari, and P. Le Gall. Geometric modeling: Con-
sistency preservation using two-layered variable substitutions. In J. de Lara and
D. Plump, editors, Graph Transformation (ICGT 2017), volume 10373 of Lecture
Notes in Computer Science, pages 36–53, Cham, 2017. Springer.

[7] T. Bellet, A. Arnould, and P. Le Gall. Rule-based transformations for geometric
modeling. In 6th International Workshop on Computing with Terms and Graphs
(TERMGRAPH 2011), Part of ETAPS 2011, volume 48, page 20–37, Saarbrücken,
Germany, Apr. 2011.

[8] T. Bellet, M. Poudret, A. Arnould, L. Fuchs, and P. Le Gall. Designing a topological
modeler kernel: a rule-based approach. In Shape Modeling International Conference
(SMI), pages 100–112. IEEE, 2010.

[9] F. Ben Salah, H. Belhaouari, A. Arnould, and P. Meseure. A general physical-
topological framework using rule-based language for physical simulation. In Pro-
ceedings of the 12th International Conference on Computer Graphics Theory and
Application (VISIGRAPP/GRAPP 2017), volume GRAPP of VISIGRAPP 2017
proceedings, pages 220–227, Porto, Portugal, Feb. 2017. SciTePress.

55

http://xlim-sic.labo.univ-poitiers.fr/jerboa/

[10] E. Bohl, O. Terraz, and D. Ghazanfarpour. Modeling Fruits and Their Internal
Structure Using Parametric 3Gmap L-systems. Vis. Comput., 31(6-8):819–829, June
2015.

[11] H. Bunke. Attributed Programmed Graph Grammars and Their Application to
Schematic Diagram Interpretation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 4(6):574–582, Nov. 1982.

[12] A. Cardot, D. Marcheix, X. Skapin, A. Arnould, and H. Belhaouari. Persistent Nam-
ing Based on Graph Transformation Rules to Reevaluate Parametric Specification.
Computer-Aided Design and Applications, 16(5):985–1002, Jan. 2019.

[13] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
Approaches to Graph Transformation, Part I: Basic Concepts and Double Pushout
Approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, pages 163–245. World Scientific, Feb. 1997.

[14] G. Damiand and P. Lienhardt. Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A. K. Peters, Ltd./ CRC Press, Sept.
2014.

[15] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[16] F. Drewes, B. Hoffmann, D. Janssens, and M. Minas. Adaptive star grammars and
their languages. Theoretical Computer Science, 411(34-36):3090–3109, July 2010.

[17] F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook Of Graph Grammars And Computing By Graph
Transformation: Volume 1: Foundations, pages 95–162. World Scientific, Feb. 1997.

[18] J. Ebert and T. Horn. GReTL: an extensible, operational, graph-based transformation
language. Software and Systems Modeling, 13(1):301–321, Feb. 2014.

[19] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, Berlin Heidelberg, 2006.

[20] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg. Handbook of Graph
Grammars and Computing by Graph Transformation: Concurrency, Parallelism,
and Distribution, volume 3 of Concurrency, Parallelism, and Distribution. World
Scientific, 1999.

[21] J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In G. Rozenberg,
editor, Handbook Of Graph Grammars And Computing By Graph Transformation:
Volume 1: Foundations, pages 1–94. World Scientific, Feb. 1997.

56

[22] V. Gauthier, A. Arnould, H. Belhaouari, S. Horna, M. Perrin, M. Poudret, and J.-F.
Rainaud. A Topological Approach for Automated Unstructured Meshing of Complex
Reservoir. In ECMOR XV-15th European Conference on the Mathematics of Oil
Recovery, pages cp–494. European Association of Geoscientists & Engineers, 2016.

[23] R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski. GrGen: A Fast SPO-
Based Graph Rewriting Tool. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro,
and G. Rozenberg, editors, Graph Transformations (ICGT 2006), volume 4178
of Lecture Notes in Computer Science, pages 383–397, Berlin, Heidelberg, 2006.
Springer.

[24] M. Gyssens, J. Paredaens, J. van den Bussche, and D. van Gucht. A graph-oriented
object database model. IEEE Transactions on Knowledge and Data Engineering,
6(4):572–586, Aug. 1994.

[25] A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of Lecture
Notes in Computer Science. Springer, Berlin, Heidelberg, Dec. 1992.

[26] A. Habel and K.-H. Pennemann. Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science, 19(2):245–
296, Apr. 2009.

[27] A. Habel and D. Plump. Computational Completeness of Programming Languages
Based on Graph Transformation. In F. Honsell and M. Miculan, editors, Foundations
of Software Science and Computation Structures, Lecture Notes in Computer Science,
pages 230–245, Berlin, Heidelberg, 2001. Springer.

[28] A. Habel and D. Plump. Relabelling in Graph Transformation. In A. Corradini,
H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Graph Transformation (ICGT
2002), volume 2505 of Lecture Notes in Computer Science, pages 135–147, Berlin,
Heidelberg, 2002. Springer.

[29] M. Haeusler, T. Trojer, J. Kessler, M. Farwick, E. Nowakowski, and R. Breu.
ChronoSphere: a graph-based EMF model repository for IT landscape models.
Software and Systems Modeling, 18(6):3487–3526, Dec. 2019.

[30] F. Han and S.-C. Zhu. Bottom-up/top-down image parsing by attribute graph
grammar. In Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, volume 2, pages 1778–1785. IEEE, Oct. 2005.

[31] R. Heckel and G. Taentzer. Graph Transformation for Software Engineers: With
Applications to Model-Based Development and Domain-Specific Language Engineering.
Springer International Publishing, Cham, 2020.

[32] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580, 583, Oct. 1969.

57

[33] B. Hoffmann. Graph Transformation with Variables. In H.-J. Kreowski, U. Montanari,
F. Orejas, G. Rozenberg, and G. Taentzer, editors, Formal Methods in Software
and Systems Modeling: Essays Dedicated to Hartmut Ehrig on the Occasion of His
60th Birthday, Lecture Notes in Computer Science, pages 101–115. Springer, Berlin,
Heidelberg, 2005.

[34] S. Ikehata, H. Yang, and Y. Furukawa. Structured Indoor Modeling. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), pages 1323–1331,
USA, December 2015. IEEE Computer Society.

[35] V. Lang and P. Lienhardt. Simplicial sets and triangular patches. In Proceedings of
the 1996 Conference on Computer Graphics International, pages 154–163. IEEE, jun
1996.

[36] F. Ledoux, A. Arnould, P. Le Gall, and Y. Bertrand. Geometric Modelling with
CASL. In M. Cerioli and G. Reggio, editors, Recent Trends in Algebraic Development
Techniques, volume 2267 of Lecture Notes in Computer Science, pages 176–201, Berlin,
Heidelberg, 2002. Springer.

[37] W. Li, M. Agrawala, B. Curless, and D. Salesin. Automated generation of interactive
3D exploded view diagrams. ACM Transactions on Graphics, 27(3):1–7, Aug. 2008.

[38] P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. International Journal of Computational Geometry & Applications,
04(03):275–324, Sept. 1994. Publisher: World Scientific Publishing Co.

[39] M. Mäntylä. Introduction to Solid Modeling. W. H. Freeman & Co., USA, 1988.

[40] M. Minas and G. Viehstaedt. DiaGen: a generator for diagram editors providing
direct manipulation and execution of diagrams. In Proceedings of Symposium on
Visual Languages, pages 203–210. IEEE, Sept. 1995.

[41] R. Mohammad and E. Kroll. Automatic generation of exploded view by graph
transformation. In Proceedings of 9th IEEE Conference on Artificial Intelligence for
Applications, pages 368–374, Mar. 1993.

[42] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural modeling
of buildings. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages 614–623,
New York, NY, USA, July 2006. Association for Computing Machinery.

[43] U. Nickel, J. Niere, and A. Zündorf. The FUJABA environment. In Proceedings of
the 22nd international conference on Software engineering, ICSE ’00, pages 742–745,
New York, NY, USA, June 2000. Association for Computing Machinery.

[44] Y. Ong and W. Kurth. A graph model and grammar for multi-scale modelling using
XL. In 2012 IEEE International Conference on Bioinformatics and Biomedicine
Workshops, pages 1–8. IEEE, Oct. 2012.

58

[45] Y. I. H. Parish and P. Müller. Procedural modeling of cities. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques, SIGGRAPH
’01, pages 301–308, New York, NY, USA, Aug. 2001. Association for Computing
Machinery.

[46] R. Pascual, P. Le Gall, A. Arnould, and H. Belhaouari. Topological consistency
preservation with graph transformation schemes. Science of Computer Programming,
214:102728, 2022.

[47] D. Plump. The Graph Programming Language GP. In S. Bozapalidis and G. Rahonis,
editors, Algebraic Informatics, volume 5725 of Lecture Notes in Computer Science,
pages 99–122. Springer, 2009.

[48] D. Plump and S. Steinert. Towards Graph Programs for Graph Algorithms. In
H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors, Graph Transfor-
mations (ICGT 2004), volume 3256 of Lecture Notes in Computer Science, pages
128–143, Berlin, Heidelberg, 2004. Springer.

[49] C. M. Poskitt and D. Plump. Hoare-Style Verification of Graph Programs. Funda-
menta Informaticae, 118(1-2):135–175, Jan. 2012.

[50] M. Poudret, A. Arnould, J.-P. Comet, and P. Le Gall. Graph Transformation for
Topology Modelling. In H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer, editors,
Graph Transformations (ICGT 2008), volume 5214 of Lecture Notes in Computer
Science, pages 147–161, Berlin, Heidelberg, 2008. Springer.

[51] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Development models of herbaceous
plants for computer imagery purposes. In Proceedings of the 15th annual conference
on Computer graphics and interactive techniques, volume 22 of SIGGRAPH ’88, pages
141–150, New York, NY, USA, June 1988. Association for Computing Machinery.

[52] F. Puitg and J.-F. Dufourd. Formal specification and theorem proving breakthroughs
in geometric modeling. In J. Grundy and M. Newey, editors, Theorem Proving in
Higher Order Logics, Lecture Notes in Computer Science, pages 401–422, Berlin,
Heidelberg, 1998. Springer.

[53] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In J. L.
Pfaltz, M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations with
Industrial Relevance, Lecture Notes in Computer Science, pages 479–485, Berlin,
Heidelberg, 2004. Springer.

[54] M. A. Rodriguez. The Gremlin graph traversal machine and language (invited
talk). In Proceedings of the 15th Symposium on Database Programming Languages,
DBPL 2015, pages 1–10, New York, NY, USA, Oct. 2015. Association for Computing
Machinery.

59

[55] A. Schürr, A. J. Winter, and A. Zündorf. Graph grammar engineering with PRO-
GRES. In W. Schäfer and P. Botella, editors, Software Engineering — ESEC
’95, Lecture Notes in Computer Science, pages 219–234, Berlin, Heidelberg, 1995.
Springer.

[56] R. M. Smelik, K. J. De Kraker, T. Tutenel, R. Bidarra, and S. A. Groenewegen. A
survey of procedural methods for terrain modelling. In Proceedings of the CASA
Workshop on 3D Advanced Media In Gaming And Simulation (3AMIGAS), pages
25–34, jun 2009.

[57] C. Smith, P. Prusinkiewicz, and F. Samavati. Local Specification of Surface Sub-
division Algorithms. In J. L. Pfaltz, M. Nagl, and B. Böhlen, editors, Applications
of Graph Transformations with Industrial Relevance (AGTIVE 2003), volume 3062
of Lecture Notes in Computer Science, pages 313–327, Berlin, Heidelberg, sep 2004.
Springer.

[58] A. Spicher, O. Michel, and J.-L. Giavitto. Declarative Mesh Subdivision Using
Topological Rewriting in MGS. In H. Ehrig, A. Rensink, G. Rozenberg, and A. Schürr,
editors, Graph Transformations, Lecture Notes in Computer Science, pages 298–313,
Berlin, Heidelberg, 2010. Springer.

[59] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Valida-
tion of Software. In J. L. Pfaltz, M. Nagl, and B. Böhlen, editors, Applications of
Graph Transformations with Industrial Relevance, volume 3062 of Lecture Notes in
Computer Science, pages 446–453, Berlin, Heidelberg, 2004. Springer.

[60] W.-H. Tsai and K.-S. Fu. Attributed Grammar-A Tool for Combining Syntactic and
Statistical Approaches to Pattern Recognition. IEEE Transactions on Systems, Man,
and Cybernetics, 10(12):873–885, Dec. 1980.

[61] S. Vilgertshofer and A. Borrmann. Using graph rewriting methods for the semi-
automatic generation of parametric infrastructure models. Advanced Engineering
Informatics, 33:502–515, Aug. 2017.

[62] K. Weiler. The radial-edge structure: A topological representation for non-manifold
geometric boundary representations. Geometric Modeling for CAD Applications:
Selected Papers from IFIP WG 5.2, pages 3–36, 1988.

[63] K. C. You and K.-S. Fu. A Syntactic Approach to Shape Recognition Using Attributed
Grammars. IEEE Transactions on Systems, Man, and Cybernetics, 9(6):334–345,
June 1979.

60

	Introduction
	Related Work
	Graph Transformations
	Double-pushout graph transformations
	Graph transformations on partially labeled graphs
	Graph transformations with variables
	Data types

	Topological Generalized Maps as Partially Labeled Graphs
	Generalized maps
	Basic topological transformations

	Embedded Generalized Maps and their Basic Transformations
	Embedding representation
	Basic embedding transformations

	Rule Schemes
	Node variables
	Collect operators
	Terms and schemes
	Evaluation of embedding terms

	Rule Scheme Instantiation
	Need for simplicity
	Topological extension
	Embedding propagation
	Rule scheme application

	Consistency Preservation
	Topological consistency preservation
	Condition of non-overlap
	Embedding consistency preservation

	Applications
	Exploded view
	Jerboa
	Other applications

	Conclusion

