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Abstract—Modeling and model-driven processes offer abstrac-
tion as a means to cope with the increasing complexity of sys-
tems. As systems become more complex, additional stakeholders
with diverse expertise contribute, leading to heterogeneous and
federated models, each capturing a different perspective and
abstraction. Since these models describe overlapping aspects
of the same system, some information is shared, and thus
redundancy is introduced. Maintaining consistency of such infor-
mation across models is crucial to ensure that they collectively
provide a coherent system representation. In fact, inconsistencies
can lead to errors in system development, making consistency
necessary for system correctness. In addition, when the system
is critical to safety, the correctness must be established with
the highest level of guarantee, for example, achieved by formal
verification. In this context, understanding which aspects of the
consistency’s complexity influence the complexity of verification
may allow for more efficient verification techniques. In this paper,
we examine the complexity of consistency for managing and
mitigating verification efforts, to ultimately systematically reduce
unnecessary complexity while ensuring the required consistency.

Index Terms—Model Consistency, Complexity, Formal Proofs

I. INTRODUCTION

Modern software and systems engineering mitigates com-
plexity by structuring development around pragmatic abstrac-
tions called models [1]. These models capture relevant infor-
mation about the domain in which the system will be used.
As the information becomes more detailed, the models evolve,
that is, they are refined over time. System development is typi-
cally a collaborative effort that involves multiple stakeholders,
teams, or organizations. Since models are related, overlapping,
and aim to describe different views of the same system, it is
essential to ensure that they remain consistent to maintain the
integrity and reliability of engineering processes [2].

Each model captures a specific concern, which ensures
separation of responsibilities during development. Hence, the
models only collectively fully describe the intended system.
As such, models typically specify properties that overlap
in their meaning or interact in their behavior. Therefore,
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model consistency becomes a necessary condition for joint
realizability [3]. Generally, any two models are consistent if
they do not contradict each other, which would entail that their
conjunction cannot be simultaneously realized.

Inconsistencies hinder realization and may lead to systems
that cannot be implemented. In contrast, a consistent collection
of models reduces ambiguity and prevents contradictions while
establishing confidence that the design will result in a correct
and (semantically) feasible system. Consistency checking is
therefore both an integration prerequisite and a lightweight
verification [2], similar to early formal validation [4].

However, consistency management of practical systems
is challenging. Existing approaches range from lightweight
checks to full-fledged formal verification, offering little insight
into the cost of checking consistency. This cost depends on
the complexity of consistency: What makes some consistency
relations more difficult to verify than others? What features
of the models or constraints drive that complexity? Such
questions create the need to understand what this complexity
is and what information it carries.

In this paper, we introduce an exploratory method for
characterizing the complexity of consistency. We observe that
many consistency constraints between modeling artifacts can
be (abstractly) captured in fragments of the Object Constraint
Language (OCL) [5]. Using Featherweight OCL [6], a shallow
embedding of OCL into higher-order logic, we transcribe these
constraints into the theorem prover Isabelle/HOL [7]. This
encoding makes the verification process explicit and allows us
to measure the effort of consistency checking by analyzing the
generated proof obligations and the structure of their proofs.

Our abstract perspective contributes to the broader goals
of verification and validation by offering a formal lens on
the effort required to ensure model consistency. To illustrate
this idea, we use a collaborative automotive design example
and highlight several key dimensions of complexity inspired
by structural software metrics [8]. While not exhaustive, the
selected dimensions are intrinsic to multi-model development
and can guide future efforts toward better tool support and
methodology.

We seek to explore both, (1) how the complexity of consis-
tency constraints can be assessed, and (2) which structural
or logical properties of models and constraints affect this
complexity the most.
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Our contributions are as follows:

« We turn the notion of consistency complexity into a mea-
surable property through a rigid formalization, namely
the encoding into Isabelle/HOL via Featherweight OCL

o We identify and analyze key dimensions of consistency
complexity using a working example, focusing on proof
obligations and logical structure.

o We reflect on consistency management through formal
verification and highlight limitations and the potential of
proof complexity to guide modeling.

Our contribution is a proof of concept that lays the
groundwork for a systematic approach to consistency analysis
grounded in formal reasoning. It shows how early formaliza-
tion (even on small examples) can yield actionable insight into
the feasibility and cost of consistency checking. Such analyses
can help guide modeling decisions by functional adequacy and
the formal tractability of the constraints they induce.

II. FOUNDATIONS
A. Model Consistency

Model consistency is a fundamental concern in model-
driven and model-based engineering. A common view treats
consistency as a relation: models are either consistent or
not [9]. Consistency refers to the absence of contradictions
between two or more models that are related, for example,
through refinement, projection, or cross-domain mappings.
Two models are said to be consistent if their combined state-
ments do not contradict each other, and inconsistent otherwise.
Specifying consistency relations in model-based engineering is
done in various ways [3], [10]-[13], yet consistency checking
is typically based on formal specifications, expressed, for
example, in the Object Constraint Language (OCL) [5] or
in model transformation languages that encode consistency
preservation rules [14]. The choice of language influences the
expressiveness and complexity of the consistency conditions.
In this work, we use OCL for our examples as it offers a
concise and standard way to express model constraints.

Although more refined notions of consistency, for instance
describing gradual or temporal consistency, exist in the liter-
ature (see Sect. VI), we focus on a simple setting for clear
detection and analysis of consistency violations.

B. Complexity in Modeling

To analyze the complexity of consistency specifications, we
need a measurable notion of complexity for models and their
relationships. In software engineering, one widely used struc-
tural indicator is size. Albeit a coarse metric, size correlates
with understandability and maintainability [15]. This principle
carries over to modeling, where size (e.g., number of elements,
expressions, or constraints) is often a proxy for complexity.

A key distinction is between essential and accidental com-
plexity [16], [17]. Essential complexity stems from the inher-
ent difficulty of the domain or specification task. Accidental
complexity arises from limitations of modeling tools, lan-
guages, or processes. In our setting, consistency specifications
may include both complexity that is justified by the semantics

of the domains being connected and complexity that could be
reduced through better abstractions or tooling.

While more sophisticated metrics exist (e.g., McCabe’s
cyclomatic complexity [18] and Halstead’s effort met-
rics [19]), we focus on size-based measures as a practical and
implementation-independent first approximation. This enables
general reasoning about the difficulty of understanding and
maintaining consistency specifications.

ITII. DIMENSIONS FOR THE COMPLEXITY OF CONSISTENCY

Developing systems requires understanding the domain in
which the system will be used, often through the means of
appropriate abstraction. Modeling allows for the construction
of such abstractions, typically by refining models over time.
When multiple organizations collaborate on a system, each
defines and refines their own metamodels in order to describe
their own excerpt from the domain of the developed system.
These metamodels define structural elements — metamodel
elements — representing the system’s concepts. When some
of these concepts overlap, the associated metamodel elements
are duplicated across organizations.

In this section, we introduce an example of a car developed
collaboratively by two organizations: Car manufacturer and
Supplier. The two organizations model a message bus for
communication between the car’s components, but their repre-
sentations may vary in the levels of detail. The message bus is
an example of a metamodel element. The overlap between the
two metamodels needs to be managed and kept consistent via
explicit consistency specifications. Through our example here,
we want to illustrate such model refinements and the resulting
overlaps, with the stated aim of discussing and assessing the
overlaps’ associated complexity.

Before we proceed, we define two terms that are needed to
fully describe consistency specifications: correspondence and
coextension. Correspondence, on the one hand, is a relation-
ship on metamodel elements, namely a 1-to-1 relationship.
If an instance is created, then another instance of the corre-
sponding model element must also be created. Coextension,
on the other hand, builds on these correspondences between
model elements and enables the retrieval of the corresponding
model elements. We denote coextension by the ~ symbol.
Coextension works both on individual model elements and on
their collections. The coextension operator is a function that
uses the defined correspondences.

In the following subsections, we use the running example
of a collaboratively developed car to explore the key dimen-
sions of our intuitive notion of complexity in the context of
consistency. It is not our aim to cover all possible dimensions
of complexity of consistency, since many of these actually
emerge from the complexity of the domain. Instead, we lay
our focus on those dimensions which we regard as intrinsic to
developing a system with multiple metamodels.

A. Arity of the Consistency Specification

The Car manufacturer and the Supplier start with the most
trivial model of a car, which consists only of the car itself,



Car manufacturer Supplier
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Fig. 1. The Car manufacturer and Supplier both want to build the same car,
thus their modeling starts with the most basic abstraction, i.e., a Car.

Car manufacturer Supplier

Car
+VIN: String

Car
+VIN: String

Fig. 2. Cars with structural features, like VIN.

not divided further, as illustrated in Figure 1. The notion of
consistency introduced by this state of the example is the
identity matching of metamodel elements in both models.

When structural features, such as attributes, are used to iden-
tify model elements, we can explicitly encode the coextension
operation as the equality of these features. For Figure 2, we
can use the attribute VIN to distinguish cars from each other.
We can also use this attribute to determine the correspondence.
If two model elements, instances of cars, from each side of
the models, correspond with each other, they have the same
value for the VIN attribute, hence we refine the equality of
the coextension operator. This notion of identity matching
can be extended to fields and meta-references, as illustrated
in Figure 3 with the messageBus as String, and in Figure 4
with an explicit class MessageBus. Both representations of the
message bus need to be consistent. For example, they have to
share the protocol used, because both the components of Car
manufacturer and Supplier use the same physical message bus
and cannot communicate with each other if they do not use
the same protocol.

While Car manufacturer handles the development of the
whole car, Supplier only considers the parts of the car which
it supplies to Car manufacturer. In our simplified example in
Figure 4, Car manufacturer provides two components using the
message bus, while Supplier provides only one component.

Car manufacturer might not even need to model the ECUs, if
only Supplier has access to the MessageBus and if the relevant

Car manufacturer Supplier

Car
+messageBus: String

Car
+messageBus: String

Fig. 3. The Car will have components communicating over a messageBus.
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Fig. 4. Multiple types of Electronic Control Units (n-1 on meta).
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Fig. 5. Multiple Electronic Control Units (n-m on model).

aspects to be modeled are limited to the message bus and its
communication protocol, for example to provide the correct
voltage to the message bus. This scenario introduces our first
dimension of the complexity of consistency: the arity of the
mapping induced by a consistency specification. We already
introduced a 1-to-1 mapping between the two Car classes, and
a 1-to-n mapping from ECU to the classes ECUI and ECU2 in
Figure 4. The two remaining members of this dimension are an
n-to-1 and an n-to-m mapping. The n-to-1 mapping is needed
to preserve consistency for changes made by Supplier, as the
reverse of changes made by Car manufacturer, which require a
1-to-n mapping. The remaining n-to-m mapping occurs, e.g.,
if the abstraction levels on both sides differ, as illustrated in

Supplier

Car manufacturer

Car
MessageBus
prot : String

¢

%
ECU
prot : String

Fig. 6. The MessageBus is modeled explicitly, as it is too complex to be
described by a simple type like String (1-n on model).



Figure 5. Therein, the protocols of all ECUs must be the same,
so that the components can communicate with each other.

These mapping arities live at the metamodel level. Figure 6
introduces a 1-to-1 on the metamodel level, i.e., the mapping
connects the MessageBus on the side of Car manufacturer
with the metaclass of the ECU on the side of Supplier.
However, this induces a 1-to-n mapping at the model level,
which does not change the complexity of the consistency
specification itself, but rather the computation required to
determine consistency on specific instances.

In summary, consistency specifications can involve different
numbers of model elements, which leads to the following
dimensions of arity complexity:

o 1-to-1 mapping

o n-to-1 mapping

o 1-to-n mapping

e N-to-m mapping

While the concrete effect on complexity is hard to assess,
e.g., a 2-to-2 mapping usually brings less complexity than
a 1000-to-1 mapping. The n-to-1 mapping is the inverse
mapping of the 1-to-n mapping. The underlying idea of that
heuristic is that the more model elements are involved in the
specification, the more complex it is.

B. Extended OCL Consistency Specification

Having described consistency specifications as relations
or mappings between metamodel elements, a more precise
formulation is needed toward a formal description. We propose
to use OCL extended with a coextension operator, written “~".
This operator is not part of the OCL specification, but it
enables consistency specifications via constraints. This opera-
tor acts as a function that returns a Boolean value capturing
whether two elements are in correspondence with each other,
that is, whether they need to be kept consistent.

The “select(~)” operator hence describes the set of coex-
tended model elements. The resulting set might be empty if no
other model elements coextend with the root element. The re-
sulting set might also contain one or more elements, depending
on how many model elements coextend with the root element.
Coextension only happens if the elements overlap in a shared
semantic space and for the purpose of consistency between
these coextending elements. This abstraction allows us to focus
on dimensions independently from the concrete consistency
rule and the involved elements. We discuss that influence later
in Sect. III-C. In our example from Figure 1, we can use the
OCL constraint in Listing 1 to specify a consistency relation
between models.

the specification requires that the size of the corresponding
elements in that collection is exactly one. This means that
there must not be an instance of a Car in either model that
corresponds with more or less than one other instance of
the other model. If the Car classes in both models have
an attribute, for instance, the VIN (Vehicle Identification
Number), we can refine our consistency specification to the
concrete equality expression in Listing 2.

context Car manufacturer::Car

inv: Supplier::Car.alllnstances ()
—> select (c|c.VIN = self.VIN)
-> size() =1

Listing 2. 1-to-1 computed consistency specification

Looking at Figure 6, we immediately see that the con-
sistency specification becomes more complex when more
elements are involved. Indeed, the message bus protocol must
be kept consistent with possibly more than one ECU instance.
We can formulate another OCL expression to specify this
consistency (Listing 3), with the precondition that all cars and
message buses have a unique correspondence.

context Car manufacturer::MessageBus
inv: let mb:Supplier::MessageBus

= self.select (~) in mb.ecu

-> forAll (e|e.prot = self.prot)

Listing 3. 1-to-n consistency specification

In some situations (Listing 4), we have to rely on nominal
correspondence instead of relying on structural or behavioral
observations. The following constraint states that each ECU on
a message bus must have a corresponding ECU on the opposite
side of the model. In this example, the ECU instances do not
have an attribute prot to infer their consistency relation.

context Car manufacturer::MessageBus
inv: self.ecu
-> forAll (e|self.select (~) .ecu
—> exists(f|f ~ e)

Listing 4. n-to-m nominal consistency specification

It is also possible that we want to keep instances of multiple
metaclasses consistent, as shown in Figure 4. An example
of such a consistency specification is provided by the OCL
constraint in Listing 5.

context Car manufacturer::MessageBus
inv: self.ecul.prot = self.ecu2.prot and
self.ecul.prot = self.select (~) .ecu.prot

context Car manufacturer::Car
inv: Supplier::Car.alllInstances ()
-> select (c|c ~ self)
-> size() =1

Listing 1. 1-to-1 nominal consistency specification
The context is the Car class in the car manufacturer model.
The first step in the consistency specification is to query for
all instances of the Car class in the supplier’s model. Then,

Listing 5. Metaclass consistency specification for the example in Figure 4

C. Complexity of the Computation

So far, we have introduced computationally rather simple
mappings of String or object identity for our coextension
operator that serve to concretize correspondences if needed.
Going beyond that assumption, the consistency specification
may further include some computations written in a Turing-
complete language or be expressed with a logical formulae.




Then, we additionally gain a notion of complexity based on
the computation that is needed to express the consistency
specification. This computation includes the computation of
the values that have to be consistent, e.g., in the case of
MessageBus, the consistency specification may also include
a simulation for assessing whether it can handle the com-
ponents or might get overloaded. This computation is part
of the consistency specification and does not influence the
complexity of the coextension operator, but it is needed in
addition to its complexity. Similarly, the computation of a
value may include multiple other values, where the boundary
to the arity of the mapping becomes a bit blurry. On the one
hand, the arity of the mapping has an influence, but on the
other hand, the function used to combine the values also has
an influence on the complexity of the computation. This is
illustrated in Listing 6 with the method “simulate”, which takes
a set of ECUs, both from the message bus itself and from
corresponding message buses, as input and returns a boolean
value that indicates whether the ECUs can use the message bus
or overload it. This value is then compared against the boolean
field MessageBus::overloaded, which indicates whether the
message bus is overloaded. Depending on the use case, it
might be acceptable to have an overloaded message bus, where
it is up to the developer’s decision on how to react in the
case when an inconsistency between the field value and the
simulation result occurs. The complexity of the computation
is, in this example (see Listing 6), the computation of the
simulation and the coextension. In general, the complexity
of the computation is connected to the complexity of the
constructs of the language, e.g., the complexity of OCL [20].

context Car manufacturer::MessageBus
inv: simulate (self.ecu, self.select (~) .ecu)
<> self.overloaded

Listing 6. Non-breakable consistency specification with external computation

Therefore, the overall complexity of the consistency speci-
fication also depends on the complexity of the computation as
part of the consistency specification. Concerning exclusively
the coextension operators, we can determine their compu-
tational complexity in the O(n) notation. In the first case
of the 1-to-1 mapping, the complexity is O(1), as we only
need to check for the existence of two elements, one in
the Car manufacturer model and one in the Supplier model.
While the nominal correspondence yields a constant algorith-
mic complexity, the structural 1-to-1 mapping yields a linear
algorithmic complexity of O(n) where n is the number of
elements in the set of Supplier model instances. The second
case of the 1-to-n mapping is O(n), as we have to check
for the existence of one element in the Car manufacturer
model and n elements in the Supplier model. The third case
is the n-to-m mapping with a complexity of O(n - m), as
we have to check for the existence of n elements in the Car
manufacturer model and m elements in the Supplier model.
In this case, the computational complexity is approximately
O(n?) if we assume that the number of elements is the same
in both models.

D. Compositional Complexity

The arity and computation complexity are properties of
a given consistency specification. However, a consistency
specification might also be decomposed into several simpler
consistency specifications. In the example with the message
bus scenario, the consistency specification stating that all con-
nected components must use the same message bus protocol
can be broken down into individual consistency specifications,
each ensuring that a single component conforms to the pro-
tocol. From an arity perspective, this transformation replaces
one 1-to-n to n 1-to-1 mappings. A similar principle applies
to the complexity of computation. Independent parts of the
computation might allow for breaking down the specification
such that each one compares sub-aggregations.

Still, not all consistency specifications can be decomposed
in this way. Some constraints are inherently non-decomposable
because breaking them down would alter their semantics and
lead to incorrect verification results. For instance, consider the
consistency specification based on the simulation of all the
ECUs to ensure that they do not overload the message bus
when operating simultaneously. If this specification is split
such that each ECU is simulated in isolation, it would fail
to capture the cumulative effect of multiple ECUs using the
message bus at the same time. This type of non-breakable
consistency specification occurs when the specification de-
pends on global properties that cannot be meaningfully divided
into independent subproblems. In this example, combining the
simulation results for each ECU separately does not yield the
result of the simulation with all ECUs.

Lastly, breaking down a consistency specification does not
necessarily reduce its overall complexity. Whereas usually
fewer metamodel elements are involved, we might lose easily
accessible information that is costly to recompute for the
consistency specification. In summary, to enable the decompo-
sition of a consistency specification, we need a decomposition
operation that inherently includes its composed state, e.g.,
splitting an equation into equal sub-equations also results in
the equality of the whole equation.

IV. INFLUENCE OF COMPLEXITY DIMENSIONS ON
COMPLEXITY WITH FORMAL PROOFS

We now want to illustrate how the consistency specifications
from the previous section can be employed in formal proofs
which — if the specification holds — ensure that the system
can indeed be realized. In order to showcase the associated
proof complexity, we outline proofs for illustrative examples,
but do not limit our expressiveness. As discussed in Sect. I,
we use Featherweight OCL with the interactive theorem prover
Isabelle/HOL. This allows for rigorous and structured proofs in
a strong logic with as few assumptions as possible. Nonethe-
less, the following observations are not tied to the specific
logic but, instead, are of a general and structural nature based
on the metamodel elements and consistency notions at hand.
As such, our observations are also expected to hold similarly,
e.g, for simpler embeddings in Isabelle/HOL [21] or in the
Rocq prover [22].



Formally verifying that a consistency specification holds
means demonstrating, via rigorous proof, that a set of models
adheres to a formally stated consistency requirement. The
burden of proof entails providing a complete mathematical
argument that the specification is met by the model instances.
Once the formal proof is derived, it comprises a chain of
instructions in a dedicated proof language, such that a the-
orem prover can check whether the consecutive application
terminates as a complete proof. Many formal proof frame-
works bear strong similarities with source code written in
a programming language with internal structure and logical
dependencies [23]. Indeed, similar to object-oriented code
being split into classes with methods and possible inheritance,
formal proof frameworks are structured in theory modules with
definitions, theorems, and possibly theory imports. While it is
hard to make precise statements about the real complexity of a
proof, applying metrics such as lines of codes (LoCs), depth of
function calls, or cyclomatic complexity to proof frameworks
already allows approximating their complexity.

We can leverage these proof-based metrics to assess and
compare the complexity of different consistency specifications.
More precisely, we describe how the complexity of the proof
relates to the various dimensions of complexity presented in
Sect. III. First, we discuss how to formalize consistency on
models on the example of the proof framework Featherweight
OCL within the theorem prover Isabelle/HOL. Second, we
show how this transfers to the structure of the respective for-
mal proofs. Third, we discuss the resulting proof complexity.

A. Formalizing Consistency via Coextension on Models

To formally prove consistency between models, we first
derive a formal consistency relation that spans across various
models, but can also be rigorously evaluated between every
element of each metamodel. In the simplest case, checking
consistency between two models might reduce to comparing
primitive type values, e.g., String or Integer, that correspond
to a model element. More coarse-grained consistency notions
may simply check that the numbers of elements for a specific
type correspond. Moreover, when addressing abstract models,
not every model element may be represented by a primitive
value (e.g., when their structure is too complex or when they
are only described by informal domain knowledge). In such
cases, natural consistency evaluation might not apply. Hence,
we assume that the consistency for each non-primitive model
element is captured by an a priori mapping of correspondences
that tell us, e.g., that two specific feature-less cars are indeed
consistent or inconsistent.

In our formal proof framework, we use the coextension
relation (denoted ~) to build on these correspondences and
relate elements from two different metamodels. Thus, the first
and second arguments of ~ belong to distinct metamodels.
As with OCL, Featherweight OCL only talks about a single
metamodel, so we must define two disjoint halves from a
single metamodel that we can treat as two distinct metamodels.
Practically, this can be achieved by having two versions of
each model and hence omitting the usual single Oclany

class, which normally serves as the top of the class hierarchy
to combine the models within their metamodel. This model
duplication and artificial separation enables two fully disjoint
universes of model elements within the same metamodel. Ele-
ments from the first universe can only be mapped to elements
from the second universe, either via their (primitive) values or
by evaluating ~ on their correspondence map. By extending all
nonprimitive model elements by such correspondence maps,
we may use the coextension relation as a basis for our general
formal notion of consistency.

In Figure 1, ~ uses only object identities and the correspon-
dence map, since there are no primitive values. To analyze the
invariant given in Listing 1, we resort to a correspondence
map, e.g., as follows:

definition correspondencescqr where
"correspondencescqar = Set{
Pair{xcar171/ Xcar271}/
Pair{xcar172/ Xcar2_2 }} "

definition coextcq, (infixl "~¢q,." 100) where
"a ~cqr b = correspondencescar

->includesget (Pair{a, b})"

Moreover, the invariant of Listing 1 in Featherweight OCL
using an Isabelle/HOL definition reads as follows:

definition One to_One;ns "Car2 = Boolean" where
"One_to_Onejny (self) = Carl
.allInstances () —>selectget (c | ¢ ~ self)
—>sizeger () = 1"

On the surface, only little has changed, i.e., the type
annotations are now explicit for operators on collections and
OCL’s equality relation is written £ to distinguish it from
Isabelle/HOL’s general equality relation. The Isabelle proof
assistant parses and typechecks this definition and thereby
guarantees that it is syntactically correct and that the query

semantically agrees with the metamodels in Figure 3.

As in Listing 2, we can also use structural features such as
the VINs of Figure 2 to concretize the coextension operator
to a simple check for equality.

"Car2 =
Boolean"

definition One to_One Refinedin.

where
"One_to_One_ Refinediny
Carl .allInstances()
—>selectget (C | C .Vincaeri = self
-VinCa,rQ)
—>sizeger () 2 1"

(self) =

To express invariants for larger models, such as in Figure 6,
we need to generalize the coextension relation further, in
order to work with correspondences on more than just one
component. In the example, we can introduce the two distinct
concrete operators ~c, and ~yp which consider the corre-
spondence of cars and message buses, respectively. Hence,
the bare ~ can be used as a polymorphic operator to abstract
away from the individual components and thus be available
for use in place of either of the concrete operators.



We can now add the invariant on message buses in Listing 5,
while still incorporating the invariant from Listing 1 on cars,
as follows:

definition One_to_ Njp,
where
"One_to_Niny (self) =
let mb = MessageBus2 .alllInstances()
—>selectget (M| self ~ m)
—>asSequenceget () —>firstseq ()
in (mb .€CUMessageBus2 —>forAllget (e
A
e .protgcuz2 = self -prOtJMessageBusl))"

"MessageBusl = Boolean"

In order to keep the OCL extensions to a minimum, where
Listing 3 uses .select (~), we do the same with standard
OCL operators plus the ~ coextension.

Overall, we see that only little change is necessary regarding
the invariants, in order to handle the meaning of our coexten-
sion operator in Featherweight OCL.

B. Reasoning about Consistency with Isabelle/HOL

Having defined the invariants, we can now consider what it
takes to prove that they hold in a given model, that is, in a
given instance of the metamodel of Figure 1.

Inside Featherweight OCL, such an instance is called a
‘heap state, which we write 7; and the relation 7 = e
expresses that under the heap state 7, the OCL expression
e will evaluate to True. A heap state captures a specific
instantiation of metamodel components and associations. Since
Featherweight OCL is a shallow embedding of OCL into
Isabelle/HOL, we can freely mingle OCL notation with Is-
abelle’s own metalogic, without invalidating our semantics.
Using the relation =, an Isabelle proof can directly talk about
OCL expressions and prove whether they are satisfied for a
given metamodel instance. Hence, we must prove that invari-
ants are satisfied by specific heap states. Specifically, every
instance of a metamodel element must satisfy the appropriate
invariant, i.e., we must prove that for an arbitrary instance of
the metamodel component ¢ and an invariant qj,y on a, the
statement 7 = q;jny(a) holds.

C. Complexity of Consistency in Formal Proofs

In the following, we give proof outlines for our consistency
theorems. Even though these are not full proofs, they already
convey a sense of the dimension of complexity carried over
from an informal semantics as presented in Sect. III into a
formal semantics that is required for formal verification. As a
first step, we consider again the invariant in Listing 2:

lemma example 2:

fixes a "Car2"

shows "r |E One_to _One Refinedin, a"
proof -

obtain b "Carl" where "{b} =

{x. T |: Carl .alllInstances()->includesget (X)
AT E X ~car a}"

): b~ a”"

E b .vincari £ 2 .vincaer2"

E Carl .allInstances()
—>selectget (C] ¢ .VIiNcari £ 4

hence "7
hence "T
hence "7

.vingcarz)

= Set{b}"
moreover have "r = Set{b}->sizegei () = 1"
ultimately have
"r | Carl .allInstances/()
—>selectget (] ¢ .VinNcari £ 4
—>sizeget () L qn
thus ?thesis unfolding One_to_One_ Refinedin.,_def
by simp
qed

.vincar2)

This proof is somewhat lengthy, but still straightforward
to read, as it closely follows the structure of the 1-to-
1 mapping. We first obtain a value b corresponding to
a via the coextension operator on cars. Then, we prove
that this b is unique. Hence, we may deduce that the
VINs for a and b are the same, and additionally that
Car.allInstances().select(c| c.VIN ~ a.VIN) has
indeed size one. Thus, we prove that the invariant is satisfied.

We can contrast the above proof with a similar proof for
the considerably more complex invariant in Listing 5:

lemma example_ 3:

fixes a "MessageBusl1"
shows "7 |= One_to_Nin, a"
proof —
obtain b :: MessageBus2

where "7 |= MessageBus2 .allInstances ()
—>includesset (b) "
and "T | a ~mp D"
from <7 = a ~mp b> have "t E a ~ b"
by (simp add: squigglems)
moreover {
have "Ve. 7 = b .ecumessageBusz—>includesset (e)
— T ': e .protgcuz2 = a -prOt]\/IessageBusl"
hence "7 = b .ecunmessageBus2—>forAllges (e
e .protgcu2 £ 3
}

ultimately show ?thesisqed

.protmessageBusl) "

Here, we see that the mapping’s arity shapes the proof.
This outline is structurally similar to the previous one, and
the coextension operator allows to obtain a value b that
corresponds to a; yet, in the second half, we have an ad-
ditional universal quantifier. In order to prove the validity
of ecu->forAll(e| e.prot = a.prot), we lift it to Is-
abelle’s metalogic, and we obtain the additional proof obliga-
tion which quantifies over ecu components on the heap state:
Ve. T ’: b.ecu->includes(e) — T ): e.prot = a.prot.

Likewise, we have seen the influence of compositional com-
plexity on the proof. As in Sect. III-D, the 1-to-n mapping can
be replaced by n 1-to-1 mappings, which yields simpler (but
more) proof obligations. However, such a restructuring has
little influence on the overall proof, merely making complexity
more visible. Therefore, by replacing the universal quantifier in
the second half of the proof, we gain another proof obligation
over the additional 1-to-1 mapping. Hence, we have an implicit
universal quantifier that handles arbitrary instances of the
message bus component.

Finally, the complexity of computations appears in two
different aspects of our formalization. First, it appears in
the definition of operators used inside Featherweight OCL



itself; and second, the computational complexity appears in
the definitions of custom functions with which we extend
OCL in Listing 6 with simulate (). This second aspect lies
largely outside the scope of the proofs; instead, it is part
of the effort required for the larger formalization work. The
computational complexity in the definition is more concrete:
if we substitute a more complex computation for the simple
condition of equality on protocols in invariant Listing 5, then
it needs to be discharged in the corresponding proof.

V. DISCUSSION

We explored the idea that the complexity of consistency
specifications is reflected in the structure of their formal
proofs. By translating OCL-like constraints into Isabelle/HOL,
we examined how dimensions such as arity, aggregation, and
computational content impact the size and shape of resulting
proof obligations. These preliminary results suggest that for-
mal verification tools can also be used to analyze and quantify
the modeling effort associated with managing consistency.

The proposed approach provides a formal lens to reason
about consistency beyond informal or tool-specific interpre-
tations. By grounding consistency rules in Isabelle/HOL, we
obtain rigid, unambiguous, machine-checkable specifications.
This ensures syntactic well-formedness, reveals implicit as-
sumptions, and opens the door to proof-based analysis of
specification structure. We further illustrated how complexity
evolves during a staged modeling process in Sect. III, pro-
viding an early demonstration of how proof complexity can
reflect modeling choices.

Several limitations constrain the generality of our results.
First, the models and consistency specifications are inten-
tionally simplified to keep the encoding tractable. As such,
our findings should be understood rather exploratory than
conclusive. Second, the observed complexity is influenced not
only by the intrinsic properties of the models but also by
artifacts of the encoding (e.g., use of Featherweight OCL) and
by Isabelle’s logic itself. Distinguishing essential complexity
from accidental overhead remains an open challenge. We also
encountered limitations in the current tool support. The transla-
tion of UML and OCL to Isabelle/HOL is largely manual, and
existing translation approaches into the Rocq prover [22] are
not actively maintained. Automating this translation pipeline
can reduce the encoding effort and also enable an application
of proof-based consistency analysis in practice.

Despite these challenges, we believe that formalization
brings significant value. Beyond correctness, formalization
opens opportunities for quantitative metrics. Measures such
as proof size, depth, and dependency structure [23] may serve
as proxies for complexity and highlight regions in a model
that require simplification or refinement. Empirical validation
of the approach will require additional models to derive and
validate meaningful metrics, and the application to real-world
systems is a promising direction for future work. Our results
illustrate the potential of combining formal verification with
model-driven engineering to reason about the structure and
maintainability of consistency specifications. While challenges

remain in scalability, automation, and distinguishing essential
from accidental complexity, our work points toward a richer
understanding of consistency management as a modeling ac-
tivity that integrates formal verification.

VI. RELATED WORK

A fine-grained examination of complexity requires proper
metrics. Object-oriented software design metrics have been
explored [24]-[26], while size-related modeling metrics have
also been studied [15]. Object-oriented software measures [27]
have also influenced the evaluation of formal proof complex-
ity [23]. More broadly, the complexity of formal reasoning
systems has been studied through the lens of proof complexity
by Cook and Reckhow [28], [29]. Complementary work,
such as that by Heijstek et al. [30], evaluates the complex-
ity of distributed modeling processes by aggregating metrics
per model type. Software complexity also links to cognitive
weight [31]. Consistency in model-driven engineering is often
related to model synchronization [32]-[34]. Model transfor-
mations, especially bidirectional transformations (BX), enable
a consistent propagation of changes between models. A lens is
an asymmetric BX where one model (the view) is derived from
another (the source) and changes to the source are reflected
in the view [35]. BX approaches provide formal specifications
for consistency and repair between metamodel pairs [36].

Intra-model consistency and well-formedness can be ex-
pressed and checked using OCL. Early work by Chiorean
et al. [37] introduced OCL-based consistency specifications.
Moreover, Bodeveix et al. proposed extensions for verify-
ing UML model consistency [38]. Mapping OCL constraints
onto graph conditions enables automated verification using
attributed typed graph rewriting [39]. Other approaches have
also been proposed to integrate heterogeneous models. Triple-
graph grammars provide a systematic framework for main-
taining consistency between multiple related models and have
been applied to incremental consistency management [32],
[40]. Similarly, comprehensive systems aim to provide inte-
grated solutions for managing multiple interrelated heteroge-
neous models in a coherent manner [41], [42].

In view-based development, consistency is closely linked
to how information is distributed across views, which can be
done with a projective or synthetic approach [43]. Projective
methods derive (user-requested) views on demand from a
centralized Single Underlying Model (SUM) [44], which is
redundancy free and internally consistent by design. Synthetic
approaches encode the full system across overlapping views,
requiring explicit pairwise consistency relations. Consistency
is then preserved via model-to-model transformations, such as
bidirectional transformations. The Virtual Single Underlying
Model (V-SUM) [10] blends both paradigms and presents
itself as projective, but internally consists of overlapping and
redundant models. The internal models must be actively kept
consistent.

We considered consistency as a relation, such that models
are either consistent or not. In most frameworks, consistency
is viewed as a syntactic property, but it can also rely on



semantics [9]. While this qualitative perspective enables for-
mal repair and enforcement, temporary inconsistencies may
be tolerated to avoid information loss [45]. Consistency can
also be considered quantitatively, for instance, by counting
constraint violations [46], [47], allowing graded analysis and
change tracking. Such a notion of quantitative consistency can
be linked to the gradual notion proposed by Stevens [48] where
the degree of agreement between models is captured by a value
in a partially ordered set or lattice.

VII. CONCLUSION

We analyzed the complexity of consistency specifications
using OCL-like specifications and translated them into formal
proof obligations to assess their proof complexity in formal
verification. We showed that complex consistency constraints
can be decomposed into simpler, more manageable parts. We
also discussed some limitations of OCL that prevent the di-
rect specification of consistency across (meta-)models, which
underscores the relevance of more expressive approaches.
The core of our work concerns heterogeneous models with
overlapping information that must be kept consistent. In this
context, a proper analysis of the complexity of consistency
should consider both the consistency specification and the
collection of the involved models. In fact, understanding this
particular notion of complexity is relevant for all practitioners
who face the challenges of consistency in system development.
Our work is a first step toward a deeper understanding of
consistency specifications and their formal verification.

We aim to validate our complexity assessment through a
real-world case study, which is underway in the context of
an acknowledged nationally funded interdisciplinary research
project. Therein, we want to empirically show which di-
mensions contribute to the complexity of consistency, either
accidentally or essentially. Such a case study would enable an
analysis of the effects of modeling techniques and paradigms
on the complexity of consistency, thus offering guidance on
more manageable consistency specifications. On the formal
side, we plan to further investigate the formalization of con-
sistency as supported by the Vitruv platform. This necessitates
the currently missing tooling that automates reasoning and
verification techniques on consistency specifications between
models. By combining theoretical and empirical perspectives,
our research opens the way for more effective and scalable
consistency management in model-driven engineering and,
potentially, cyberphysical systems.
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