A Conceptual Framework for Fine-Grained Quality
Assessment 1n Version Graphs

Karl Kegel
Technische Universitidt Dresden
Dresden, Germany
karl kegel @tu-dresden.de

Andreas Domanowski
Technische Universitidt Dresden
Dresden, Germany
andreas.domanowski @tu-dresden.de

Abstract—Today’s software development and modeling pro-
cesses happen collaboratively. A key challenge in collaborative
software engineering is assessing the quality properties of the
different system revisions developed by different people. Mod-
ern solutions for version control, variation control, and model
management can track and relate versions, feature variations,
branches, and experimental modifications. We particularly ob-
serve a trend in the development of model management tools
to support increasingly fine-grained evolution operations and
artifact relationships. This detailed knowledge of a system’s revi-
sion history enables history-based quality assessment. However,
the current state of the art lacks a comprehensive terminology
framework for clearly describing the scope within which a
particular quality attribute is assessed in the revision history.
This leads to inefficient communication and hinders tackling the
actual objective of the quality assessment. This work contributes
a formal framework for quality regions in revision management
systems. Our framework is based on revision graphs and in-
corporates concepts such as versions, variants, merges, multi-
systems, and views, building a common ground for fine-grained
quality assessment of evolving systems. We provide an open-
source library implementation of our formal concepts, which can
be used to extend existing version control or model management
tools.

Index Terms—software engineering, quality assurance, techni-
cal debt, versioning, model management

I. INTRODUCTION

Software engineers work collaboratively on artifacts such as
models or code. However, collaboration does not necessarily
mean that people sit together and work jointly on a single
artifact. Version control systems (VCS) [1] enable the man-
agement of these workflows. A prominent example of a VCS
is Git, which is typically used together with a collaboration
platform such as GitHub or GitLab. Despite the prominence of
Git, many different domain- and purpose-specific versioning
systems exist. Examples are found in modeling and software
product-line engineering [2]-[4]. On an abstract level, these
management tools have similar functionalities and purposes.
Therefore, we remain, for large parts of this work, on a
conceptual level, not distinguishing between modeling in par-
ticular and general software engineering. However, we see

Romain Pascual
Centralesupélec, Université Paris-Saclay
Gif-sur-Yvette, France
romain.pascual @centralesupelec.fr

Marie Clausnitzer
Technische Universitidt Dresden
Dresden, Germany
marie.clausnitzer @mailbox.tu-dresden.de

Kevin Feichtinger
Karlsruhe Institute of Technology
Karlsruhe, Germany
kevin.feichtinger @kit.edu

Uwe ABmann
Technische Universitidt Dresden
Dresden, Germany
uwe.assmann @tu-dresden.de

the largest impact of this work in the field of model-driven
software engineering, particularly in model management and
model evolution. The reason is the focus of modern model
management tools on increasingly fine-grained support for
evolution processes beyond commits and branches, for ex-
ample, the support of the co-evolution of linked models,
the integrated handling of views [4], or the integration of
variability management into version control [3].

Before continuing with the further presentation of this
work’s context and problem statement, we provide a brief
introduction to the terminology used. Software engineers
often use the terms’ version, variant, revision, or commit
ambiguously and interchangeably. We are aware of the terms’
definitions in the literature [1], [5]-[7], which we discuss
in Sec. II. On this work’s abstract level, we prefer to use
the term revision as a unified descriptor of the “things that
are managed [7]. A revision is a (development-)state of a
system identified by its successors and predecessors in time.
Subsequently, we refer to any system that manages revisions
as a revision management system (RMS). We particularly
allow an RMS to comprise multiple revision histories, i.e.,
support for individual versioning at an arbitrary granularity,
as illustrated in Section I-E. This work’s notion of an RMS
should not be confused with a feature model [8] or hyper-
feature model [9]. Our notion of an RMS is not meant to
represent a system’s configuration space in terms of a software
product line. However, we acknowledge that the distinction
between RMS and variation control systems [2] for software
product lines can be fluid.

A. Context

A key challenge in software and systems engineering is
ensuring the desired quality properties of a system during its
development as motivated by standards such as ISO 25010 [10]
and ISO 25023 [11]. If neglected, technical debt builds up over
time [12], [13]. Although quality assurance and measuring
different quality attributes are well researched, existing works
and tools focus on analyzing a single system revision. It

https://orcid.org/0009-0003-6829-4260
https://orcid.org/0000-0003-1282-1933
https://orcid.org/0000-0003-1182-5377
https://orcid.org/0000-0003-3479-661X
https://orcid.org/0009-0002-2561-1062
https://orcid.org/0000-0002-3513-6448

remains unclear, how the quality of a network of revisions
can be assessed. For instance, a prominent quality property
that can be measured over multiple revisions is consistency.
Examples for consistency problems are breaking changes in a
sequence of updates, non-mergeable changes implemented in
two branches, or parallel developed features that turn out to be
incompatible. If one now defines a set of metrics to measure
and track the consistency violations - or any other metric -, one
must specify the location within the revision history where the
metrics operates. One could assess the metric along the time
axis, i.e., comparing a specific revision and its £ most recent
predecessors. One could assess the metric along the space axis,
i.e., comparing a specific revision and its k£ closely related
variants. We call these scopes quality regions. To assess quality
properties within a system comprising multiple revisions, it is
essential to clearly define and communicate the region within
a revision history a quality assessment is applied to.

B. Problem Statement

Quality assurance of versioned systems is a field with a
large research potential. In this field, we identify the absence
of a nomenclature and formal framework of regions for quality
assessment in revision histories as main obstacles towards
a clear definition and communication of quality properties.
Working with complex networks of revisions, it must be clear
over which subsets of revisions a quality property should
hold. We, therefore, ask the research question “How can
we constructively define a general framework of quality
regions in revision management based on a suitable formal
abstraction of revision management systems?” By answer-
ing this question, we want to enable future works to perform
time- and space-aware quality analysis, e.g., the calculation of
different metrics or the optimization of version histories on a
concise formal and technical foundation.

C. Approach

We aim to address the research question of this work in
two stages. First, we propose a formal representation for gen-
erally describing revision structures in a revision management
system. We base our formalism on the well-known structure
of version graphs [1], [5], [6]. Second, we define the actual
formal framework of quality regions. To serve as a general
ground for quality assessment, we require each region to serve
a defined purpose and have an unambiguous construction rule.
We particularly oppose a naive definition of quality regions as
the powerset of revisions. We evaluate the feasibility of our
formal framework by implementing it as a software library
and realizing it as a command-line tool for general use. We
show how our tool works using an example use case.

D. Contribution

This work contributes a formal framework of quality regions
in revision management systems. Therefore, we provide for-
mal, graph-based definitions for each region type. We base our
formalism on the well-known structure of version graphs. To
facilitate the formulation and understanding of our definitions,

Contral
= ontrol
AV Algori
"l gorithm
v
v — | Safety C--9
j | Specification
+ — | Draft
l Control Control
Algorlthm Algorithm
v1.1
v — | Safety n
j | Specification
¥ | consolidated \ /
l Control
Algorithm
j — | Safety &
v—_ Spemflcatlon
v — | Final

\

v Control Control
/ Joe m Algorithm m Algorithm
Eld () v4cand.A () Vv4cand.B
Conformance
Check > - = ->
succession dependency mapping

Fig. 1. Example of a system comprising two parts with linked revision
histories. Both artifacts evolve independently but also depend on each other.

we formally introduce the concepts of revision graphs, revision
graphs with merge edges, and multi-revision graphs in a step-
by-step manner. Lastly, we contribute the software library
coconlib and the command-line tool cocon-cli that implement
and demonstrate our formal framework. Our software library
is designed to extend existing revision management systems
with quality region support. This work does not contribute
a novel revision- (or version-) management system. On the
contrary, this work aims to improve existing approaches for
revision management by its developed concepts and tools.

E. Example

This section provides an illustrative example of an RMS
with multiple histories. Figure 1 shows a simple system com-
prising a robotic control algorithm and a safety specification.
The control algorithm may be realized as a state machine
or an automaton. The safety specification may be a tabular
document describing and rating different safety properties as
a checklist. Both artifacts have revision histories. The safety
specification has three revisions: the draft, the consolidation,
and the final specification. The control algorithm is developed
in a more agile manner. We see different intermediate revisions
and a merge along the way to the algorithm’s fourth version.
The control algorithm is related via dependencies on the
safety specification. The dependencies are depicted as dotted
arrows. Different revisions of the algorithm depend on differ-
ent revisions of the safety specification. Lastly, we have the
conformance check in the bottom left corner. This document
is a temporary artifact for reviewing the conformance of the
algorithms and the safety specification. It is derived from two

revisions. Resulting modifications might be propagated back
to the original artifacts after the review.

II. BACKGROUND

This section provides a comprehensive background of this
work’s central topics: versioning, version control systems, and
software quality assurance.

Versioning of software objects has been researched for sev-
eral decades. Works from the database- and software product
line communities described the terms version, variant, and
revision [1], [5], [6]. These works already discovered the
natural graph structure of a versioning system, which can be
denoted in different representations, such as one- and two-level
version graphs, version grids, or version matrices. The base
relation between versions is the “successor” relation. Other
relations, such as constraints or merges, may also exist [1].

We find deviating usages of the terms version, variant,
and revision within the large corpus of existing literature.
Software evolution and variation is commonly distinct in space
and time dimensions [8]. Space refers to the dimension of
variability, i.e., features or alternative developments. Time
refers to the dimension of evolution , i.e., updating or revising
existing software objects. This two-dimensionality implies that
a software object is a version of another in time or a variant of
another in space. However, some works consider the version
to be the top-level element that can either be a variant or
a revision [14]. Some more recent works aim to again unify
different variability notions as revisions [7]. We decided to
also refer to all the elements in a version graph as revisions,
thus making it a revision graph. Depending on the observer’s
standpoint, a revision can then play the role of a version or
variant, i.e., we consider them non-rigid types [15].

Different version control systems exist - or have existed
- in practice [2]. The state-of-the-art software versioning
tool is Git, enabling many different development styles and
workflows [16]. Although Git works well with code, it has
drawbacks when working in specialized domains such as
software modeling or the versioning of complex systems
comprising individually evolving parts, e.g., Cyber-Physical
Systems. Therefore, different specialized RMS exist in re-
search and practice. Schwigerl et al. [3] presented the tool
SuperMod as an RMS for software product line engineering.
The Vitruvius approach [4] addresses the problem of assuring
consistency in multiple semantically overlapping development
artifacts. Although the current version of Vitruvius manages
interrelated revisions in the space dimension, it supports no
versioning in time.

While the aforementioned systems and concepts enable
the versioning and collaborative development of software,
they do not guarantee the quality of the developed system.
On the contrary, having a system with multiple revisions
simultaneously in production makes quality assurance difficult.
Technical debt builds up if quality properties are neglected
[12], [13]. Different metrics are employed to measure and
track the technical debt of a development project. A variety of
quality properties and metrics exist [17]-[19]. In most cases,

they operate on a single revision of a system. However, from
an organizational perspective, software evolution must be well-
managed and controlled [20]. Therefore, one must be able
to assess the quality of an RMS. While conducting previous
work on a consistency metric for sets of variants [21], [22],
we discovered that only few metrics and analysis techniques
consider non-linear revision histories [23]-[25]. We expect this
field to move into the focus of future research.

III. TERMINOLOGY

To clarify the following sections, this section introduces
the necessary terminology. A version management system,
or revision management system (RMS), stores the evolution
history of a digital artifact. This artifact is typically a software
system under development. We use the term revision to refer
to the manifestations of the managed artifact at fixed points
within its evolution history. We write “manifestation”, as the
management system may work on a variety of principles. It
could store actual snapshots, partial snapshots, or deltas, e.g.,
change operations. However, the internal working of the RMS
is of no concern for this work.

A revision can be a version, a variant, or both at the
same time, depending on the standpoint and objective of the
observer. If the observer looks at an artifacts’s prior develop-
ment history, it plays the role of a version. If the observer
investigates alternative implementations of an artifact, it plays
the role of a variant. A revision is identified by a unique
name and directed acyclic successor relation to other revisions.
Depending on the restrictions of the successor relation, this
leads to the natural mathematical structure of a revision tree
or revision graph. This concept is also commonly known as a
version graph [1]. As we allow an RMS to manage multiple
related artifacts, it may comprise several revision graphs. A
second type of relation can link revisions of different revision
graphs. We refer to this structure as a multi-revision graph
which we further specify in Sec. V-D.

IV. REVISION TREES AND -GRAPHS

The literature defines different variations of revision graphs
and trees [1]. This section presents this work’s definition of
revision graphs. However, we do not “reinvent” the idea of
a revision graph but formally define it in a suitable way for
the subsequent introduction of quality regions. The underlying
structure of a revision graph is a directed acyclic graph (DAG).
However, as described below, we restrict the DAG so that
individual traversal functions operate on trees. Therefore, we
first present the structure of a revision tree and extend it to a
revision graph afterward. We further extend the revision graph
to a multi-revision graph to fully support our definition of an
RMS.

A. Revision Trees

We consider a set R of all possible revisions and a subset
R C R of managed revisions. Possible revisions are theo-
retically all revisions that could be created in the future or
have been created in the past. Managed revisions are those

revisions that are actually stored in the RMS. The set R
contains a distinguished element 7y called the initial revision.
Apart from the initial revision, each revision » € R admits a
unique predecessor describing from which other revisions it
was evolved. With the convention that the initial revision is
its own predecessor, the predecessor relation can be described
as a function pred : R — R, with pred(ro) = ro. For 7o
to be indeed be the initial revision, we require that iteratively
applying pred always leads to 7. In other words, pred induces
a partial order on R with ry as the lower bound. We can view
R as a directed rooted tree with the initial revision as the root.
This is called a revision tree.

To navigate the revision tree, we define additional functions.
The successor function succ : R — P(R) maps each revision
to the set of all its direct successors. It is essentially the preim-
age of the predecessor function. We write pred (™) for the n-th
iteration of pred, such that pred™ (r) is the n-th predecessor
of r. For n € N, we also write pred=<"(r) for the set of all
predecessors of r up to n, ie., pred<"(r) = {pred® (r) |
k < n} and pred”(r) for the set of all predecessors of r, i.e.,
pred*(r) = {pred™ (r) | n € N}. We consider a function
root mapping any revision 7 to the initial revision, i.e., the
root of the tree ry. Additionally, we define the set of all leafs
of a revision r as leafs(r). This set contains all revisions that
can be reached from 7 via succ and have no further successor.
Formally, a leaf is a revision [such that succ(l) = 0, and
leafs(r) = {l € R | r € pred™(l) A succ(l) = 0}.

In summary, we defined a revision tree as a (directed) rooted
tree based on the pred relation, together with the functions
pred”, succ, leafs, and root.

B. Revision Graphs

A revision tree supports the description of revisions with
a single predecessor for each revision. This property does
not allow a revision tree to model merges. A merge - or
unification - occurs when a revision has two predecessors. In
practice, a merge is created by combining changes from two
revisions into a new revision. Formally, considering merges
means replacing the predecessor function pred : R — R with
pred : R — P12(R), where P; 2(R) is the set of all subsets
of R with cardinality 1 or 2, meaning that every revision has
exactly one or two predecessors. Then, a revision tree becomes
a rooted directed acyclic graph. We call this graph a revision
graph. Figure 2 depicts an exemplary revision graph. For
navigating the resulting merge structure, we introduce explicit
merge edges. A merge edge connects the lowest common
ancestor of the two predecessors of a merge revision with the
merge revision itself. A merge edge is visualized as a double-
lined arrow. For instance, (a,e€) is a merge edge in Figure 2.
Figure 3 depicts an evolution from gy to g} introducing the
merge revision d as successor of both b and c. The merge
edge is added in between a and d as a is the lowest common
ancestor of b and c. Figure 4 shows two slightly larger revision
graphs with merge revisions and merge edges.

Analyzing a revision graph with merges, the pred function
becomes ambiguous. We resolve this issue by making merge

Fig. 2. Example of a revision graph with seven revisions and one merge edge.

92: gz’:
-

Fig. 3. Evolution scenario with a merge. The revisions b and ¢ are merged
into the new revision d. The merge is denoted via a merge-edge (double-line
arrow).

edges “priority” edges. While traversing a merge node with
ambiguous predecessors, the merge edge is traversed instead of
the default edges. Consequently, traversing a revision graph be-
comes the same as traversing a revision tree. This technique is
similar to highway hierarchies in path-finding algorithms [26],
limited to two levels of priorities. In terms of a practical RMS,
this means that the traversal functions considers merges as
“squash merges,” while the actual history is retained. We raise
the awareness that this mechanism “looses” the information
about what happens on the distinct branches of a merge.
To counter this loss, a separate function including all these
revisions may be required. We leave such a definition open at
this point.

g3

(2) :‘oﬂ

Fig. 4. Two examples of more complex merge scenarios. Merge partners are
fully qualified revisions that can further evolve in space and time.

Fig. 5. Example of a revision graph with two marked time regions: The
unbounded time region of e, 7°°(e), shown in green, and the unbounded
time region of ¢, 7°°(c), shown in violet.

Fig. 6. Example of a revision graph with two marked space regions: The 1-
bounded space region of d, ol (d), shown in violet, and the unbounded space
region of d, 0°°(d), shown in green.

V. QUALITY REGIONS

This section introduces quality regions based on the pre-
viously introduced formalisms of revision graphs for the
dimensions of time and space, for relations across multiple
revision graphs, and for building projections/views.

A. Time Regions

A revision can be analyzed with its predecessors, i.e.,
previous versions, to reason about a quality property in time.
Quality analysis over time is a common task in software
engineering. Examples are the detection of breaking changes,
the analysis of change patterns, tracking technical debt [12],
[13], or the detection of coupled evolution [27]. All these
analysis operate on a (possibly bounded) list of revisions sliced
out of the revision graph.

We call such a slice of a revision graph a time region T C R
and distinguish i-bounded- 7% and unbounded time regions
7°°. We define the unbounded time region of a revision r in a
revision graph g as the set pred”(r). We define the bounded
time region bound by i € N as the set pred='(r). In other
words, the unbounded time region is the set of all predecessors
of r, and the bounded time region is the set of the newest @
predecessors of r. Looking at Figure 5, we write 7°°(e) =
{a,c,e} and 7°°(c) = {c,a}. The 1-bounded time region of
e would be 71(e) = {c, e}, applying pred one time.

B. Space Regions

A revision can be analyzed together with its n-closest
neighbors, i.e., variations in space. The interpretation of this
region depends on the semantics of the variants. They could

Fig. 7. Evolution scenario of a revision graph. The two revisions d and e are
added. The unbounded space region of b evolves as well.

Fig. 8. Time- and space regions in a revision graph with a merge edge. The
merge edge only influences the construction of 7°°(d).

be modified clones, features, alternatives, or temporary copies
under change. As this work’s revision graphs describe evolu-
tion histories rather than feature models, it becomes evident
that our space dimension is rooted in the time dimension. In
other words, the space is spanned by parallelism, or non-
strict ordering, in time. Prominent analysis cases in space
are the detection of inconsistencies, e.g., merge conflicts,
incompatibilities, constraint violations or drift [22]. These
analysis operate on a (possibly bounded) set of revisions co-
existing in space. This can, for example, be the set of all
branch heads in a Git repository which realize bug fixes.

On an abstract level, we call such a region a space region
o C R and distinguish i-bounded- o' and unbounded space
regions 0°°. We define the unbounded space region as the set
of all leafs of the revision’s root. Consequently, this region is
equal for all revisions within the graph. We define the space
region bounded by ¢ € N as the set of leafs given by the leafs
function for the ’th predecessor.

Figure 6 illustrates this definition by showing two space
regions: 0> (d) = {d,e,b}, and o'(d) = {d,e}. According
to the definition, we can also write 0>°(d) = o?(d). Figure 7
shows the evolution of the revision graph g; into the revision
graph ¢i. Two new revisions were added as successors of c.
The space region 0 (b), i.e., {b, c}, evolves to be {b,d, e}.

C. Regions Construction with Merge Edges

Constructing regions in revision graphs with merge edges
differs in only one aspect from the construction in revision
graphs without merge edges. If the traversal queries the pre-
decessor of a revision that is a merge revision, the merge edge
is prioritized. Thus, the path to the root can always be resolved
without ambiguity. Figure 8 shows the resolution of regions on

Fig. 9. Example of a multi-revision graph. The multi-revision system m comprises three revision graphs gi...g3. The revision graphs must not overlap. Each
graph has its individual root. Revisions may have links between each other. Three exemplary links are denoted as l1,l2, [3.

Fig. 10. Example of a multi-revision system comprising two revision graphs
with dirty revisions u and v. They may become part of future revisions or
may be discarded.

a revision graph with a merge edge. In this example, we show
the unbounded time regions of d and e: 7°°(d) = {d,a} and
7(e) = {e,¢,a}. We also show the unbounded space region
of d: 0°(d) = {d, e}. The set pred™(e) of all predecessors of
e is not influenced by the merge edge. The set pred™(d) of all
predecessors of d exploits the prioritized merge edge (a,d),
such that pred(d) = a.

D. Multi-Revision Graphs

We allow a revision management system to handle the -
possibly related - revision histories of more than one artifact.
Examples of such systems are software projects containing ap-
plication parts in different Git repositories or software models
managed in a multi-model [4], [28], [29]. Such systems form
sets of revision graphs with superimposed links, as illustrated
in our introductory example. A link between revisions of
different graphs is a directed edge with an arbitrary semantic,
e.g., constraints, dependencies, or import relationships. A link
must not have the semantics of a predecessor or successor,
as used within a revision graph. We call the tuple of a set of
revision graphs and a set of links a multi-revision graph. This
surrounding structure does not influence the time- and space
regions within the comprised revision graphs. Figure 9 shows
a multi-revision graph mq := ({ga, 9v, gc }, {11, 12, 13}).

E. Volatile Regions

When editing an artifact managed by an RMS, a developer
chooses a revision they want to evolve and creates a local
version of it. This local copy is then edited until the developer

adds the changed artifact as a new revision to the RMS. It
might also be possible that a developer discards their changes.
We call the edited artifact “dirty” or “volatile” as long as it
remains a working copy which is not yet checked into the
RMS. However, the RMS may already know of its existence.
It is also possible that a client jointly edits (a projection
of) multiple artifacts in a volatile working copy. In software
modeling, this is a subtype of view-based development [30],
[31].

Within our framework of quality regions, we also aim
to cover the analysis case of potentially long-living volatile
artifacts. These artifacts may be views comprising different
revisions as sources. Making them part of a quality region is
important for assessing quality attributes a priori. This way, it
becomes possible to describe the process of pre-calculating
or “guessing” violations of a quality property before they
manifest in the revision graph. An example is the preemptive
detection of possible merge conflicts with other revisions [32].

We define the set of volatile revisions as a subset of the
set of managed revisions V C R it is derived from, i.e., has
ties with. A volatile revision can but does not have to be an
element of R. However, the possible set of volatile revisions
must not be smaller than R itself. This allows it to live outside
the revision management system. We define the volatile region
[as a tuple comprising a volatile revision and the set of its
sources 8 := V x P(R). Figure 10 depicts a multi-revision
system ms comprising two revision graphs g4 and g.. There
exist two volatile revisions u and v. They span the volatile

regions B(u) = (u, {b}) and S(v) = (v,{c,n}).

F. Overview

Figure 11 summarizes the introduced regions in a single
diagram. The figure shows a multi-revision graph comprising
two revision graphs A and B. A single link exists between
the revisions ¢ of A and d of B. The right side of the
figure highlights time and space regions for the revision k.
The figure also highlights the volatile region of the temporary
revision/view v. Of course, the highlighted regions are only
examples based on specific revisions and may be constructed
for any revision in the multi-revision graph.

Lastly, we point out that the introduced regions of space
and time, as well volatile regions are (for non-trivial revision
graphs) a subset of P(R), meaning that additional regions can

Revision Graph A

% ~

Revisions

Multi-Revision Graph

Revision Graph B

s

-
1-bounded Space (k)

Y
Unbounded Space (k)

2/

Fig. 11. Overview of (multi-revision) graphs and the introduced quality regions. The shown regions in time and space are constructed for the revision k.

be defined and constructed. The existence of such regions is
not a problem for our framework. On the contrary, we motivate
and support the definition of additional meaningful quality
regions based on our formal framework.

VI. PROOF OF CONCEPT

This works main contribution is the formal defintion of
quality regions for revision management systems. However,
we also want to show that this theory can be applied in
practice. Specifically, we aim to demonstrate how the proposed
theoretical framework can be realized as a programming
library and ready-to-use tool. The implementation serves as a
proof of concept for the theoretical concepts introduced in Sec-
tions IV and V. For this purpose, we underwent the following
steps: First, we derived a set of usecases for interacting with
revision graphs and quality regions; Second, we decided on
the technical space to implement the proof of concept; Third,
we implemented a library called coconlib that supports the
usecases; Fourth, we implemented a command line tool called
cocon-cli that allows users to interact with the library and
create persistent revision graphs and quality regions. Finally,
we realized the running example from Section I-E as a small
case study for the library and the command-line tool. All tools
and examples developed in this work are publicly available
(see Sec. VII).

A. Separation from Existing Works

This section describes the implementation of multi-revision
graphs and quality regions in the form of a programming
library. This work does not aim to develop a novel revision
management system. The provided library is not intended to
replace any existing functionality of existing revision man-
agement systems. The purpose of the developed library and
tools is to provide a programming interface for creating
and manipulating multi-revision graphs and quality regions,
facilitating experimentation and research. Furthermore, we are

confident that the provided library can be used to extend
existing revision management systems with quality region
support. For example, we envision the developed tooling to
be used on top of applications such as Git for extending their
features and enabling the uniform querying of the underlying
revision graph.

B. Goal

A (multi-)revision system manages a development project’s
history. A (multi-)revision graph abstracts the revisions and
their relationships inside the RMS. The RMS may explicitly
maintain the graph, or it can be constructed on demand
by analyzing an existing revision structure. In both cases,
the revision graph has to be updated incrementally. An im-
plementation must, therefore, support CRUD operations on
the revision graph, i.e., its nodes and edges. As a multi-
revision system contains multiple revision graphs, creating,
updating, and deleting them must be possible. A set of default
queries must be provided to observe the structure of the
revision graphs, e.g., list all revisions, relations, etc. Lastly,
it must be possible to query the quality regions. The system’s
implementation should be extensible and make use of existing
libraries. The created revision graphs must be persistable in a
serialized format.

C. Realization

The following sections describe the implementation of the
developed library and the CLI tool. We refer to the source
code, library, and tool documentation for a more detailed
description in Sec. VII. Furthermore, all developed tools are
available open-source! Both the library and the CLI tool are
implemented in Kotlin. Consequently, both run on the Java
Virtual Machine (JVM). The library can be used with any
JVM-based language, e.g., Java, Scala, or Kotlin.

Thttps://github.com/KKegel/coconlib

List of cocon commands to execute for adding all artifacts to a new cocon workspace

cocon init

cocon
cocon

init-subsys robot
init-subsys safetyspec

Directory structure cocon ls-subsys
v robot example
v robot cocon add-rev robot robot.vl "./robot/old/automaton v1.xml"
q cocon add-rev robot robot.vl.1 "./robot/experimental/automaton v1.1 exp.xml" -pl f
v experimental
cocon add-rev robot robot.v2 "./robot/old/automaton v2.xml" -pl robot.vl -p2 robot
» automaton v1.1 exp.xml cocon add-rev robot robot.v3 "./robot/automaton v3.xml" -pl robot.v2
Vv old cocon add-rev robot robot.v4a "./robot/v4 candidate/a.xml" -pl robot.v3
N automaton v1.xml cocon add-rev robot robot.v4b "./robot/v4 candidate/b.xml" -pl robot.v3
S automaton v2.xml
cocon add-rev safetyspec draft "./safety specification/draft.txt"

Vv v4 candidate

cocon add-rev

N axml cocon add-rev safetyspec final "./safety specification/final.txt" -pl consolidated 14
S b.xml
S automaton v3.xml cocon add-crel robot.v2 consolidated

cocon add-crel robot.v3 consolidated

M- =Dkeeciticaton robot.v4b consolidated

robot.v4a final

add-crel
add-crel

cocon
consolidated.txt cocon
draft.txt

final.txt cocon add-proj conformance-check robot.v4a final

E conformance-check.csv

Initialize cocon workspace

safetyspec consolidated "./safety specification/consolidated.txt" -p

cocon-created 27
workspace serialization 28

Resulting cocon workspace file (revision graph)

robot example >
1 GRAPHS

G; robot

V; robot; robot.v1.1;robot.v1.1;./robot/experimental/automaton vi.1 exp.xml;

V;robot;robot.v1; robot.v1;./robot/old/automaton vi.xml;

V; robot; robot.v2; robot.v2;./robot/old/automaton v2.xml;

V; robot; robot.v3; robot.v3;./robot/automaton v3.xml;

V; robot; robot.v4a; robot.v4a;./robot/v4 candidate/a.xml;

V; robot; robot.vab; robot.vab;./robot/v4 candidate/b.xml;

E;robot.v1.1; robot.v2; SUCCESSOR

10 E;robot.vl;robot.vl.1;SUCCESSOR

11 E;jrobot.vl;robot.v2;MERGE

12 E;robot.vl;robot.v2;SUCCESSOR

13 E;robot.v2;robot.v3;SUCCESSOR

E;robot.v3; robot.v4a; SUCCESSOR

15 E;robot.v3; robot.v4b; SUCCESSOR

workspace.cocon

CeNo U wN

16 Gjsafetyspec
17 Vjsafetyspec;consolidated; consolidated;./safety specification/consolidated. txt;
18 V;safetyspec;draft;draft;./safety specification/draft.txt;
19 Vjsafetyspec;final;final;./safety specification/final.txt;
20 E;consolidated;final;SUCCESSOR
21 Ejdraft;consolidated; SUCCESSOR
22 RELATIONS
23 Ljrobot;safetyspec; robot.v2;consolidated;

1 24 L;jrobot;safetyspec;robot.v3;consolidated;
25 Ljrobot;safetyspec; robot.v4a; final;
26 L;robot;safetyspec; robot.vab;consolidated;

PROJECTIONS

P; conformance-check; robot.vda, final; conformance-check

Fig. 12. Overview of an exemplary workspace setup process using cocon-cli. The part depicts the workspace’s file structure. The actual content of the files is
of no importance. The middle part shows the executed setup commands. The right side shows the inside of the created workspace file, i.e., the multi-revision

graph with all its vertices and edges.

D. coconlib

We implemented the coconlib programming library for
working with revision graphs and quality regions. The cocon-
lib provides programming interfaces to create and manipulate
revision graphs, query a revision graph’s contents, and query
quality regions. We used Apache Tinkergraph as the frame-
work for realizing the underlying graph structure. Tinkergraph
is a lightweight graph engine that supports graphs with prop-
erties. The Tinkergraph framework comes with the Gremlin
query language [33], which allows querying, traversing, and
manipulating the graph. The coconlib’s API is designed to be
extensible and provides a stage-wise level of technical abstrac-
tion. The highest level comprises revision-graph operations
with error handling and validation. On this API level, it is
possible to construct, manage, and query revision graphs. As
this level is implemented “’safe”, the library assures that invalid
operations are handled properly without invalidating the graph
structure. Suppose the client aims to implement custom graph
traversals or queries, such as adding additional custom quality
regions or extending the revision graph with extra properties
or constraints. In that case, they can access the underlying
graph structure directly and manipulate it using the Gremlin
language. However, in this case, it lies with the developer to
ensure the validity of the graph structure.

E. cocon-cli

For experimenting with the coconlib beyond basic test-
ing, we implemented the cocon-cli. The cocon-cli tool is
a command-line interface to the coconlib library. cocon-cli
uses a workspace-based approach, i.e., it operates on a local
file structure. The created workspace serves as a wrapper or
placeholder for any arbitrary revision management system. In
the default case, the wrapped RMS is just the user’s local file
system. In other words, the cocon-cli does not actually manage

revisions, but only manages a revision graph consisting of
pointers to the actual revisions. The user can create a new
cocon workspace by executing the init command locally. The
workspace’s revision graphs can be populated, modified, and
queried using a set of commands. Executing a command
will load the workspace descriptor, perform the requested
operation, and save the workspace descriptor again. The tool
will abort in case an invalid command or graph invalidation
is detected. We show exemplary commands in the following
section..

F. Example Workflow

We use our illustrative example from Section I-E to demon-
strate the functionality of our proof of concept. For the sake
of simplicity, we use a single “dummy” file per artifact, i.e.,
revision. This is a valid simplification, as our tooling works
solely as a wrapper and does not process the managed files.
However, each managed revision/artifact can be anything that
can be represented as a path, including whole directories or
repositories. The set-up file structure is shown in Figure 12 on
the left side. We assume that the revisions are not managed by
any other VCS such as Git. Interacting with revisions stored
within Git repositories (commits) is an interesting use case
which we consider for future work, as this would require a
quite complex technical integration which goes beyond the
scope of this work’s proof of concept. We then executed a
sequence of CLI commands to create a new workspace and
add the revisions and their relationships. As the workspace is
persistent, this has to be done only once. The command cocon
is our alias for the locally installed cocon-cli tool. The exe-
cuted commands are shown in Figure 12 in the middle of the
figure. We aggregated the commands into a single bash script
for the sake of simplicity. Executing the script or commands
on their own on a command-line makes no difference. Each

(JCN J

{3 robot example after setup — -zsh — 104x21

kkegel@Mac robot example after setup % cocon query-time robot.v3 -1 -d ./unbound-time-region-robot-v3
> Time context of revision RevisionDescription(graph=robot, revId=robot.v3, description=robot.v3, locati
on=./robot/automaton v3.xml, payload=) bound by -1:

>> robot.v3 (robot)
>> robot.v2 (robot)

Workspace >> robot.vl (robot)

@ robot example afte... » Q

>> Context checkout to ./unbound-time-region-robot-v3

Copying ./robot/automaton v3.xml to ./unbound-time-region-robot-v3

robot example after setup e

Copying ./robot/old/automaton v2.xml to ./unbound-time-region-robot-v3

Copying ./robot/old/automaton vl.xml to ./unbound-time-region-robot-v3

Name Done.

conformance-check.csv
~ [robot
automaton v3.xml

v [experimental
automaton v1.1 exp.xml

v B3 old
automaton vi.xml
automaton v2.xml

v [v4 candidate Done.
axml kkegel@Mac robot example after setup %
b.xml

>> robot.v3 (robot)
>> robot.v2 (robot)

v [safety specification
consolidated.txt
draft.txt
final.txt

workspace.cocon

Executed cocon shell commands

kkegel@Mac robot example after setup % cocon query-time robot.v3 1 -d ./1-bound-time-region-robot-v3
> Time context of revision RevisionDescription(graph=robot, revId=robot.v3, description=robot.v3, locati
on=./robot/automaton v3.xml, payload=) bound by 1:

>> Context checkout to ./1-bound-time-region-robot-v3
Copying ./robot/automaton v3.xml to ./1-bound-time-region-robot-v3
Copying ./robot/old/automaton v2.xml to ./1-bound-time-region-robot-v3

v [1-bound-time-region-robot-v3
automaton v2.xml
automaton v3.xml
v [unbound-time-region-robot-v3
automaton v1.xml
automaton v2.xml
automaton v3.xml

Resulting quality region folders

Fig. 13. Exemplary region query and checkout process using the workspace initialized in Fig. 12. The left side shows the local file structure with the
workspace file. The middle window shows a terminal with two executed region queries (bounded- and unbounded time). The right side shows the directories

created by the region queries containing all participating revisions.

command opens the workspace, performs its action, and closes
the workspace afterwards. We see commands for initializing
the two revision graphs (init-subsys), adding the revisions
(add-rev) and their relationships (add-crel). The succession
structures and merge structures are automatically built from
the given predecessors. The right side of Figure 12 shows
the resulting serialized multi-revision graph in the workspace
file. Figure 13 shows an example of two region queries with
checkout. The library and tool support querying all quality
regions introduced in this work. The example retrieves the
unbound time region (denoted -1) and the 1-bounded time
region for the revision robot.v3. The region participants’ ids
are printed. Because the -d option is set, the tool performs
a checkout of all revisions to a specified directory. As our
tooling operates on top of the file system, a “checkout” is
simply realized as collecting the target revisions by their file
paths and copying them to the region’s target location. The
resulting directory is shown in the right side of Figure 13.
The result can now be used for quality analysis within the
region, i.e., passing this directory as input to an analysis tool.

VII. REPRODUCIBILITY

We provide a reproduction package as supplementary ma-
terial [34] hosted on ZENODO. The package includes the
used versions of the software tools, as well as the shown
example case with all information required for reproduction.
Furthermore, the coconlib and cocon-cli are publicly available
on GitHub under an open-source license. We included refer-
ences to the individual repositories within the supplementary
material.

VIII. CONCLUSION

This work presented an abstract framework of quality re-
gions based on a formal definition of revision graphs. Revision
graphs, also known as version graphs, are a well-studied struc-
ture used to represent the development history of a software

object. They play a central role as a data structure in revision
management systems. Based on the revision graph’s formal
structure, we proposed a framework of quality regions for rea-
soning about quality properties of a versioned system. These
regions serve both as a nomenclature and as a conceptual
basis for future research on quality assurance and metrics for
versioned systems. The presented formal framework operates
at an abstraction level suitable for any concrete versioning
system, as long as the graph-based representation of the
revision structure is applicable. However, we see the largest
impact of our framework in the field of model management,
as model management systems emphasize more advanced
and fine-grained versioning mechanisms compared to code
versioning with Git.

We showcased the technical feasibility of our formalism
by implementing a framework able to represent, construct
and query revision graphs and their quality regions. Our
framework called coconlib implements all features of the
proposed formalism and is available as an open-source library.
Furthermore, we developed a lightweight command-line appli-
cation cocon-cli based on the library. The implementation, par-
ticularly the coconlib library, is extensible and can be used in
other tools and applications. We consider our library a ready-
to-use tool for researchers and practitioners. In summary, we
answered this work’s research question by the given region
definitions and constructions in Section V and the subsequent
proof of concept in Section VI.

Future work will focus on both extending the theoretical
foundation of our framework and extending the implemen-
tation. On the theoretical side, we will extend the formal
foundations of this work to capture properties of revision
graphs in greater detail. In particular, we aim to express
more refined revision relations, which may be constrained
or attributed. On the practical side, we want to analyze how
different metrics perform in different regions. With the theo-

retical foundations laid out in this work, it becomes possible
to analyze the quality properties of a versioned system clearly
and systematically. For example, we aim to investigate the
distribution of inconsistencies in a revision graph using the
drift metric [22] across different quality regions. Furthermore,
we aim to analyze and benchmark different quality metrics in
model- and code repositories across different regions in space
and time to investigate the importance of revision-graph aware
quality assurance.

ACKNOWLEDGMENT

This work is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) — SFB 1608 —
501798263.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[10]

[11]

(12]
[13]

[14]

[15]

[16]

REFERENCES

R. Conradi and B. Westfechtel, “Version models for software configu-
ration management,” ACM Computing Surveys (CSUR), vol. 30, no. 2,
pp. 232-282, 1998.

L. Linsbauer, F. Schwégerl, T. Berger, and P. Griinbacher, “Concepts of
variation control systems,” Journal of Systems and Software, vol. 171,
p- 110796, 2021.

F. Schwigerl and B. Westfechtel, “Supermod: tool support for col-
laborative filtered model-driven software product line engineering,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE *16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 822-827.

H. Klare, M. E. Kramer, M. Langhammer, D. Werle, E. Burger, and
R. Reussner, “Enabling consistency in view-based system development
— the vitruvius approach,” Journal of Systems and Software, vol. 171,
p. 110815, 2021.

K. R. Dittrich and R. A. Lorie, “Version support for engineering database
systems,” IEEE Transactions on Software Engineering, vol. 14, no. 4,
pp. 429437, 1988.

E. Sciore, “Versioning and configuration management in an object-
oriented data model,” The VLDB journal, vol. 3, pp. 77-106, 1994.

S. Ananieva, S. Greiner, T. Kiihn, J. Kriiger, L. Linsbauer, S. Griiner,
T. Kehrer, H. Klare, A. Koziolek, H. Lonn, S. Krieter, C. Seidl,
S. Ramesh, R. Reussner, and B. Westfechtel, “A conceptual model for
unifying variability in space and time,” in Proceedings of the 24th ACM
Conference on Systems and Software Product Line: Volume A - Volume
A, ser. SPLC ’20. New York, NY, USA: Association for Computing
Machinery, 2020.

K. Pohl, G. Bockle, and F. Van Der Linden, Software product line
engineering: foundations, principles, and techniques. Springer, 2005,
vol. 1.

C. Seidl, I. Schaefer, and U. ABmann, “Integrated management of
variability in space and time in software families,” in Proceedings of
the 18th International Software Product Line Conference - Volume 1,
ser. SPLC ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 22-31.

ISO/IEC 25010 Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - Product quality
model, Std., 2023-11-00.

ISO/IEC 25023 Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - Measurement of
system and software product quality, Std., 2016-06-00.

C. Seaman and Y. Guo, “Measuring and monitoring technical debt,” in
Advances in Computers. Elsevier, 2011, vol. 82, pp. 25-46.

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18-21, 2012.
B. Westfechtel, B. P. Munch, and R. Conradi, “A layered architecture
for uniform version management,” IEEE Transactions on Software
Engineering, vol. 27, no. 12, pp. 1111-1133, 2001.

G. Guizzardi, “Ontological foundations for structural conceptual mod-
els,” 2005.

J. C. Cortés Rios, S. M. Embury, and S. Eraslan, “A unifying framework
for the systematic analysis of git workflows,” Information and Software
Technology, vol. 145, p. 106811, 2022.

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

H. Nakai, N. Tsuda, K. Honda, H. Washizaki, and Y. Fukazawa, “Initial
framework for software quality evaluation based on iso/iec 25022 and
iso/iec 25023, in 2016 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), 2016, pp. 410-
411.

T. Mens and S. Demeyer, “Future trends in software evolution metrics,”
in Proceedings of the 4th International Workshop on Principles of
Software Evolution, ser. IWPSE *01. New York, NY, USA: Association
for Computing Machinery, 2001, p. 83-86.

M. Staron, “Metrics for Software Design and Architectures,” in Automo-
tive Software Architectures. Cham: Springer International Publishing,
2021, pp. 215-233.

F. J. Furrer, Future-proof software-systems, ser. Springer eBooks.
Springer Vieweg, 2019.

K. Kegel, S. Gotz, R. Marx, and U. ABmann, “A variance-based drift
metric for inconsistency estimation in model variant sets,” vol. 23,
no. 3, Jul. 2024, pp. 1-14, the 20th European Conference on Modelling
Foundations and Applications (ECMFA 2024).

K. Kegel, S. Gotz, and U. ABmann, “Branch drift: A visually explainable
metric for consistency monitoring in collaborative software develop-
ment,” IEEE Access, pp. 1-1, 2025.

D. Rozenberg, 1. Beschastnikh, F. Kosmale, V. Poser, H. Becker,
M. Palyart, and G. C. Murphy, “Comparing repositories visually with
repograms,” in Proceedings of the 13th International Conference on
Mining Software Repositories, ser. MSR ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 109-120.

E. Shihab, C. Bird, and T. Zimmermann, “The effect of branching
strategies on software quality,” in Proceedings of the ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement,
ser. ESEM ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 301-310.

V. Kovalenko, F. Palomba, and A. Bacchelli, “Mining file histories:
should we consider branches?” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 202-213.

P. Sanders and D. Schultes, “Highway hierarchies hasten exact shortest
path queries,” in Algorithms — ESA 2005, G. S. Brodal and S. Leonardi,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 568—
579.

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proceedings. International Conference on
Software Maintenance (Cat. No. 98CB36272), 1998, pp. 190-198.

P. Stiinkel, H. Konig, Y. Lamo, and A. Rutle, “Multimodel correspon-
dence through inter-model constraints,” in Companion Proceedings of
the 2nd International Conference on the Art, Science, and Engineering of
Programming, ser. Programming ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 9-17.

Z. Diskin, Y. Xiong, and K. Czarnecki, “Specifying overlaps of het-
erogeneous models for global consistency checking,” in Proceedings of
the First International Workshop on Model-Driven Interoperability, ser.
MDI *10. New York, NY, USA: Association for Computing Machinery,
2010, p. 42-51.

H. Bruneliere, E. Burger, J. Cabot, and M. Wimmer, “A feature-based
survey of model view approaches,” Software & Systems Modeling,
vol. 18, no. 3, pp. 1931-1952, 2019.

A. Cicchetti, F. Ciccozzi, and A. Pierantonio, “Multi-view approaches
for software and system modelling: a systematic literature review,”
Software and Systems Modeling, vol. 18, no. 6, pp. 3207-3233, 2019.
K. Kegel, A. Domanowski, K. Feichtinger, R. Pascual, and U. Aimann,
“A delta-oracle for fast model merge conflict estimation using sketch-
based critical pair analysis,” in Proceedings of the ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and
Systems, ser. MODELS Companion ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 1046-1055.

M. A. Rodriguez, “The Gremlin graph traversal machine and language
(invited talk),” in Proceedings of the 15th Symposium on Database
Programming Languages, ser. DBPL 2015. New York, NY, USA:
Association for Computing Machinery, Oct. 2015, pp. 1-10.

K. Kegel, “Supplementary material / implementation: Coconlib and
cocon-cli,” Jul. 2025. [Online]. Available: https://doi.org/10.5281/
zenodo. 15854631

https://doi.org/10.5281/zenodo.15854631
https://doi.org/10.5281/zenodo.15854631

	Introduction
	Context
	Problem Statement
	Approach
	Contribution
	Example

	Background
	Terminology
	Revision Trees and -Graphs
	Revision Trees
	Revision Graphs

	Quality Regions
	Time Regions
	Space Regions
	Regions Construction with Merge Edges
	Multi-Revision Graphs
	Volatile Regions
	Overview

	Proof of Concept
	Separation from Existing Works
	Goal
	Realization
	coconlib
	cocon-cli
	Example Workflow

	Reproducibility
	Conclusion
	References

