Observable Semantics for Characterising
Consistency Between Heterogeneous Models

Henriette Farber! ®)®, Romain Pascuall»?

Terru Stiibinger!®, and Mattias Ulbrich!

! Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{henriette.faerber, stuebinger, ulbrich}@kit.edu
2 MICS, CentraleSupélec, Université Paris-Saclay, Saclay, France
romain.pascual@centralesupelec.fr

Abstract. The design of complex cyber-physical systems increasingly
relies on heterogeneous, multi-domain models, each capturing different
system aspects. As these models evolve independently, inconsistencies
may arise. Such inconsistencies remain difficult to detect due to gaps
between the modelling domains. We propose to bridge this gap by intro-
ducing a formal notion of observables, inspired by physics, as measurable
system properties, such that every model can constrain the possible val-
ues of an observable. We define a semantic framework where observables
induce consistency relations and show that any such relation can be
expressed using suitable observable semantics. To capture realistic engi-
neering scenarios, we extend the framework with meta-model spanning
and compound observable semantics, enabling the modular construction
of complex constraints. We also provide encodings of these observable se-
mantics back into the original framework, preserving the original results
and showing that extensions remain expressively equivalent to initial
ones. Finally, we discuss some practical implications of our framework,
namely how observables can support cross-domain communication, sep-
aration of concerns, and extensibility, allowing consistency requirements
to evolve as part of the modelling process.

Keywords: Model-driven development - Model consistency - Observ-
able Semantics - Formal foundations - Cyber-physical systems

1 Introduction

The design of modern cyber-physical systems (CPS), such as smart grids or au-
tonomous vehicles, requires integrating diverse domain knowledge from mecha-
tronics, system engineering, and computer science, each with distinct methodolo-
gies and modelling principles [18]. Their increasing complexity demands scalable
methods for managing this heterogeneity throughout the development process.

Model-driven development (MDD) [2,13] divides system descriptions into
purpose-oriented abstractions called models [25, p. 131-133]. This modularisa-
tion enables engineers from different domains to work independently. However,
models may overlap in their descriptions, leading to contradictions that hinder

https://orcid.org/0009-0007-7626-7667
https://orcid.org/0000-0003-1282-1933
https://orcid.org/0009-0006-7411-2533
https://orcid.org/0000-0002-2350-1831

2 H. Farber et al.

system realisation. Consistency management [19,24] addresses the challenge of
preserving consistency between interdependent models as they evolve.

This challenge is amplified when overlapping models are defined using het-
erogeneous formalisms. For example, consider two models of an electric vehicle
(EV): one defines the geometry of the wheelbase, while the other is a simulation
of the steering behaviour. Both depend on the front-to-rear axle distance, yet
this information may be encoded differently or remain implicit. Besides, domain-
specific modelling languages (DSMLs) use distinct syntactic and semantic con-
ventions, and encode implicit assumptions. As a result, establishing consistency
at the syntactic level becomes impractical, requiring complex coupling mech-
anisms or a shared formal representation, both of which demand considerable
effort and cross-domain expertise.

We propose a shift in perspective and define consistency semantically via the
system properties that models constrain rather than syntactic correspondences.
Such constraints restrict possible realisations of the system, narrowing the set
of admissible implementations. We embody this idea by introducing observables,
inspired by physics, where observables are measurable quantities such as energy
or temperature. The semantic abstraction of observables facilitates reasoning
about model consistency across differing formalisms and creates a shared in-
terdisciplinary cognitive space for domain experts [15]. Formally, let P be the
(hypothetical) set of all possible system realisations. An observable is a function
o: P — V,, where V, is the value space. Each model m restricts admissible
realisations and, by extension, the set of admissible values o(m) C V. In the EV
example, both the geometry and simulation models constrain the axle distance.
Any observable o naturally induces a consistency criterion: a set of models is
consistent if there exists some common v € V, in their observable values.

Rather than a universal semantic abstraction to cover all aspects of a CPS,
which is both unrealistic and impractical, we propose maintaining a collection of
observables, each focusing on a distinct property. The advantages are threefold:
(1) Separation of concerns: Observables can be defined and reasoned about inde-
pendently by domain experts. (2) Traceability: Inconsistencies can be linked to
the observable(s) they violate. (3) Extensibility: New observables can be added
when previously unknown dependencies are found during the design process.

Contributions We present observables as a novel, flexible formal framework for
consistency management in MDD. Observables induce abstract semantics over
models, supporting engineers in both informal and formal consistency assess-
ments, and may serve as guidelines for tooling. Building on the formal frame-
work of Pascual et al. [20] describing consistency in MDD, we demonstrate how
observables unify semantic aspects across heterogeneous models. The main con-
tributions of this paper are:

(1) A formal definition of observable semantics as abstract semantics in the sense
of [20] (Sect. 4).

(2) A completeness result showing that any consistency relation between models
can be related to an observable (Prop. 2).

Observable Semantics for Consistency Between Heterogeneous Models 3

(3) Two extensions for constructing observable semantics over multiple models
and over other observables (Sect. 5).

(4) A reduction from the extended constructions back to the base framework,
ensuring the already proven properties (Sect. 5.5).

(5) A qualitative validation discussing the potential of observables in engineering
workflows (Sect. 6).

2 Related Work

Consistency management for heterogeneous models has been extensively stud-
ied in MDD. Fradet et al. [10] proposed a formal framework for UML-like di-
agrams with explicit constraints and decision procedures to ensure structural
consistency. Knapp and Mossakowski [17] surveyed consistency in UML/OCL,
identifying structural constraints, transformation rules, and distributed semantic
models as dominant strategies. Stiinkel et al. [26] developed a unifying graph-
based framework for consistency management in evolving multi-model systems,
leveraging inter-model correspondences and constraint propagation.

Several works investigate semantic approaches to inter-model consistency.
Chen et al. [6,7] introduce semantic anchoring, a mapping from the abstract
syntax of DSMLs to the abstract syntax of semantic units, e.g., abstract state
machines (ASMs) [12] or even another DSML [5]. While semantic units are com-
positional [8], they encode executable behavioural semantics, which limits their
general applicability for broader consistency analysis. Other approaches use on-
tologies as the shared semantic space [9,21], translating and merging models
into a single ontology. In these cases, the expressiveness for defining consistency
is inherently constrained by the underlying ontology language. For example,
Perin and Wouters [21] extend the OWL language to capture behavioural as-
pects, while Dibowski and Massa [9] tailor their approach to smart building
design. Finally, some approaches exploit mathematical constructions as a shared
semantic foundation. For instance, Gronniger et al. [11] uses the system model
from Rumpe [22], a characterisation of object-oriented systems as mathematical
theories, to provide the semantics of associated DSMLs, while Calegari et al. [4]
use the theory of institutions to provide abstract model semantics. However,
their focus is on translation and equivalence of models, rather than inter-model
consistency as we pursue here.

A shared limitation in these approaches is that they rely on meta-level arte-
facts — such as syntactic correspondences, traceability links, or propagation rules
— to define consistency. Such artefacts are often complex to define and maintain,
especially as models evolve independently. In contrast, our approach investigates
the shared system properties — observables — that models semantically constrain,
inspired by observational semantics and indistinguishability under observation in
algebra and coalgebra [14,23]. Our notion of observables connects to view-based
modelling, where dependencies and overlap across model views are analysed se-
mantically [17]. The significant difference is that observables allow disregarding
the internal structure of models (and meta-models), focusing on the constrained
aspects of the systems.

4 H. Farber et al.

3 Background & Context

Before formally introducing observables in Sect. 4, we briefly summarise the
formal framework on which our definitions are based. Our work builds on the
VITRUVIUS approach [16], a model-driven representation technique for heteroge-
neous systems, and the formalisation of model consistency by Pascual et al. [20].
We refer the reader to the original sources for a more comprehensive discussion.

Notation 1 Given a set I and an I-indexed family (X;)icr of sets, we write
[Lic; Xi or simply [[; X; for the Cartesian product of the sets (X;)ier, which
consists of tuples (x;);cr where for every i € I, x; € X;. When the context is
clear, we write xy, or simply x, for a tuple (x;);cr and access its i-th coordinate
as ;. Similarly, we write (\; X; for the intersection of all the sets (X;)icr.

3.1 The V-SUM Approach

The VITRUVIUS approach by Klare et al. [16] relies on the concept of virtual
single underlying models (V-SUMs). Such models externally behave like a single
model but internally rely on a collection (m;);c; of models. Each model belongs
to its own meta-model M;, such that we obtain a notion of V-SUM meta-models
(V-SUMM), the meta-models for the V-SUMs. However, to ensure that a V-
SUM behaves like a single model from the outside, the inside models must be
kept consistent. As such, a V-SUMM also contains a description of a V-SUM’s
consistency. As our work does not depend on how meta-models specify models,
we can follow the framework of Pascual et al. [20] and consider a meta-model
as a set of admissible models with a V-SUMM then consisting of a collection of
meta-models and a consistency relation.

Definition 1 (V-SUM meta-model — [20, Def. 2]). A V-SUM meta-model
is a pair M = ([[; M;, CR) where each M; is a meta-model (which we will
treat as the set of models conforming to the meta-model) and CR C [[; M; is a
consistency relation.

3.2 Running Example

Consider a simplified description of an electric vehicle (EV) as a motivating
example. An EV comprises several components — such as the vehicle body, engine,
and battery — mounted on the EV’s chassis. This chassis contains a suspension
system, which connects the wheels to the chassis and is responsible for, e.g.,
absorbing shocks while driving. As such, the suspension system imposes an upper
bound on the overall admissible EV weight wy.x € R4. The EV is described by
four models.

— A motion model mpyoy € Mot that captures the electrical components re-
sponsible for propulsion, including the battery and engine.

— A CAD model mgeo, € Mgeo that describes the vehicle body’s geometry: its
shape and structure.

Observable Semantics for Consistency Between Heterogeneous Models 5

— A materials model mpa € Mpya that defines the mechanical properties of
the materials used in the vehicle body, such as their density.

— A chassis model me, € M., that encodes suspension characteristics and
specifies a maximum admissible weight wyax € Ry.

The total weight must not exceed wpax to ensure a valid EV configuration.
It consists of the weight of the motion subsystem (from my,e;) and the body
(computed as volume from mge, multiplied by density from mmas). For simplicity,
we treat the body as a single aggregated component.

3.3 Heterogeneous Model Consistency

We consider models m; € M;, indexed by a finite set I, where each M; is a meta-
model. We write [[M = []; M; for the product of these meta-models. From a
consistency relation CR C [[M, we define equiconsistency, grouping models that
behave identically with respect to consistency:

Definition 2 (Equiconsistency — [20]). Equiconsistencies are the relations
NZCR C M;xM; given by m, NZCR my < CRw(ma) = Csz(mb), where

CRVi(V) = {(m_])]#l € HMJ | CR(mh sy Myg—1, VMg 1, - - amn)} .
J#i
To reason about consistency semantically, Pascual et al. [20] introduced ab-
stract semantics, which map models to a semantic domain.

Definition 3 (Abstract Semantics — [20, Def. 7]). An abstract semantics
is a mapping [-]: M — S from a meta-model M to a semantic space S.

Quotienting by the kernel of such a semantics (m = m’ iff [m] = [m’]) yields
a canonical semantic space M /= isomorphic to the image of [-]. Since equivalence
relations form a complete lattice, the space of abstract semantics also forms a
lattice LM | allowing comparison and refinement. Abstract semantics also enable
the definition of semantic consistency relations which can be lifted back into the

modelling space:

Definition 4 (Semantic Consistency Relation — [20]). Given abstract se-
mantics [-];: M; — S;, a semantic consistency relation is a relation SCR C
[1; Si; andm; € M; are (semantically) consistent if and only if SCR(([mi]:)icr).

Definition 5 (Semantics-Induced Consistency — [20]). A semantic con-

sistency relation SCR C], S; yields a semantics-induced consistency relation
CRscr such that CRscr(my) <= SCR(([m]i)icr)-

Thus, a semantic consistency relation should agree with the given CR, and
abstract semantics are deemed compatible with CR if it induces CR from a se-
mantic consistency relation. Among all such semantics, the natural semantics
form the least informative compatible abstraction, capturing exactly the infor-
mation required to decide consistency.

6 H. Farber et al.

Definition 6 (Compatibility — [20, Def. 8]). Given a V-SUM meta-model
M = ([[M, CR), a family of abstract semantics [-];: M; — S; is compatible
with CR if and only if there exists SCR C [[; S; such that CRgcr = CR.

Definition 7 (Natural Semantics — [20, Def. 9]). The semantics [-]3**:
M; — Mi/NiCR are called the natural semantics for CR.

Pascual et al. [20] proved that families of semantics ([-];);cr where each [-];
is an element of the quotient sublattice £ /[-]#3t are compatible with CR. The
result can actually be strengthened.

Theorem 1 (Lattice of Compatible Semantics — compare [20, Prop. 2]).
The semantics of (LM /[-]8*)ier are the compatible semantics.

sem

Proof. From [20, Prop. 2|, it remains to show that any family of semantics com-
patible with CR is composed of elements of the quotient sublattices £ /[-]nat.
It suffices to prove that for every i € I, =; C ~“F where =; is the kernel of [-];.

Let mo =; myp. Then, [mq]; = [ms]i- By compatibility CR = CRgcr for
some SCR. Thus, for m € [[M, CR(m) <= CRgcr(m) <= SCR([m]).
Then CRY*(m,) is the set

{m)s € T | SCR(Imilh, - Tmicaica, Il Imnasalisn, - Il } -
J#

Now, since [ma]; = [my];; CRY (ma) = CRY'(my) and then mg ~E% my,.

4 Simple Observable Semantics

While it might be insightful to view observables as mappings o: P — V,, we
will not further consider the set P of hypothetical systems and assume a set O
of predefined observables about the system and, for each observable o € O, a
domain of possible values V.

Definition 8 (Observable semantics). An observable o € O yields an I-
indezed family of observable semantics given by functions o;: M; — P(V,).

Intuitively, the observable semantics of a model m w.r.t. o € O is the set of
values o may take for any system adhering to m. Since models typically permit
multiple implementations, this semantics is set-valued.

Ezample 1. Consider the EV from Sect. 3.2. The total vehicle weight can be en-
coded with an observable w'°*® with value domain Vo1 = Ry. Let wtotal
be an observable for total vehicle weight, with value domain Vota = Ry.
The motion model my,; defines a lower bound [€ R, on the weight, hence
wot (myor) = [I,00). As the model imposes no upper bound, all higher weights

are allowed. Note that all observable semantics share the same codomain #(V},),
ensuring comparability across components.

Observable Semantics for Consistency Between Heterogeneous Models 7

4.1 Observational Consistency

Observables can serve as a proxy for a notion of “joint realisability” that engineers
usually refer to when saying that the system can be built [3]. As discussed in [20],
model consistency expresses the idea that a collection of models jointly describes
at least one plausible system. We capture this idea using observable-induced
consistency.

Definition 9 (Observable-induced consistency). Any observable o € O
induces a consistency relation CR, = {my € [[M | N; 0;(m;) # 0}.

Thus, each observable o € O yields an observational V-SUM meta-model
M = (M, CR,).

Ezample 2. Let us consider the models Mumot, Mgeo, Mmat, Men from Sect. 3.2
and the observable w't! from Ex. 1. Let I € R, be the lower bound for total
vehicle weight imposed by my0t. We can further assume that me, specifies an
upper bound wmax € R4, while mge, and mmaterials place, on their own, no
constraint. Then, the intersection of observable values is [I, Wax], and the models
are consistent if and only if | < wyax.

Proposition 1. For any o € O, the semantics (0;);c; are compatible with CR,.

Proof. Consider the semantic consistency relation SCR, := {(s;)icr € [[; Z(Vs) |
N, si # 0}. Then, for any m; € [[M,

my € CR, <= ()oi(m;) # 0 <= (0;(m;))icr € SCR, .
I

More abstractly, this result holds because observable semantics are specific
instances of abstract semantics, and SCR, is the associated semantical consis-
tency relation in the sense of [20], enforcing non-empty intersection.

4.2 Consistency-Induced Observables

Having made the connection from observables to consistency, the natural ques-
tion is to explore the reverse connection: Can consistency be encoded via an
observable? Since observable semantics are a special kind of abstract semantics,
the question boils down to seeing whether their construction suffices to encode
consistency.

Notation 2 For a model m; € M;, we write p; (3 for {m;} x Hj?éi M;.

Definition 10 (Consistency-induced observable). Let M = ([[M, CR) be
a V-SUM meta-model. The family of abstract semantics

(O[CR]Z'Z M; — Q(HM) ; my — CR ﬂpi’{mi})

el

defines the consistency-induced observable o[CR].

8 H. Farber et al.

Proposition 2. For any V-SUM meta-model ([[M, CR), CR,cr = CR.
Proof. Let my € [[M be a tuple of models.

my € CRojcr) <= CRN(\Pifm,y #0 < mr€ CR .
I

A careful reader will have noticed that for any m; € M;, CRVi(mZ-) is iso-
morphic to o[CR];(m;). The two functions induce the same equivalence kernel:
mq ~C% my, <= 0[CR];(ma) = o[CR]i(my) <= CRY(mg) = CRY(my).
Prop. 2 shows that any arbitrary consistency relation CR can be encoded by
a single observable. However, this consistency-induced observable o[CR] is gen-
erally not appropriate to be used in practice (nor is CRVi) as the codomain
P(]IM) reflects full system descriptions and lacks intuitive, domain-relevant
interpretation. Instead, it would be preferable to construct CR using observ-
ables, each capturing one relevant aspect of the system, motivating methods to
combine observables, explored in the next section.

5 Beyond Simple Observables Semantics

Observables enable reasoning about consistency in terms of concrete, i.e., observ-
able, values. However, although logically expressive, the framework developed so
far — which we refer to as simple observable semantics — lacks the means to
capture some additional constraints naturally. Consider, for instance, the re-
quirement in Sect. 3.2 in which the chassis model m., imposes a threshold wax
on the total weight of the EV. Ideally, we want to add the EV’s total weight as
an observable. However, we currently cannot describe that the total weight value
should be the sum of the subsystems’ weight values (available from the models
mgeo; Mmat and mmot)-

This section extends the notion of observable semantics to support such com-
posite requirements. We proceed in two steps. First, we introduce meta-model
spanning observable semantics, which allows observable values to depend on in-
formation from models defined over distinct meta-models. Second, we define an
algebraic construction on observables to create compound observables. We also
provide an encoding of the associated observable semantics back into the original
framework, ensuring that all previous results remain valid.

5.1 Limitations of Tuple-Based Encoding

Ezxample 3. A natural starting point towards describing the total vehicle weight
is to define separate observables for the weight contributions of each subsystem,
namely the weight of the electrical components, the body volume, and the ma-
terial density. We denote these by 0™°t, 08%°, and 0™, respectively. Formally,
each of these observables has semantics defined by:

o50m;) {{US} T 1)

Observable Semantics for Consistency Between Heterogeneous Models 9

where s € {geo, mat,mot} and vy denotes the concrete values extracted from
model mg. Each observable thus yields a singleton set {v;} for its corresponding
model but remains unconstrained by the other models.

While this encoding allows reasoning about individual values, simple observ-
ables are inherently local and inadequate for aggregated constraints that span
multiple models. There is no way to state that the total weight must remain
below a threshold, as it remains unconstrained in every single model.

Ezxample 4. One might attempt to encode the desired constraint with a single
observable o reflecting relevant intermediate quantities (e.g., volume, density,
and component weights) and check a constraint on their combination:

Ogeo(Mgeo) = {(Vgeo, b, ¢,d) | b,c,d € Ry}
Omat (Mmat) = {(@, Vmat, ¢, d) | a,c,d € Ry}
Omot (Mmot) = {(a, b, Umot, d) | a,b,d € Ry}
och(men) = {(a,b, ¢, Wmax) | a,b,c € Ry a-b+ ¢ < Wimax }

The family of abstract semantics of o aggregates values from the four models
(note that ogeo is the observable semantics o gives to mgeo, whereas 08°° in Ex. 3
is a wholly separate observable): the geometry model mge, provides the body vol-
ume value vge0, the materials model mp,¢ provides the body density value vpa¢,
the motion model my,.t provides the weight value of motion-related components
Umot, and the chassis model m, provides the maximum admissible weight value
Wmax- Lhe constraint ensuring that the total weight does not exceed wm,ax is en-
coded in the value set of m.,. Note that the tuple-valued observable semantics
are obtained for the first three models by lifting the respective observable seman-
tics from Ex. 3 to encompass all components. Formally, o,(m) = []; o%(ms).

While this approach can represent the desired constraint and may support
formal developments (cf. Sect. 5.5), it presents conceptual limitations from a
modelling perspective. First, the observable values — tuples of real numbers —
diverge from the intuitive notion of observables as directly accessible or measur-
able quantities: these tuples are not derivable from the system and are not likely
to reflect artefacts that engineers would explicitly annotate or reason about.
Second, the constraint (i.e., that the combined weight may not exceed a thresh-
old) is embedded within the observable. This embedding blurs the line between
modelling and consistency checking. Instead of providing an observable quantity,
the observable encodes a decision procedure answering whether a configuration
is acceptable. To address these issues, we introduce the notion of meta-model
spanning (MMS) observable semantics, which constrains the value set from mul-
tiple models. We introduce compound observables as a constructive way to build
such semantics, e.g., building a single observable wiota from the three intuitive
observables 08°°, o™ and o™°t.

5.2 Meta-model Spanning Observable Semantics

Since observables are defined via a set of domain values from which we derive
the observable semantics, we can generalise observable semantics to collections

10 H. Farber et al.

of meta-models. Given an observable o € O, we define a family of semantics

(oJ: 1M —>,@(Vo)) . 2)

JCI
jeJ =

Without further conditions, the value of o for M; might conflict with its value
for J[;c; M; where i € J. To prevent such a conflict, we require the following
coherence condition: for all J C I and all K C J, the values computed from
oy must be included in those obtained by projecting and evaluating via og.
Formally, let 7k be the projection []; M; — []; M, then

oy C ﬂOKOﬂ'J,K . (3)
KCJ
Definition 11 (MMS observable semantics). An observable o € O yields
a family of meta-model spanning (MMS) observable semantics as in eq. (2) if
the family satisfies the coherence condition of eq. (3).

The coherence condition on MMS observable semantics mimics Def. 9, ensur-
ing that combining models can only restrict observable values. Additional values
may only arise when disentangling meta-models.

Observation 1 Any observable o € O with a family of observable semantics
(0i: My = P (Vy))ier, yields a family of MMS observable semantics defined as

oy: HMj — P(V,); my— ﬂ oj(m;) .
JjeJ jeJ
Thus we can also treat a family of simple observable semantics for o as
if it were a MMS observable, and write oy for it. Then, the observable-induced
consistency from Def. 9 can be refined and defined both for observables semantics
and MSS observables semantics as

CRO = {mI S HM | oj(mj) 75 @} .

Also note that for i € I, o;3 = 0;, while the notion is ill-defined on the empty
set, such that we always consider non-empty subsets of I.

Example 5. We aim to construct MMS observable semantics for wt* to de-
scribe total vehicle weight. For s € {geo, mat, mot}, w'*!(my) = [vs,00). The
observable semantics for the collection of these three meta-models is

total
w{geognat,mot}(mgem Mmat, mmot) = {Umat * Ugeo T vmot} .

In conjunction with w2 (me,) = [0, Wmax], we can deduce that for a tuple of

models m = (mgeoa Mmat, Mmot, mch):

wtotal (m) o {Umat * Ugeo + vbat} if Umat * Ugeo + Ubat < Wmax
t t,ch - .
{geo,mat,mot,ch} @ 0therw1se

Hence, CR, w0t contains the tuples of models such that the total weight is at
most wmax, which accurately represents the requirement on vehicle weight.

Observable Semantics for Consistency Between Heterogeneous Models 11

Ex. 5 illustrates how defining observable semantics at various levels of the
products of meta-models allows precise encoding of cross-model constraints, such
as a system-wide weight threshold. It also shows that we need a solution to
construct said observable semantics.

5.3 Compound Observables

We often need observables that are not atomic but derived from others through
computations to describe and compare system properties. For this, we introduce
compound observables, built by composing existing observables with functions
from a given algebra. Compound observables provide a structured way to express
computations and constraints that involve multiple aspects of the system, such
as computing total weight from individual component weights.

Let X = (S, F') be a multi-sorted signature, where S is a set of sorts and F'is a
set of function symbols. Each function symbol o € F has a profile (s1, ..., sk, s) €
S+, allowing to write o : []; -, si — s and say o has arity k. We fix a X-algebra
A that provides a concrete interpretation for these symbols. It consists of a
carrier set [s] 4 for each sort s € S and an operation [o] 4: [[;<;<x[s:]a — [s]a
for each o : [[;.;<p 5i = sin F. S

As an algebra allows interpreting the symbols, we can construct observable
semantics via structured application of the operations from the algebra: we apply
the operations of A pointwise on the models. For this, we first have to assume
that A is suitable for O, that is, for each observable o € O, there is a sort s € S
such that V, = [s] 4. Given observables (0*).cx, the pointwise application of a
function o : [[5 sp — s is defined as follows:

Definition 12 (Pointwise Lifted Interpretation). Let o : [[, sp — s be
a function symbol in F and (0*)rex be observables with value sets ([si]4)rex -
Then for each i € I, the pointwise lifted interpretation o®[0%]; of ¢ on (0*)rex
for M; is defined as

o*0%]s(m:) = {[o)a(oxc) | vic € [ok (i)} -
K

Proof (Well-definedness). Assuming that each observable o* admits an I-indexed
family of observable semantics, then of (m;) C [si] .4, meaning that [o]4(vk) is
a well-defined computation.

Ezample 6. Let o be interpreted as a multiplication function in the algebra.
Suppose that 0%%° and o™ provide the vehicle body’s volume and material
mass values. Then o®(08°°, 0™2%) represents the weight of the vehicle body.

The pointwise interpretation computes one expression per observable tuple.
Compound observables generalise this idea by allowing multiple expressions to
be evaluated from different subsets of observables, such that all evaluations yield
consistent results. We can now compute a derived quantity and ensure it satisfies
a condition expressed elsewhere.

12 H. Farber et al.

Definition 13 (Compound Observable). Let (0")rcx be observables with
value sets ([sk]a)kek - A finite set C of index sets ¢ C K together with a function
symbol o : [[,c. 80 — s in F' for each ¢ € C defines the compound observable

og[0] with observable semantics o&[o™] [Tjes M; — P([s]a) given by
08[0"]s(my) = [oslo]s(my) . (4)
ceC

As simple observables are used in this construction, we use the derived MMS
observable semantics from Def. 13. The intersection over C ensures that all in-
volved computations yield the same result, i.e., only values consistent across all
sub-expressions are retained.

Ezample 7. Consider the observables 0™, 08%°, and o™ from Ex. 3 together
with o® providing the total weight limit wya. We aim to derive the total weight
and ensure it stays within the allowed maximum wy,ay. For this, we define a
compound observable using two function symbols:

— Oweight, With interpretation [oweignt].a (v, p,w) = v - p + w used to compute
the total weight;
— id, with interpretation [id] 4(z) = «, used to propagate the weight limit.

We define a compound observable over index sets C = {{geo, mat, mot}, {ch}}
with the corresponding functions o (eeo,mat,mot} = Oweight and ey = id. Writ-
ing gmm = {geo, mat, mot}, the compound observable o8[08°, o™t omot oh]

evaluates as follows:

S ngﬁm(mgmm%

Uémm [Ogeo, Omat’ OmOt] (m) =qVvptw| peE Oglrgfn (mgmm)v = {Ugco'vmat+vmot}

w € ogitn (Megmm)

ey [0™](m) = {v|v € o (me)} = [0, Wnax]

and their intersection yields o2[08, o™2t o™t o] (m) = {v - p+ w} N [0, Winax)-

This observable returns a singleton {w} if and only if the computed total
weight does not exceed wpax, and @ otherwise. In other words, the models are
consistent with the total weight constraint if: v - p + w < wyax, which provides
an observable-level formulation of the semantic requirement.

Compound observables generalize to MMS observable semantics (Def. 11) for
(0")rex - Regardless of the input observable semantics, the following holds:

Proposition 3. The semantics of compound observables are MMS observable
semantics.

Proof. The compound observable o&[0®] maps to subsets of [s] 4, meaning that
it has proper typing and only the coherence condition from eq. (3) needs to be
checked. The condition follows from permuting intersections as the observables
are interpreted using their MMS observable semantics (either directly or in the
form of Ob. 1).

Observable Semantics for Consistency Between Heterogeneous Models 13

5.4 Encoding Requirements in Observable Semantics

A central feature of our observable semantics framework is its flexibility in han-
dling system requirements. Constraints such as “the total weight must not exceed
a threshold” can be captured in different ways.

Requirements via Observable Values (Value Filtering) The most direct way to
encode requirements is by restricting the value set of the observable to those
values meeting the requirement’s constraints. This encoding keeps the constraint
implicit, resulting in a lack of transparency. Due to the hardcoded monolithic
integration, domain-experts engineers cannot easily update the encoding.

Requirement via Compound Observables (Computational Filtering) A require-
ment can also be represented as a compound observable, allowing the constraint
to depend on multiple models. This encoding is also implicit but can be made
explicit using auxiliary expressions for the observable, as shown in Ex. 7. The
compound observable filters outputs based on conditions specified by a model,
allowing domain experts to formalise the validation of global properties; however,
the requirement remains entangled with the observables.

Requirement as First-Class Models (Model-based Filtering) Finally, requirements
can be made first-class citizens of the modelling space making them (part of) a
requirements model within the V-SUM defining the parameters of a condition
(e.g., the weight threshold) and the condition itself. The requirement model thus
provides the syntactic material needed in the X-algebra A, i.e., the function used
to combine observable semantics into compound semantics. Within our frame-
work, this would require a slight adaption of the compound observable definition
to handle observables whose value set contains function symbols and base the
pointwise lifted interpretation on the associated function from A. This approach
modularises the constraint specification and supports better traceability, reuse,
and validation of requirements at the cost of providing a less narrowed space for
domain-specific engineers to work in. Additionally, complex information must be
encoded in the requirement model that should then be carefully edited.

5.5 Meta-model Spanning Observables Are Also Simple

Meta-model spanning observables allow our formalisation to be much closer to
actual engineering practice than an approach based purely on simple observables.
However, what we gain in naturality, we lose in conceptional elegance, and the
proofs of many properties become much more involved. Hence, instead of giving
a direct proof that any semantics-induced consistency relation (as in [20]) can
be induced by compound observables, we show that any compound observable
can be equivalently represented as a simple observable at the cost of pushing
complexity into its value space. Here, we consider observables equivalent if they
induce the same consistency relation.

14 H. Farber et al.

Definition 14 (Equivalence of observables). Two observables are equiva-
lent, written =, if they yield the same consistency relation, i.e. for o,0' in O,

o= 0 if and only if CR, = CR,.

By definition, two observables o & o’ if and only if oy (m) # 0 < o} (m) # 0
for all models m € [[M. This property is considerably weaker than equality (or
even isomorphism) on the semantic functions — it is enough that they accept the
same models as consistent. For compound observables, pushing the complexity
into the value space is done by mimicking the construction from Sect. 5.1.

Proposition 4 (Tuple encoding). Given a compound observable c&[o”] built
over observables (oF) ek, the tuple encoding

(‘z(ag[oK])i: M; = [[2Vor) s mis {oie € [[ok (ms) | (lolalvx) # @})
K K C

i€l

of 0 is an observable equivalent to o&o].

Proof. For m € [[M, T(c8[o®])1(m) # 0 iff there exists v € [[, of(m) such
that Ne[ocJa(vi) # 0, ie., vi € 02[oX](m), that is o2[o®];(m) # 0. There-
after o8[0f] =~ T(a8[0X]).

Of course, while useful, this result should not be taken to mean that com-
pound observables are unmotivated. The encoding can be mechanically com-
puted from the component observables and o¢ alone. Still, for practical appli-
cations, it will usually introduce drawbacks (in particular, for observables with
finite value sets, it vastly increases the set’s cardinality compared to the equiva-
lent compound). Instead, the encoding provides an alternative view of the same
structure, and implementations may choose one or the other depending on their
own priorities.

We can even perform a similar construction to also reduce arbitrary MMS
observable semantics to simple observable semantics, even without requiring
knowledge of them as compounds, i.e., by interpreting them purely in terms
of the models they affect:

Proposition 5 (Generalised encoding). Given a meta-model spanning ob-
servable o, the generalised encoding

(6(0)1 Mz — HM My — CRO ﬂpi,{mi}> -

of 0 is an observable equivalent to o.

Proof. Let m € [[M. Then &(0);(m) = (;c; CRoNP; fm,3 = CRo,N{m}. Thus,
&(0);(m) #0 < m e CR, <= or(m) # 0. Thereafter o =~ &(0).

However, this now requires additional knowledge of the modelling domains
(in particular, we need to have the entire set of instances of the meta-models
(M;)ies available) in order to perform the latter encoding, limiting its appli-
cability to real-world scenarios or implementations, as enumerating all possible
model instances may be impractical or impossible.

Observable Semantics for Consistency Between Heterogeneous Models 15

6 Discussion and Future Work: Consistency Management

The previous sections presented the conceptual and set-theoretic foundations
of observables in MDD, but we also want to validate their potential within
engineering workflows. We identified the following key application potentials:

Informal discussion: Observables serve as a shared conceptual interface that en-
ables interdisciplinary dialogue about system behaviour and the impact of
modelling decisions, facilitating early detection of inconsistencies across mod-
elling artefacts, even before formal analysis.

Formal semantic alignment: Once formalised, observables support precise rea-
soning about consistency, unambiguously identifying the source of inconsis-
tencies across heterogeneous models.

Implementation-level integration: Observables can be made into first-class im-
plementation artefacts and integrated into consistency checking, monitoring,
or repair tools.

We opted for a qualitative validation approach in the form of an interdisciplinary
workshop involving computer scientists as well as mechanical and electrical engi-
neers. The workshop introduced observables and explored their role in semantic
consistency management in CPS development. The central case study discussed
for the workshop involved a model inconsistency in the automotive domain, based
on a real-world scenario [1]. The case focused on a high-end hybrid vehicle with
unsatisfactory braking behaviour, which was identified shortly before product
release. The root cause was an inconsistency introduced in an early design phase
arising from a mismatch in the braking phases between the mechanical friction
brake and the electrical brake for recuperative braking via the electric motor
operating as a generator. The unsatisfactory braking behaviour could not be
detected within the driver simulation software. The interdisciplinary exchange
yielded insights that strengthened our vision of the potential of observables:

Adequacy: The observable braking force profile, a function representing applied
braking force over time, was suggested to serve as a common semantic anchor
across domains. It (1) raised awareness of potential inconsistencies (informal
discussion), (2) provided a precise interdisciplinary discussion basis for do-
main experts (formal discussion), and (3) enabled the implementation of
automated consistency analysis tools.

Heterogeneity: The modelling artefacts for the electrical and mechanical braking
systems differed significantly. Friction-based braking models rely on empiri-
cal data from test runs, while electrical brakes can be modelled mathemat-
ically. Braking force profiles, however, are semantically meaningful in both
domains and could provide a common point of reference — illustrating the
value of observables in bridging modelling heterogeneity.

Extensibility: The possibility of inconsistency between the braking drivers’ soft-
ware was previously unidentified and not modelled explicitly, highlighting
the necessity of maintaining a collection of observables rather than a sin-
gle universal semantics. Observables not only reveal inconsistencies but also

16 H. Farber et al.

help identify missing requirements, especially when expectations span mul-
tiple modelling domains.

6.1 Future Work

Currently, observables induce consistency by requiring all models in a V-SUM to
admit a common value. For some modelling contexts, one might require refine-
ment or inclusion (e.g., one value set is a subset of another) rather than requiring
agreement on a value. This generalisation may involve enriching the algebraic
constructions in Sect. 5.3 with logical connectives or relational operations. Once
inconsistencies can be identified and described using observables, an obvious
question arises: Can these observables also be used to resolve inconsistencies?
We are currently developing a formal framework and implementation for a con-
sistency repair mechanism that relies on observables to describe the effect of
model transformations. Finally, in collaboration with domain experts, we aim to
explore further the roles and potential applications of observables within design
workflows, from informal validation to formal tooling. As more concrete mod-
elling artefacts become available, we intend to refine the automotive example
into a comprehensive case study.

7 Conclusion

We introduced observables as a novel and semantically grounded approach to
consistency management between heterogeneous models, especially in cyber-
physical systems. By abstracting system properties as measurable quantities,
observables provide a unified and intuitive framework for assessing model con-
sistency. We showed that any consistency relation may be represented by an
observable. We further presented two principled extensions — meta-model span-
ning semantics and compound observables — that enable modular construction of
complex observable semantics. We proved that both extensions can be reduced
to simple observable semantics, retaining the related results. This design enables
separation of concerns and extensibility as new observables can be added incre-
mentally as consistency requirements evolve. Beyond theoretical expressiveness,
observables offer practical flexibility: constraints may be expressed externally,
derived through observable computation, or embedded in models. As such, ob-
servables serve as a bridge between modelling practice and formal reasoning
and offer a promising foundation for tool-supported consistency management in
engineering workflows.

Acknowledgments. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) — CRC 1608 — 501798263.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Observable Semantics for Consistency Between Heterogeneous Models 17

References

10.

11.

12.

13.

Albers, A., Volk, T.A., Pfaff, F., Nowak, K.: Inconsistency situations in engi-
neering of cyber-physical systems (Apr 2025). https://doi.org/10.5281/zenodo.
15267521

. Ambler, S'W.: The Object Primer: Agile Model-Driven Development with UML

2.0. Cambridge University Press, Cambridge, 3 edn. (2004). https://doi.org/10.
1017/CB09780511584077

Bowman, H., Steen, M., Boiten, E., Derrick, J.: A Formal Framework for Viewpoint
Consistency. Formal Methods in System Design 21(2), 111-166 (Sep 2002). https:
//doi.org/10.1023/A:1016000201864

Calegari, D., Mossakowski, T., Szasz, N.: Model-Driven Engineering in the Hetero-
geneous Tool Set. In: Braga, C., Marti-Oliet, N. (eds.) Formal Methods: Founda-
tions and Applications. pp. 64-79. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-15075-8_5

Chen, K., Sztipanovits, J., Abdelwahed, S.: A Semantic Unit for Timed Automata
Based Modeling Languages. In: 12th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’06). pp. 347-360 (Apr 2006). https://doi.
org/10.1109/RTAS.2006.8

Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic Anchoring with
Model Transformations. In: Hartman, A., Kreische, D. (eds.) Model Driven Archi-
tecture — Foundations and Applications. pp. 115-129. Springer, Berlin, Heidelberg
(2005). https://doi.org/10.1007/11581741_10

Chen, K., Sztipanovits, J., Neema, S.: Toward a semantic anchoring infrastruc-
ture for domain-specific modeling languages. In: Proceedings of the 5th ACM
International Conference on Embedded Software. pp. 35—-43. EMSOFT ’05, As-
sociation for Computing Machinery, New York, NY, USA (Sep 2005). https:
//doi.org/10.1145/1086228.1086236

Chen, K., Sztipanovits, J., Neema, S.: Compositional Specification of Behavioral
Semantics. In: Automation & Test in Europe Conference & Exhibition 2007 Design.
pp. 1-6 (Apr 2007). https://doi.org/10.1109/DATE. 2007 . 364408

Dibowski, H., Massa Gray, F.: Applying Knowledge Graphs as Integrated Seman-
tic Information Model for the Computerized Engineering of Building Automa-
tion Systems. In: Harth, A., Kirrane, S., Ngonga Ngomo, A.C., Paulheim, H.,
Rula, A., Gentile, A.L., Haase, P., Cochez, M. (eds.) The Semantic Web. pp. 616—
631. Springer International Publishing, Cham (2020). https://doi.org/10.1007/
978-3-030-49461-2_36

Fradet, P., Le Métayer, D., Périn, M.: Consistency checking for multiple view
software architectures. SIGSOFT Softw. Eng. Notes 24(6), 410-428 (Oct 1999).
https://doi.org/10.1145/318774.319258, https://dl.acm.org/doi/10.1145/
318774.319258

Gronniger, H., Ringert, J.O., Rumpe, B.: System Model-Based Definition of Mod-
eling Language Semantics. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) For-
mal Techniques for Distributed Systems. pp. 152—-166. Springer, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02138-1_10

Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Specification and Validation
Methods, pp. 9-36. Oxford University Press, Inc., USA (Sep 1995)

Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal 45(3), 451-461 (2006). https://doi.org/10.1147/sj.453.
0451

https://doi.org/10.5281/zenodo.15267521
https://doi.org/10.5281/zenodo.15267521
https://doi.org/10.5281/zenodo.15267521
https://doi.org/10.5281/zenodo.15267521
https://doi.org/10.1017/CBO9780511584077
https://doi.org/10.1017/CBO9780511584077
https://doi.org/10.1017/CBO9780511584077
https://doi.org/10.1017/CBO9780511584077
https://doi.org/10.1023/A:1016000201864
https://doi.org/10.1023/A:1016000201864
https://doi.org/10.1023/A:1016000201864
https://doi.org/10.1023/A:1016000201864
https://doi.org/10.1007/978-3-319-15075-8_5
https://doi.org/10.1007/978-3-319-15075-8_5
https://doi.org/10.1109/RTAS.2006.8
https://doi.org/10.1109/RTAS.2006.8
https://doi.org/10.1109/RTAS.2006.8
https://doi.org/10.1109/RTAS.2006.8
https://doi.org/10.1007/11581741_10
https://doi.org/10.1007/11581741_10
https://doi.org/10.1145/1086228.1086236
https://doi.org/10.1145/1086228.1086236
https://doi.org/10.1145/1086228.1086236
https://doi.org/10.1145/1086228.1086236
https://doi.org/10.1109/DATE.2007.364408
https://doi.org/10.1109/DATE.2007.364408
https://doi.org/10.1007/978-3-030-49461-2_36
https://doi.org/10.1007/978-3-030-49461-2_36
https://doi.org/10.1007/978-3-030-49461-2_36
https://doi.org/10.1007/978-3-030-49461-2_36
https://doi.org/10.1145/318774.319258
https://doi.org/10.1145/318774.319258
https://dl.acm.org/doi/10.1145/318774.319258
https://dl.acm.org/doi/10.1145/318774.319258
https://doi.org/10.1007/978-3-642-02138-1_10
https://doi.org/10.1007/978-3-642-02138-1_10
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1147/sj.453.0451

18

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

H. Farber et al.

Hennicker, R., Bidoit, M.: Observational Logic. In: Haeberer, A.M. (ed.) Algebraic
Methodology and Software Technology. pp. 263-277. Springer, Berlin, Heidelberg
(1999). https://doi.org/10.1007/3-540-49253-4_20

Kamburjan, E., Fiorini, S.R.: On the Notion of Naturalness in Formal Modeling. In:
Ahrendt, W., Beckert, B., Bubel, R., Johnsen, E.B. (eds.) The Logic of Software.
A Tasting Menu of Formal Methods: Essays Dedicated to Reiner Héhnle on the
Occasion of His 60th Birthday, pp. 264-289. Springer International Publishing,
Cham (2022). https://doi.org/10.1007/978-3-031-08166-8_13, https://doi.
org/10.1007/978-3-031-08166-8_13

Klare, H., Kramer, M.E., Langhammer, M., Werle, D., Burger, E., Reussner,
R.: Enabling consistency in view-based system development — The Vitruvius
approach. Journal of Systems and Software 171, 110815 (Jan 2021). https:
//doi.org/10.1016/j. jss.2020.110815

Knapp, A., Mossakowski, T.: Multi-view Consistency in UML: A Survey. In: Heckel,
R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets: In Memory
of Hartmut Ehrig, pp. 37-60. Lecture Notes in Computer Science, Springer Interna-
tional Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6_
3

Lee, E.A.: CPS foundations. In: Proceedings of the 47th Design Automation Con-
ference. pp. 737-742. DAC ’10, Association for Computing Machinery, New York,
NY, USA (Jun 2010). https://doi.org/10.1145/1837274.1837462

Lucas, F.J., Molina, F., Toval, A.: A systematic review of UML model con-
sistency management. Information and Software Technology 51(12), 1631-1645
(Dec 2009). https://doi.org/10.1016/j.infsof.2009.04.009, https://www.
sciencedirect.com/science/article/pii/S0950584909000433

Pascual, R., Beckert, B., Ulbrich, M., Kirsten, M., Pfeifer, W.: Formal foundations
of consistency in model-driven development. In: 12th international symposium
on leveraging applications of formal methods, verification and validation (ISoLA
2024). Lecture notes in computer science (Oct 2024)

Perin, M., Wouters, L.: Using Ontologies for Solving Cross-Domain Collaboration
Issues. IFAC Proceedings Volumes 47(3), 7837-7842 (Jan 2014). https://doi.
org/10.3182/20140824-6-ZA-1003.01575

Rumpe, B.: Formale Methodik Des Entwurfs Verteilter Objektorientierter Systeme.
Informatik, Utz, Wiss. Verlag (1996)

Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249(1), 3-80 (Oct 2000). https://doi.org/10.1016/S0304-3975(00)
00056-6

Spanoudakis, G., Zisman, A.: Inconsistency management in software engineer-
ing: survey and open research issues. In: Handbook of Software Engineering
and Knowledge Engineering, pp. 329-380. World Scientific Publishing Com-
pany (Dec 2001). https://doi.org/10.1142/9789812389718_0015, https://wuw.
worldscientific.com/doi/abs/10.1142/9789812389718_0015

Stachowiak, H.: Allgemeine Modelltheorie. Springer (1973)

Stiinkel, P., Koénig, H., Lamo, Y., Rutle, A.. Comprehensive Systems: A
formal foundation for Multi-Model Consistency Management. Formal As-
pects of Computing 33(6), 1067-1114 (Dec 2021). https://doi.org/10.1007/
s00165-021-00555-2

https://doi.org/10.1007/3-540-49253-4_20
https://doi.org/10.1007/3-540-49253-4_20
https://doi.org/10.1007/978-3-031-08166-8_13
https://doi.org/10.1007/978-3-031-08166-8_13
https://doi.org/10.1007/978-3-031-08166-8_13
https://doi.org/10.1007/978-3-031-08166-8_13
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.1007/978-3-319-75396-6_3
https://doi.org/10.1007/978-3-319-75396-6_3
https://doi.org/10.1007/978-3-319-75396-6_3
https://doi.org/10.1007/978-3-319-75396-6_3
https://doi.org/10.1145/1837274.1837462
https://doi.org/10.1145/1837274.1837462
https://doi.org/10.1016/j.infsof.2009.04.009
https://doi.org/10.1016/j.infsof.2009.04.009
https://www.sciencedirect.com/science/article/pii/S0950584909000433
https://www.sciencedirect.com/science/article/pii/S0950584909000433
https://doi.org/10.3182/20140824-6-ZA-1003.01575
https://doi.org/10.3182/20140824-6-ZA-1003.01575
https://doi.org/10.3182/20140824-6-ZA-1003.01575
https://doi.org/10.3182/20140824-6-ZA-1003.01575
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1142/9789812389718_0015
https://doi.org/10.1142/9789812389718_0015
https://www.worldscientific.com/doi/abs/10.1142/9789812389718_0015
https://www.worldscientific.com/doi/abs/10.1142/9789812389718_0015
https://doi.org/10.1007/s00165-021-00555-2
https://doi.org/10.1007/s00165-021-00555-2
https://doi.org/10.1007/s00165-021-00555-2
https://doi.org/10.1007/s00165-021-00555-2

	Observable Semantics for Characterising Consistency Between Heterogeneous Models

