
A Delta-Oracle for Fast Model Merge Conflict Estimation using
Sketch-Based Critical Pair Analysis

Karl Kegel
Technische Universität Dresden

Dresden, Germany
karl.kegel@tu-dresden.de

Andreas Domanowski
Technische Universität Dresden

Dresden, Germany
andreas.domanowski@tu-dresden.de

Kevin Feichtinger
Karlsruhe Institute of Technology

Karlsruhe, Germany
kevin.feichtinger@kit.edu

Romain Pascual
Karlsruhe Institute of Technology

Karlsruhe, Germany
romain.pascual@kit.edu

Uwe Aßmann
Technische Universität Dresden

Dresden, Germany
uwe.assmann@tu-dresden.de

ABSTRACT
Conflicting changes are a major challenge in branch-based develop-
ment and modeling. State-of-the-art research proposes continuous
analysis via attempted three-way merges to find potential merge
conflicts early on. These approaches are computation-heavy due
to the necessity of comparing all variant combinations, ideally for
each change. This work proposes a conflict approximation algo-
rithm (oracle) for quick feedback. The oracle approximates conflicts
using critical pair analysis on tracked delta sequences, providing a
quick feedback loop. The oracle is paired with a classical slow-but-
precise full model comparison algorithm, which is run occasionally
to validate the oracle’s results. This work contributes the Sketch-
based Critical Pair Analysis (SCPA) approach for fast merge conflict
estimation. SCPA’s runtime depends only on the number of changes
and not the model size. We evaluate SCPA against EMFCompare in
different simulatedmodel evolution scenarios.We found that for the
investigated model sizes, SCPA is faster by a magnitude while the
number of found conflicts strongly correlates with EMFCompare.

CCS CONCEPTS
• Software and its engineering → Software creation and man-
agement; Development frameworks and environments; • Theory
of computation → Theory and algorithms for application
domains.

KEYWORDS
merge conflict estimation, critical pair analysis, oracle algorithm

ACM Reference Format:
Karl Kegel, Andreas Domanowski, Kevin Feichtinger, Romain Pascual, andUwe
Aßmann. 2024. A Delta-Oracle for Fast Model Merge Conflict Estimation
using Sketch-Based Critical Pair Analysis. In ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems (MODELS
Companion ’24), September 22–27, 2024, Linz, Austria. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3652620.3688341

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3688341

1 INTRODUCTION
Agile, distributed development workflows are widely established in
today’s software engineering landscape. Many variations of branch-
based workflows are known in the literature[9]. These workflows
propose various solutions to merge individually edited branches.
While merge and versioning strategies and techniques are well-
studied [1, 2, 4, 21], merge conflicts remain an issue that must be
solved manually.

We distinguish between online and offline workflows and tasks.
Offline refers to everything happening on the local system and
online to everything happening in a synchronized or commonly
accessible context. We use the more general term variant to describe
variations in space, e.g., branches. The merge problem is typically
addressed by timely detection and reporting of conflicts:

(1) A manual conflict analysis is conducted once a change is
committed to the repository. Open (draft) merge/pull re-
quests show conflicts with other branches. These requests
are managed manually or by a CI pipeline.

(2) IDE-supported feedback, e.g., an (online) conflict detection
tool, continuously collects changes made by the collabora-
tors. Merge attempts are executed in the background, and
conflicts are reported in the IDE. Guimarães and Silva de-
signed such a system for software development [12].

(3) Metric-based, e.g., the Drift metric proposed in [17] measures
merge conflict potential. These metrics are computed after
specific events, e.g., in the CI after a commit, or continuously.
The actual computation typically requires a merge attempt
between all branches for each change.

The literature studies branch-based workflows for developing
and maintaining code. These workflows are also applicable and
used in modeling. Since models have a structured representation
often based on a graphical syntax, modeling environments (lan-
guage workbenchs) are more constrained than programming en-
vironments (code editors). Modeling relies on tools that support
the modeling language, understand the metamodel, and provide
a graphical modeling interface. For instance, EMF-based tools in
Eclipse1 comprise graphical and DSL editors, version control via
EGit2, and model comparison and merging with EMFCompare3.

1https://eclipseide.org/
2https://eclipse.dev/egit/
3https://eclipse.dev/emf/compare/

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0009-0003-6829-4260
https://orcid.org/0000-0003-3479-661X
https://orcid.org/0000-0003-1182-5377
https://orcid.org/0000-0003-1282-1933
https://orcid.org/0000-0002-3513-6448
https://doi.org/10.1145/3652620.3688341
https://doi.org/10.1145/3652620.3688341
https://eclipseide.org/
https://eclipse.dev/egit/
https://eclipse.dev/emf/compare/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3688341&domain=pdf&date_stamp=2024-10-31


MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kegel et al.

1.1 Problem Statement
The approaches for detecting and reporting merge conflicts by
consecutive merge attempts are resource-intensive. In the worst
case, a full conflict detection cycle requires merge attempts for
all variant pairs, leading to 𝑛2 − 𝑛 comparisons for 𝑛 variants or
𝑛2/2 − 𝑛 assuming symmetrical merge operations. Ideally, a full
conflict detection cycle is executed for each change. Consequently,
a huge number of three-way merges must be conducted.

The default Git algorithm for distinguishing and merging is line-
based and textual. In this algorithm, two documents are matched
line by line using string comparison. These algorithms have well-
known downsides when comparing documents with complex syn-
tax. The unawareness of the syntax leads to a high number of
false positives [2]. However, an unstructured difference is fast, and
its results remain usable for practitioners during manual analysis.
Having a fast algorithm for model comparison would solve the
online-analysis problem. However, unstructured but fast difference
algorithms are not feasible for comparing models. For example,
Ecore models are typically saved as XMI files. XMI is hardly human-
readable and model elements frequently change their position in
the underlying XML tree. Position-based indices are used to define
references. A line-based difference between two XMI files is not
suitable for conflict detection.

For models, structured difference algorithms exist, e.g. EMF-
Compare. They are aware of the models’ metamodel and work on
the abstract syntax tree (AST). These algorithms are slow com-
pared to line-based algorithms. In particular, finding a subgraph
matching, i.e., a subgraph isomorphism between two graphs is NP-
complete [7, 10]. Practical model comparison algorithms mostly
rely on graph comparisons, e.g., the extension of the VF2 algorithm
in [8].

This makes approaches like the Drift for projects with large
models and many variants unsuitable for providing live feedback.
There is a need for a fast comparison approach.

1.2 Research Questions
We therefore aim to answer the research question RQ1:

RQ1 What is a suitable design for a language-agnostic approach
for fast but dependable merge conflict counting for three-
way model merges?

In the context of answering this main research question, we ask
two subsequent questions RQ1.1 and RQ1.2:

RQ1.1 What is a suitable language-agnostic oracle algorithm for
conflict estimation trading accuracy with speed?

RQ1.2 How well does such an estimation algorithm perform regard-
ing runtime and accuracy compared to full model compari-
son?

1.3 Approach
We argue that, in the short term, e.g., during active collaboration,
fast feedback is more important than minor inaccuracies in the
metric. However, in the long term, exact conflict reports are re-
quired for strategic decisions. Of course, quantifying “major” and
“minor” is subjective and should be discussed in a scenario-specific
context. Given the above restrictions, the problem of locating merge

conflicts can be reduced to estimating the number of merge con-
flicts. Therefore, we propose an oracle approach combining a slow,
accurate model merging (dependable results) with a fast conflict
estimation (fast feedback). We propose a variation of Critical Pair
Analysis [13, 19, 20] for the fast lane. We analyze the simplified rep-
resentation of the changes (deltas) made to the models rather than
the models themselves. Thus, we propose the Sketch-based Critical
Pair Analysis (SCPA) algorithm. In parallel, we use the standard
EMFCompare algorithm for the slow lane.

We conduct time and accuracy measurements based on simu-
lated models and delta sequences showing the feasibility of SCPA.
Therefore, we conduct a series of experiments using simulated
datasets. We correlate the conflict counts found by SCPA with the
conflict counts found by EMFCompare. The results show strong
correlations with SCPA being significantly faster.

1.4 Method
First, we describe and abstract our problem space in Section 2. We
present the concept of the hybrid approach in Section 3 and the
design of the oracle algorithm in Section 4. Section 5 presents the
evaluation and Section 6 discusses related work. We conclude the
paper and outline the next steps in our research in Section 7.

This work contributes the abstract concept of a hybrid conflict es-
timation pipeline. Particularly, we contribute the novel Sketch-Based
Critical Pair Analysis (SCPA) for fast merge conflict estimation.

2 FOUNDATIONS
This section formalizes the problem space and then discusses con-
cepts relevant to our solution. We describe the delta-based model
evolution scenario according to the formalization and definitions
of Abstract Delta Modeling[6]. The basis for an evolution scenario
is a model𝑚 ∈ M. The metamodelM is defined as the set of all its
valid instances. The empty model 𝜖 is a mandatory element of M.

Models are modified via atomic edits, called delta operations, 𝑑
applicable to models inM. The finite set of delta operations is called
a delta language and written D. Applying a delta operation often
requires pre-existing structures within the model, which could only
be added by prior delta operations. For instance, if 𝑑𝑛 adds a node 𝑛
and 𝑑𝑒 adds an edge 𝑒 incident to 𝑛, then 𝑑𝑛 must precede 𝑑𝑒 . This
requirement is denoted by the strict partial order ≺, making the
delta language a partially ordered set (D, ≺).

Delta operations may not always produce models𝑚 ∈ M. For
example, applying 𝑑𝑒 to a model without the node 𝑛 results in an ill-
formed model. Thus, deltas aggregate delta operations into model
transformations 𝛿 : M → M, ensuring that applying all operations
of a delta to a well-formed model yields another well-formed model.
Formally, a delta acts as a partial function applicable only to some
models. For instance, a delta containing the operation removing
the node 𝑛 but lacking the operation that adds 𝑛 is only applicable
to models already containing 𝑛.

Deltas inherit the poset structure from D. Applying a delta in-
volves sequentially applying all its delta operations while respecting
≺. Formally, the application of 𝛿 is a linear extension ≺∗ of ≺ to 𝛿 ,
i.e., as a sequence 𝑑0, 𝑑1, . . . , 𝑑𝑛 of all 𝑑 ∈ 𝛿 such that 𝑑𝑖 ≺ 𝑑𝑖+1 for
all 𝑖 . Such linear extensions typically come from logging change
operations made by a collaborator. Deltas can be composed into



A Delta-Oracle for Fast Model Merge Conflict Estimation using Sketch-Based Critical Pair Analysis MODELS Companion ’24, September 22–27, 2024, Linz, Austria

sequences, called delta sequences, and written Δ = 𝛿1, . . . , 𝛿𝑛 . We
define the evolution scenario according to [17]. We write𝑚0 for
the base model of an evolution scenario. This model is evolved by a
collaborator 𝑐 ∈ C via a delta sequence to reach the desired model
variant𝑚𝜏

𝑐 . Conflicts may exist between the delta sequences of two
collaborators. These pairs of operations are called Critical Pairs. For
example, if 𝑑𝑎 ∈ 𝛿𝑎 moves an element in one variant and 𝑑𝑏 ∈ 𝛿𝑏
deletes it in another variant, then a merge conflict occurs when
merging the two model variants. Consequently, (𝑑𝑎, 𝑑𝑏 ) forms a
critical pair.

Critical pair analysis is a well-known concept that has been
studied in various works. In the context of term or graph rewrit-
ing, critical pair analysis is conducted on a rewriting system to
analyze its confluence, i.e., whether the order in which the rule
is applied matters [19]. It corresponds to a minimal example of
a conflict application for two rules. It is intuitively computed by
overlapping all elements of the rule left-hand sides modified by
the two rules. Then, showing that the applications of the two rules
to these minimal examples are joinable is sufficient to ensure the
confluence of the system [14]. Hausmann et al. [13] use critical pair
analysis to find conflicting actions between use cases. In delta-based
approaches for software product line engineering, the notion of
Critical Pair is defined as a pair of delta operations that cannot be
applied together (because of a contradiction) or their application
is ambiguous (different results depending on the application or-
der) [20]. For instance, Pietsch et al. [20] use critical pair analysis to
detect critical modifications in delta-based software product lines.

3 HYBRID CONFLICT MEASUREMENT
We propose a two-lane approach for merge conflict estimation. In
our approach, two algorithms work in parallel. One algorithm gives
complete and correct results but is consequently slow. We call this
algorithm the Validator. The other algorithm gives an approximated
result but is fast. We call this algorithm the Oracle.

During active development, collaborators require fast feedback
to counter (or be aware of) merge conflicts timely. In this case, the
oracle provides feedback as fast as possible. Each collaborator’s
edit operations (delta) are sent to an analysis facility. An analysis
facility can be, for example, a remote service, a local service, or a CI
pipeline. This facility continuously runs the oracle and occasionally
runs the validator to provide dependable results. State-of-the-art
model comparison tools like EMFCompare can serve as validator
algorithms. The activation of the validator happens according to a
predefined strategy:

(1) Ad-hoc: The validator only runs if manually triggered.
(2) Threshold: The validator runs when a certain threshold -

number of changes or conflicts - is reached or based on a
metric estimated by the oracle, such as the Drift metric [17].

(3) Synchronous: The validator runs with a specified frequency.

4 CRITICAL PAIR ANALYSIS WITH DELTA
SKETCHES

The hybrid estimation approach requires an oracle algorithm for
fast merge conflict estimation. Model difference algorithms typi-
cally rely on complex graph comparison. As we envision a perfor-
mant yet simple algorithm, we decided against optimizing a graph

comparison approach. Instead, we base our algorithm on delta se-
quences and critical pair analysis (CPA). In other words, the oracle
counts conflicts by evaluating the changes themselves instead of
the changes’ manifestations in the models. We consider 𝛿s retrieved
by logging the operations performed by a collaborator and assume
the underlying sequence ≺∗ to be a valid extension of ≺. In the
sequel, we identify ≺∗ and ≺. However, we aim to find an agnostic
algorithm operating on general deltas (𝛿, ≺).

We consider an algorithm to be a suitable oracle if it is: (A)
Language-agnostic; (B) Performant; (C) Simple. Language-agnostic
means agnostic of a concrete set of delta operations. Performant
means that the algorithm is significantly faster than a full model
comparison. Simple means low implementation complexity. These
three requirements improve the ability to embed the algorithm in
existing tools and to support modifications and customization.

CPA, as studied by Mens et al. [19] or Heckel et al. [14], is not
directly applicable to our problem space because we work with
deltas rather than rewrite rules. A related approach is the change-
based conflict detection algorithm by Yohannis [21]. The algorithm
constructs Operation Trees from logged change operations and ana-
lyzes them for conflicts. Yohannis [21] shows that the algorithm is
faster than EMFCompare while finding the same conflicts. However,
this precision comes with the tradeoff of requiring a sophisticated,
memory-intensive data structure. We argue that relaxing the re-
quirement for precise conflict detection can lead to an algorithm
that is less complex than comparable approaches and significantly
faster than full model comparison.

We propose the Sketch-based Critical Pair Analysis (SCPA) to
cover requirements A-C. The input of the SCPA is a delta sequence
Δ, a Redundancy Heuristic 𝐻𝑅 , and a Critical Pair Heuristic 𝐻𝐶 . First,
we extend the foundations from Sec. 2.

We define a domination function 𝛼 : D → P(D) that outputs
the set of dominated delta operations for each delta operation. A
concrete 𝑑1 ↦→ {𝑑2, 𝑑3} denotes that 𝑑2 and 𝑑3 are dominated by
𝑑1, meaning that 𝑑2 and 𝑑3 exist as a consequence of 𝑑1. This is not
to be confused with the order ≺ on delta operations. For example,
deleting a graph node also leads to (automatically) deleting all
adjacent edges. Thus, the node deletion dominates the edge deletion.
Additionally, every delta operation dominates ∅. In practice, 𝛼 is
built for a concrete delta tracked by the associated modeling tool.

An exemplary delta operation may be 𝑑𝑒𝑥 ∈ D corresponding
to: “move node N1 from subgraph A to subgraph B”. It contains an
operation name (move), a main target element (node N1) and con-
textual information about the operation (from where to where).
We write Σ for the set of possible operation names and consider
a function 𝑜 : D → Σ providing the name of each delta opera-
tion. For example, 𝑜 (𝑑𝑒𝑥 ) =𝑚𝑜𝑣𝑒 . We assume that model elements
have a (unique) identifier and consider Ω as the set of all iden-
tifiers. We further assume that each delta operation knows the
main model element that it modifies, such that we obtain an iden-
tification function 𝑖 : D → Ω. For example, 𝑖 (𝑑𝑒𝑥 ) = 𝑁1. More
precisely, we define a delta operation sketch, or simply operation
sketch, 𝑑 as a pair (𝑜 (𝑑), 𝑖 (𝑑)) ∈ Σ × Ω, reducing a delta opera-
tion to its operation name and its main target element’s identifier.
The key idea is to work with 𝑜 (𝑑) and 𝑖 (𝑑) instead of 𝑑 . For ex-
ample, 𝑑𝑒𝑥 = (𝑚𝑜𝑣𝑒, 𝑁1). While mapping the delta operations to



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kegel et al.

d1 d5 d6

d2 d3 d7

d4

s1 s5 s6

s2 s3 s7

s4

s1 s5 s6

s3 s7

s1

s5

s6

s3

s7

s’1

s’3

s’2

Delta Sequence Sketch Sequence Flat SketchReduced Sketch Sequence

Redundancy
Heuristic

Critical Pair
Heuristic

𝚫 𝚪𝚪

Figure 1: The abstract principle of the Sketch-based Critical Pair Analysis

delta operations sketches, we lift 𝛼 to 𝛼 and ≺ to <. Then, delta
sketches are tuples (𝛿, <). When building sketches, two different
delta operations may result in the same operation sketch due to
the simplifications made, which would violate the order <. An ad-
ditional identifier - e.g., based on information from the delta - is
added, ensuring the uniqueness of operation sketches. A sequence
of delta sketches form a delta sequence sketch Γ.

The Redundancy Heuristic 𝐻𝑅 is a set of pairs in Σ × Σ encoding
internally redundant operation sketches within a delta sequence
sketch. An operation sketch 𝑑1 = (𝑜1, 𝑖1) is internally redundant if
there is an operation sketch 𝑑2 = (𝑜2, 𝑖2) such that 𝑑1 < 𝑑2, 𝑖1 = 𝑖2,
and (𝑜1, 𝑜2) ∈ 𝐻𝑅 . For example, (add, delete) can belong to 𝐻𝑅 as
these operations would cancel each other out if applied to the same
model element. Similarly, the Critical Pair Heuristic 𝐻𝐶 is a set of
pairs in Σ×Σ encoding conflicting operation sketches between two
delta sequence sketches. A pair (𝑑1, 𝑑2) is conflicting if 𝑖1 = 𝑖2 and
(𝑜1, 𝑜2) ∈ 𝐻𝐶 . For example, (move, move) can belong to 𝐻𝐶 as these
operations may cause merge conflicts when applied to the same
model element in different variants.

Based on these definitions, the algorithm works as follows. Fig. 1
depicts the SCPA process from left to right.

(1) Transform the input delta sequence into a delta sequence
sketch. This reduces the size (memory) of the delta. Tech-
nically, the result is a sequence of posets of string pairs
according to 𝛼 . This is shown by the transition from the first
to the second box in Fig. 1.

(2) Eliminate internally redundant operation sketches via 𝐻𝑅

while traversing the data structure once. Eliminating an
operation sketch implies eliminating the dominated delta
operations according to 𝛼 . Fig. 1 shows the elimination by
crossing out redundant elements.

(3) Flatten the reduced data structure to a flat delta sketch, dis-
missing 𝛼 and <. Technically, the result is a set of string
pairs. The reduced data structure is depicted in the third box
of Fig. 1, and the flatten one in the fourth box.

(4) Compare two flat delta sketches by counting the number of
critical pairs via 𝐻𝐶 for every (𝑑𝑎, 𝑑𝑏 ) ∈ Γ1 × Γ2.

The proposed SCPA process meets the requirements A-C. It is
language agnostic in principle as it works on the generic sketch
representation. The only language-specific step required is the pre-
processing of Δ to Γ. After sketch construction, all operations use
string comparisons. This makes the approach agnostic of technical
spaces, i.e., it does not require a specific (formal/technical) frame-
work for implementation. The approach is performant as no com-
plex matching procedures are required. After sketch construction,
the algorithm consists of only two simple traversals of the sketch
structure. The first tree traversal eliminates redundant operations.
The second set traversal counts the critical pairs. The algorithm has
a linear space complexity and a quadratic time complexity regarding
the delta sequences.

Runtime Considerations. To be useful, SCPA must be faster than a
full three-way model comparison. SCPA is necessarily faster for
empty delta sequences since nothing needs to be computed. A
non-empty delta sequence that transforms the empty model into
empty models will result in longer comparison times for the delta
sequences than the model comparison of the empty models. Loosely
speaking, there is a necessary trade-off between the two approaches
and specific situations where one comparison is faster than the
other. We assume standard sizes of models and delta sequences
(given as the number of model elements involved in the model,
resp. the sequence) where the sizes of the delta sequences generally
remain negligible compared to the model sizes. With the smaller
size of delta sequences and the use of simple representations for
deltas, namely sketches, the runtime of the SCPA is faster than the
full model comparison, as shown in Section 5.

Limitations. The literature in the context of graph rewriting states
that a CPA finds all potential conflicts [13]. This does not apply to
SCPA. (1) During sketch construction, an operation loses its context.
As SCPA is unaware of the models, reconstructing the context is
impossible. For example, if we add an edge between two graph



A Delta-Oracle for Fast Model Merge Conflict Estimation using Sketch-Based Critical Pair Analysis MODELS Companion ’24, September 22–27, 2024, Linz, Austria

nodes, the sketch of this operation loses the knowledge about the
nodes. It just knows that we added an edge with a certain ID. If an
operation modifying the context induces a merge conflict, the SCPA
algorithm remains unaware of the change. (2) Without looking at
the underlyingmodels in a merge scenario, it is impossible to reason
about violations of the validity of the merge results. The merge
of two models 𝑚𝑎 and 𝑚𝑏 , resulting in 𝑚𝑐 may be conflict-free
according to a perfect CPA, but the𝑚𝑐 is not a valid instance of the
metamodelM. The reason is that SCPA does not know the impact of
deltas on constraints. For example, consider a graphmodel that does
not allow the empty graph and a scenario where two collaborators
delete a different node of a two-node graph. SCPA will not detect
any problem as it only knows about the operations, not the graph.
However, the merge is not possible as the merge result is not a valid
graph. This problem holds in all operation-based approaches.

5 EVALUATION
This work proposes combining a fast conflict estimation algorithm
(oracle) with a slow but exact model comparison tool (validator)
to answer RQ1. We propose the SCPA algorithm for answering
RQ1.1. This section aims to evaluate the feasibility of the SCPA
approach compared to the classical model comparison. We consider
the overall hybrid approach feasible if the SCPA algorithm is faster
than the classical model comparison and sufficiently accurate. We
implemented the SCPA algorithm in Kotlin.

This section evaluates the proposed approach by conducting
a series of experiments. We evaluate the approach using a single
metamodel and a corresponding delta language as an example. The
delta language uses a strict total order ≺ for the operations. As
this corresponds to logged deltas, this is a valid simplification. An
evaluation spanning several modeling/delta languages is beyond
the scope of this work, but we consider such an evaluation for our
future work.

5.1 Objectives
This evaluation aims to accept or reject the following hypothesis.

H1 The number of merge conflicts found by SCPA strongly cor-
relates with the number of merge conflicts found by a full
model merge via EMFCompare for models with uniquely
identifiable model elements.

H2 SCPA is significantly faster than a full model merge via
EMFCompare.

Accepting H1 shows the suitability of SCPA as a conflict es-
timator. Accepting H2 shows the feasibility of SCPA as the fast
algorithm in the proposed hybrid approach. Accepting H1 and H2
shows that SCPA is sufficiently accurate yet fast and thus suitable as
an oracle algorithm. We accept H1 if the experiments show a strong
correlation with a correlation coefficient > 0.9 for all investigated
non-degenerate cases. We accept H2 if the critical pair analysis’s
runtime is significantly faster than the full model comparison’s.
We do not state a specific time factor at this point. However, the
runtime difference must be visible under the experiment setup.

Additionally, this evaluation aims to investigate the following
statements without accepting or rejecting them. We discuss the
results for further research.

S1 How is the accuracy of the delta analysis influenced bymodel
properties, e.g., structuredness of the model, ratio between
model elements, and models with or without IDs?

S2 How is the accuracy of the delta analysis influenced by edit
behavior, e.g., focused edits vs. random edits?

S3 How does the accuracy of the delta analysis change with
very long edit sequences?

5.2 Method
We conduct this evaluation by designing and executing a series of
experiments. The experiments are split into experiment groups. We
present the experiment design and the experiment groups in Section
5.5. We present and discuss the results in section 5.6. Additional
experiments serve to discuss statements S1, S2, and S3. We require
data comprising models, evolved models, and delta sequences to
design and conduct the experiments. Furthermore, we require the
data to have particular properties, e.g., model size, edit behavior,
etc. For this purpose, we extend and use the GraphGentool model
generator introduced in [17]. The extensions include the generation
of models with and without IDs for each element and the generation
of delta sequences for each simulated edit.

We develop the Model Comparison Workbench to compare the
models and delta sequences. The workbench is a Kotlin application
that directly works with the models generated by the GraphGentool.
The application performs a full comparison via EMFCompare or
uses our SCPA implementation, depending on its configuration. We
present the tooling in the following Sections 5.3 and 5.4.

5.3 Tooling: GraphGentool
We use the GraphGentool to generate the model data required for
the experiments. The GraphGentool is a model generator that gen-
erates variant sets based on an Ecore metamodel for hierarchical
graphs. First, the tool generates a base model according to a config-
uration. The configuration comprises properties such as model size,
average edges per node, depth vs. width of the graph, etc. The tool
generates a set of variants by applying edit operations to copies of a
base model. The variant generation is controlled by a configuration
comprising the number of variants, the number of edits (deltas) per
variant, and a probability distribution for choosing the edit oper-
ations. The export format is XMI. We extended the GraphGentool
for this work. The default graph and delta metamodels used by
the tool do not use IDs for the model elements. The only means of
identification is the unique name of each node. Edges are identified
by their source and target. We extended the metamodels to use
IDs for each element. Fig. 2 and 3 respectively show the graph and
delta metamodels with IDs. The composition relations in the delta
metamodel between certain operations implement the domination
relation 𝛼 .

A detailed description of the GraphGentool can be found in its
openly-available repository4. The provided reproduction package
contains a copy of the used version of the tool [16].

5.4 Tooling: Model Comparison Workbench
We developed the Model Comparison Workbench to compare the
models and delta sequences generated by the GraphGentool. The
4https://github.com/convidev-tud/emf-graph-gen

https://github.com/convidev-tud/emf-graph-gen


MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kegel et al.

Figure 2: Ecore graph metamodel with full ID support used
by the GraphGentool

reproduction package provides a copy of the source code [16]. Based
on the input configuration, the workbench compares a pair of graph
models (and their base) using EMFCompare or analyzes a pair of
delta sequences using our SCPA implementation. The results, i.e.,
the number of conflicts found, are written in a result file. The
workbench also measures the algorithm’s runtime separated into
load and compare time. The load time includes opening the model
files, parsing the content, setting up the required Ecore objects, etc.
The compare time includes the actual comparison task, e.g., calling
EMFCompare’s compare method or running the SCPA algorithm.

5.4.1 SCPA Implementation. First, the implementation loads the
two delta sequences from XMI into EObjects. The EObjects objects
are then transformed into objects of our Kotlin implementation of
the delta metamodel. These objects are further transformed into the
sketch data structure. The sketch construction is a language-specific
transformation. An operation sketch is implemented as a data class
comprising two string attributes: the element identifier and the
operation name. Before the flattening, each operation sketch also
knows the set of operation sketches according to the domination
relation 𝛼 . The two heuristics 𝐻𝑅 and 𝐻𝐶 are implemented as lists
of language-specific operation name pairs. We use the class names
of the operation classes. Checking whether an operation sketch
is redundant or critical is implemented as a lookup in the heuris-
tics. The sketch data structures, reduction, and conflict detection
algorithms are language-agnostic.

Table 1: Edit strategies and delta operation probabilities in
the experiments.

Probability Balanced Drag-Drop CRUD
ADD SIMPLE 15 15 20
ADD REGION 5 5 10
DELETE NODE 5 10 20
MOVE NODE 5 35 0
CHANGE LABEL 25 0 30
ADD EDGE 25 20 10
DELETE EDGE 20 15 10

Table 2: Overview of experiment group 1.

Experiment Metamodel with IDs Depth Edit Strategy
E1 yes flat balanced
E2 no flat balanced
E3 yes deep balanced
E4 no deep balanced
E5 yes flat drag-drop
E6 no flat drag-drop
E7 yes deep drag-drop
E8 no deep drag-drop
E9 yes flat crud
E10 no flat crud
E11 yes deep crud
E12 no deep crud

5.5 Experiment Design
We use GraphGentool’s ability to vary the model size, delta length
(edit size), edit behavior, and structuredness for the individual exper-
iments. We use the graph and delta metamodels with and without
IDs. Preliminary explorative experiments showed a high accuracy
of the delta oracle for small deltas with zero and close to zero
conflicts. We decided to “stress” the approach in the conducted
experiments and not include deltas with < 20 operations in the
comparison. Each delta sequence in groups 1 and 2 has up to 200
top-level elements while the base model size is 1000 elements. An
experiment group is executed as follows:

(1) Generate a set of model variants according to the group’s
parameter specification. Each model variant set comprises
two variants.

(2) For each variant set, conduct n comparisons. Each compari-
son selects a random evolution step (delta length) from each
variant. The comparison is done using both the SCPA and
EMFCompare. A results file is created.

(3) Collect the results and calculate the measures for analysis.
This includes the correlation coefficient between the number
of conflicts found by the SCPA and EMFCompare, and average
runtimes.

We conduct 22 experiments over three experiment groups. Each
experiment in groups 1 and 2 comprises 20 samples. Each experi-
ment in group 3 comprises 10 samples. We conduct 10 comparisons
per sample. This leads to 200 comparisons per experiment (E_) per
comparison strategy for groups 1 and 2. It leads to 100 comparisons
per experiment (E_) per comparison strategy for group 3.



A Delta-Oracle for Fast Model Merge Conflict Estimation using Sketch-Based Critical Pair Analysis MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 3: Ecore delta metamodel with full ID support used by the GraphGentool

Table 3: Overview of experiment group 2.

Experiment Inherits From Edit Focus
E13 E1 random
E14 E3 random
E15 E1 strict
E16 E3 strict

Table 4: Overview of experiment group 3.

Experiment Inherits From Max Delta Operations
E17 E1 1000
E18 E3 1000
E19 E5 1000
E20 E7 1000
E21 E9 1000
E22 E11 1000

5.5.1 Experiment Group 1. The first group of experiments aims to
evaluate the hypothesis H1 and H2. This group also supports the
discussion of S1. All experiments in this group have the same model
size (1000), edit focus (0.75), and the ratio of nodes and edges (1:2).
We vary the model structure (flat vs. deep), the edit strategy, and
the metamodels (with and without IDs). Flat models are generated
with a low probability that nodes are regions (0.05) and deep models
with a high probability (0.25).

We designed three different edit strategies: balanced, drag-drop,
and crud. These strategies define the probabilities used to choose
the delta operations during the edit simulation in the GraphGentool.
The probabilities are presented in Table 1. We argue that these
strategies represent real-world behavior in model editing. As we
did not find suitable empirical data, we base these assumptions on

our own modeling experiences and observations. The overview of
experiment group 1 is presented in Table 2.

5.5.2 Experiment Group 2. This group of experiments aims to ana-
lyze S2 further. Therefore, we repeat the experiment runs E1 and
E3 from group 1 with different values for the edit focus. We use
E1 and E3 as a base because of the balanced edit strategy and the
more accurate ID variation of the models. The edit focus defines the
probability that the next edit will be made in the same Regionwhere
the previous edit started. E1 and E3 use a focus of 0.75, which we
consider a balanced focus. In this group, we use additional values
of 0.0 (random edits) and 0.9 (strict focus). We do not choose a
strict focus of 1.0, which would lead to very few merge conflicts,
preventing a meaningful comparison. Table 3 shows the experiment
descriptions.

5.5.3 Experiment Group 3. This group of experiments aims to in-
vestigate S3, i.e., the behavior of the accuracy for long delta se-
quences. Therefore, we repeat E1 and E4 with delta sequences up
to 1000 (top-level) deltas. For this group of experiments, we reduce
the sample size to 10, which leads to 100 comparison points per
experiment. Table 4 shows the experiment descriptions.

5.6 Results
This section presents the results of the experiment groups. Table 5
contains the results of all experiments. Values of particular interest
are printed in bold. The following sections discuss the presented
results in detail.

5.6.1 General Observations. The results shown in Table 5 allow
for several observations. First, the correlation coefficient between
the number of conflicts found by the SCPA and EMFCompare is



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kegel et al.

Table 5: Experiment results of all groups. The C values show the correlation coefficient. The T values show the runtime in
milliseconds. Values in brackets show the standard deviation in milliseconds.

Experiment C Graph/𝛿 C Graph/𝛿 (> 0) C 𝛿/Length T Setup Graph T Compare Graph T Setup 𝛿 T Compare 𝛿
E1 0.917 0.912 0.367 254 (24) 125 (19) 167 (13) 14 (1)
E2 0.773 0.773 0.461 174 (3) 2460 (438) 158 (3) 14 (1)
E3 0.857 0.831 0.425 164 (16) 116 (15) 163 (11) 14 (1)
E4 0.550 0.550 0.545 177 (3) 1536 (533) 158 (3) 14 (1)
E5 0.879 0.869 0.635 147 (18) 120 (16) 166 (13) 15 (1)
E6 0.236 0.236 0.115 174 (3) 1840 (399) 160 (3) 16 (1)
E7 0.865 0.858 0.722 267 (18) 126 (18) 169 (12) 15 (1)
E8 0.537 0.537 0.424 176 (3) 2407 (392) 161 (3) 16 (1)
E9 0.918 0.914 0.457 246 (20) 127 (19) 165 (12) 14 (1)
E10 0.641 0.641 0.512 173 (4) 2183 (376) 158 (3) 14 (1)
E11 0.896 0.876 0.464 261 (20) 129 (20) 166 (13) 15 (2)
E12 0.740 0.740 0.566 175 (3) 1414 (483) 158 (3) 15 (1)
E13 0.891 0.881 0.299 235 (6) 109 (9) 155 (3) 13 (1)
E14 0.819 0.805 0.442 253 (8) 109 (10) 155 (3) 13 (1)
E15 0.928 0.921 0.335 236 (8) 106 (9) 155 (3) 13 (1)
E16 0.863 0.803 0.230 256 (9) 104 (9) 155 (3) 13 (1)
E17 0.952 0.952 0.331 240 (9) 146 (12) 168 (4) 29 (7)
E18 0.948 0.948 0.708 153 (8) 147 (16) 169 (3) 29 (7)
E19 0.827 0.827 0.638 221 (10) 152 (11) 172 (5) 34 (8)
E20 0.874 0.874 0.621 230 (12) 153 (14) 174 (6) 36 (9)
E21 0.929 0.929 0.330 219 (6) 147 (12) 167 (4) 29 (7)
E22 0.842 0.842 0.424 219 (10) 157 (13) 168 (4) 31 (8)

generally higher for models with IDs than those without IDs. This
indicates the SCPA’s unsuitability for models and deltas without
IDs. Second, the correlation between SCPA and EMFCompare is
higher than between SCPA and the delta length. This indicates a
clear benefit of SCPA compared to inferring the number of con-
flicts alone from the number of changes. Third, the setup time for
SCPA is just slightly lower than the setup time for the full model
comparison. This indicates that keeping the models in memory
instead of loading them for each comparison leads to a runtime
benefit for both approaches. Fourth, the compare time for SCPA is
lower by a magnitude compared to the full model comparison via
EMFCompare. Consequently, we accept H2.

Notably, the setup time and compare time of SCPA only depend
on delta size. The setup and comparison time of the full model
depends on the model size. Therefore, the time benefit of SCPA is
necessarily more pronounced for larger models. As this follows per
construction, we did not investigate this in our experiments.

5.6.2 Results Group 1. Group 1 shows an overall high correlation
(> 0.85) between the number of conflicts found by SCPA and EM-
FCompare for models with IDs. For experiments E1 and E9, the
correlation is > 0.9. The correlation is not strongly influenced by
the model parameters (S1), apart from the existence of IDs. A slight
decrease in correlation is observed for the cases using the drag-
drop edit strategy. Moving an element leads to many effects on the
surroundings (context) of this element. SCPA’s sketch construc-
tion loses this contextual information. This may lead to a higher
number of inaccuracies. Fig. 4 shows the scatterplot of experiment
E5. It shows an increase in variance with the number of conflicts.

Figure 4: Scatterplot experiment E5.

However, no extreme outliers are visible apart from this range of
insecurity.

We accept H1 as E1 and E9 show a correlation > 0.9. Although
E3, E5, and E7 only show a correlation > 0.85 we assess this as still
strong considering the intentionally large deltas.

5.6.3 Results Group 2. The results of group 2 show no clear evi-
dence of whether the edit focus (random vs. local edits) influences



A Delta-Oracle for Fast Model Merge Conflict Estimation using Sketch-Based Critical Pair Analysis MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 5: Scatterplot experiment E18.

the accuracy of the SCPA (S2). As visible in the raw data, the num-
ber of conflicts is lower for the strict focus. This provides weak
evidence that the number of conflicts has a lower impact on SCPA
than the size of the delta.

5.6.4 Results Group 3. The results show that SCPA’s accuracy re-
mains high for the investigated large delta sequences (S3). Fig. 5
shows the scatterplot of experiment E18. The scattering of the com-
parison points remains surprisingly low, even for larger conflict
counts. We explain this by the fact that SCPA’s inaccuracy is not
random but systematically depends on the delta. The graph com-
parison time is close to the other experiments, as the graph size
was unchanged. Although the average delta size is five times larger
than in the other experiments, the SCPA comparison time increased
only by a factor of two. We explain this the following: first, the
quadratic factor of SCPA’s time complexity considers the worst
case; second, the quadratic factor’s impact becomes only significant
for delta sizes that are even larger than the analyzed ones. However,
we preliminarily excluded this case from our problem space.

5.7 Summary
The experiments show that SCPA is a suitable oracle algorithm
within the scope of our problem space. SCPA’s conflict estima-
tions strongly correlate with the conflict count found by full model
comparison using EMFCompare for models with uniquely identi-
fied model elements. Furthermore, SCPA’s runtime is significantly
faster than the full model comparison for the investigated cases.
From this, we infer the feasibility of the proposed hybrid merge
conflict estimation approach. In summary, the evaluations support
our answers to research questions 1.1 and 1.2.

5.8 Threats to Validity
The first threat is the possibility of systematic errors in the exper-
iment environment. We conducted the experiments on a freshly
set-up Ubuntu system. No memory- or CPU-intensive tasks were

running in parallel. The machine ran below 20% CPU and 5% mem-
ory load while executing the experiments. Repetitions of the ex-
periments on the same machine showed only minimal runtime
deviations. Repetitions on a slower machine led to slower com-
parison times. The correlation coefficients showed only minimal
deviations. Consequently, we assess the influence of the experiment
environment as negligible

The second threat is the possibility of systematic errors in the
experiment automation and tooling. The experiment relies on data
generated by the GraphGentool and a fully automated comparison
pipeline. Therefore, the generator or experiment code may contain
bugs, leading to wrong results. A test suite covers critical parts of
the GraphGentool. Samples of the generated data and comparison
results were manually reviewed. Overall, the experiment results are
plausible, and no inexplicable behavior was observed. We provide
the full code of the model generator and experiment as a reproduc-
tion package for evaluation and use by other researchers.

The third threat is the bias from analyzing only two graph- and
delta metamodels. The presented results are obtained using a sin-
gle metamodel and delta language (with and without IDs). We
countered this threat by varying the model properties and edit-
ing behavior in the experiments. Furthermore, we argue that the
metamodel of a hierarchical graph used represents a wide range of
practical metamodels. However, we cannot generally state that the
results are transferable to other metamodels and delta languages.
Therefore, further research is required.

5.9 Verifiability
We provide a reproduction package containing copies of the soft-
ware tools used, the experiment scripts, and the documentation in
[16]. As parts of the experiment rely on indeterministic sampling,
the reproduction runs’ results may vary slightly from the presented
results. During multiple repetitions, we observed no deviations
invalidating the drawn conclusions.

6 RELATEDWORK
There is considerable related work which we discuss in this section.

Apel et al. [2] present an approach to cope with the shortcom-
ings of text-based conflict resolution in version control systems. For
example, ordering conflicts not handled automatically by a textual
difference detector and merger can be resolved by a structured
merger. Apel et al. [1] optimize the said approach with auto-tuning.
Cavalcanti et al. [4] assess how semi-structured merge strategies
relate to fully structured merging regarding accuracy and perfor-
mance.

Kolovos et al. [18] present a survey of approaches for model
differencing. They report about common steps in the differencing
process. Usually, differences must be calculated, represented, and
visualized. Besides matching based on the signature, i.e., the fea-
tures of a model element, there are similarity-based approaches,
approaches that take the semantics of a model into account, and
identifier-based matching. It is stated that there is no single optimal
solution to solve the problem of model matching and that trade-offs
are required.

Dig et al. [11] improve syntactical differencing and merging
by assigning unique identifiers to parse tree elements. Text-based



MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kegel et al.

difference comparators track source code entities by their name.
Extensive refactoring operations like renaming can result in version
control systems being unable to track changes correctly anymore.
The name-independent identification of source elements enables
semantics-based refactoring, differencing, and merging. Yohannis
[21] presents a change-based conflict detection algorithm based
on Operation Trees. It works by constructing a tree of dependent
change operations and finding conflicts using a traversal algorithm.
The algorithm is used by Herac et al. [15] to realize a collaborative
modeling environment with built-in conflict detection.

Cicchetti et al. [5] describe an approach that automatically de-
rives ametamodel that specifies the structure of differences between
model instances for a given metamodel. Models conforming to this
metamodel specify usual evolution steps like adding, deleting, and
changing model elements.

Barkowsky and Giese [3] propose to detect merge conflicts and
check the well-formedness of model versions by encodingmodels as
graphs with unique identifiers for both nodes and edges, such that
model modifications become graph rewriting. All model versions
are incorporated into a multi-version model encoded as a single
graph, which is used for detecting merge conflicts with a quadratic
algorithm (concerning the size of the multi-version model).

7 CONCLUSION
This work proposes a hybrid approach for estimating merge con-
flicts in collaborative scenarios where response time is crucial. We
propose to combine a slow but accurate full model comparison with
a fast but less accurate conflict estimation algorithm. We concep-
tualize the Sketch-Based Critical Pair Analysis algorithm for fast
conflict estimation. The algorithm drastically simplifies the idea
of change-based conflict detection using operation sketches. The
experimental evaluation shows SCPA’s high accuracy while sig-
nificantly faster than the full model comparison. Therefore, we
conclude the feasibility of the proposed hybrid approach using
SCPA as the oracle algorithm. Future work has to focus on realiz-
ing the hybrid approach in a collaborative modeling environment.
Furthermore, SCPA should be evaluated on larger real-world meta-
models and delta sequences.

ACKNOWLEDGMENTS
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - CRC 1608 - 501798263.

REFERENCES
[1] Sven Apel, Olaf Leßenich, and Christian Lengauer. 2012. Structured merge with

auto-tuning: balancing precision and performance. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering (Essen,
Germany) (ASE ’12). Association for Computing Machinery, New York, NY, USA,
120–129. https://doi.org/10.1145/2351676.2351694

[2] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian
Kästner. 2011. Semistructured merge: rethinking merge in revision control
systems. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Eu-
ropean Conference on Foundations of Software Engineering (Szeged, Hungary)
(ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA, 190–
200. https://doi.org/10.1145/2025113.2025141

[3] Matthias Barkowsky and Holger Giese. 2022. Towards Development with Multi-
version Models: Detecting Merge Conflicts and Checking Well-Formedness. In
Graph Transformation (Lecture Notes in Computer Science), Nicolas Behr and
Daniel Strüber (Eds.). Springer International Publishing, Cham, 118–136. https:
//doi.org/10.1007/978-3-031-09843-7_7

[4] Guilherme Cavalcanti, Paulo Borba, Georg Seibt, and Sven Apel. 2019. The Impact
of Structure on Software Merging: Semistructured Versus Structured Merge. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE Press, San Diego, California, 1002–1013. https://doi.org/10.1109/ASE.
2019.00097

[5] Antonio Cicchetti, Davide Di Ruscio, Alfonso Pierantonio, et al. 2007. A meta-
model independent approach to difference representation. Journal of Object
Technology 6, 9 (2007), 165–185.

[6] Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. 2010. Abstract delta model-
ing. ACM Sigplan Notices 46, 2 (2010), 13–22.

[7] Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing (STOC
’71). Association for Computing Machinery, New York, NY, USA, 151–158. https:
//doi.org/10.1145/800157.805047

[8] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. 2004. A (sub)graph iso-
morphism algorithm for matching large graphs. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 26, 10 (Oct. 2004), 1367–1372. https:
//doi.org/10.1109/TPAMI.2004.75 Conference Name: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.

[9] Julio César Cortés Ríos, Suzanne M. Embury, and Sukru Eraslan. 2022. A unifying
framework for the systematic analysis of Git workflows. Information and Software
Technology 145 (2022), 106811. https://doi.org/10.1016/j.infsof.2021.106811

[10] Colin de la Higuera, Jean-Christophe Janodet, Émilie Samuel, GuillaumeDamiand,
and Christine Solnon. 2013. Polynomial algorithms for open plane graph and
subgraph isomorphisms. Theoretical Computer Science 498 (Aug. 2013), 76–99.
https://doi.org/10.1016/j.tcs.2013.05.026

[11] Danny Dig, Tien N. Nguyen, Kashif Manzoor, and Ralph Johnson. 2006. Mol-
hadoRef: a refactoring-aware software configuration management tool. In Com-
panion to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming
Systems, Languages, and Applications (Portland, Oregon, USA) (OOPSLA ’06).
Association for Computing Machinery, New York, NY, USA, 732–733. https:
//doi.org/10.1145/1176617.1176698

[12] Mário Luís Guimarães and António Rito Silva. 2012. Improving early detection
of software merge conflicts. In 2012 34th International Conference on Software
Engineering (ICSE) (ICSE ’12). IEEE Press, Zurich, Switzerland, 342–352. https:
//doi.org/10.1109/ICSE.2012.6227180

[13] Jan Hendrik Hausmann, Reiko Heckel, and Gabi Taentzer. 2002. Detection
of conflicting functional requirements in a use case-driven approach: a static
analysis technique based on graph transformation. In Proceedings of the 24th
International Conference on Software Engineering (Orlando, Florida) (ICSE ’02).
Association for Computing Machinery, New York, NY, USA, 105–115. https:
//doi.org/10.1145/581339.581355

[14] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. 2002. Confluence
of Typed Attributed Graph Transformation Systems. In Graph Transformation
(ICGT 2002) (Lecture Notes in Computer Science), Andrea Corradini, Hartmut Ehrig,
Hans Jörg Kreowski, and Grzegorz Rozenberg (Eds.). Springer, Berlin, Heidelberg,
161–176. https://doi.org/10.1007/3-540-45832-8_14

[15] Edvin Herac, Wesley K. G. Assunção, Luciano Marchezan, Rainer Haas, and
Alexander Egyed. 2023. A flexible operation-based infrastructure for collaborative
model-driven engineering. Journal of Object Technology 22, 2 (July 2023), 2:1–
14. https://doi.org/10.5381/jot.2023.22.2.a5 The 19th European Conference on
Modelling Foundations and Applications (ECMFA 2023).

[16] Karl Kegel. 2024. SCPA Evaluation Reproduction Package. https://doi.org/10.
5281/zenodo.12734989

[17] Karl Kegel, Sebastian Götz, Ronny Marx, and Uwe Aßmann. 2024. A Variance-
Based Drift Metric for Inconsistency Estimation in Model Variant Sets. Journal of
Object Technology 23, 3 (July 2024), 1–14. https://doi.org/10.5381/jot.2024.23.3.a2
The 20th European Conference on Modelling Foundations and Applications
(ECMFA 2024).

[18] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard F.
Paige. 2009. Different models for model matching: An analysis of approaches to
support model differencing. In 2009 ICSE Workshop on Comparison and Versioning
of Software Models (CVSM ’09). IEEE Computer Society, USA, 1–6. https://doi.
org/10.1109/CVSM.2009.5071714

[19] Tom Mens, Gabriele Taentzer, and Olga Runge. 2005. Detecting Structural Refac-
toring Conflicts Using Critical Pair Analysis. Electronic Notes in Theoretical Com-
puter Science 127, 3 (2005), 113–128. https://doi.org/10.1016/j.entcs.2004.08.038
Proceedings of the Workshop on Software Evolution through Transformations:
Model-based vs. Implementation-level Solutions (SETra 2004).

[20] Christopher Pietsch, Udo Kelter, Timo Kehrer, and Christoph Seidl. 2019. For-
mal Foundations for Analyzing and Refactoring Delta-Oriented Model-Based
Software Product Lines. In Proceedings of the 23rd International Systems and
Software Product Line Conference - Volume A (Paris, France) (SPLC ’19). As-
sociation for Computing Machinery, New York, NY, USA, 207–217. https:
//doi.org/10.1145/3336294.3336299

[21] Alfa Yohannis. 2020. Change-Based Model Differencing and Conflict Detection.
Ph. D. Dissertation. University of York.

https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1007/978-3-031-09843-7_7
https://doi.org/10.1007/978-3-031-09843-7_7
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1016/j.infsof.2021.106811
https://doi.org/10.1016/j.tcs.2013.05.026
https://doi.org/10.1145/1176617.1176698
https://doi.org/10.1145/1176617.1176698
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1145/581339.581355
https://doi.org/10.1145/581339.581355
https://doi.org/10.1007/3-540-45832-8_14
https://doi.org/10.5381/jot.2023.22.2.a5
https://doi.org/10.5281/zenodo.12734989
https://doi.org/10.5281/zenodo.12734989
https://doi.org/10.5381/jot.2024.23.3.a2
https://doi.org/10.1109/CVSM.2009.5071714
https://doi.org/10.1109/CVSM.2009.5071714
https://doi.org/10.1016/j.entcs.2004.08.038
https://doi.org/10.1145/3336294.3336299
https://doi.org/10.1145/3336294.3336299

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Approach
	1.4 Method

	2 Foundations
	3 Hybrid Conflict Measurement
	4 Critical Pair Analysis with Delta Sketches
	5 Evaluation
	5.1 Objectives
	5.2 Method
	5.3 Tooling: GraphGentool
	5.4 Tooling: Model Comparison Workbench
	5.5 Experiment Design
	5.6 Results
	5.7 Summary
	5.8 Threats to Validity
	5.9 Verifiability

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

