Program Synthesis for Geometric Modeling

Romain Pascual' (™) @, Pascale Le Gall' @, Hakim Belhaouari?

Arnould?

, and Agneés

L MICS, CentraleSupélec, Université Paris-Saclay, France
{romain.pascual,pascale.legall}@centralesupelec.fr

2 Université de Poitiers, Univ. Limoges, CNRS, XLIM, Poitiers, France
{hakim.belhaouari,agnes.arnould}@univ-poitiers.fr

Abstract. Implementing geometric modeling operations in a program-
ming language can be inherently challenging despite their seemingly
simple input-to-output descriptions. We propose a program synthesis
method to generate executable code from representative examples. We
focus on geometric computations in topology-based modeling, where
nD objects are decomposed into cells with added geometric informa-
tion. This domain uses combinatorial structures represented as graphs,
with operations formalized as graph transformation rules and geometric
modifications given by code-like annotations on the rule’s graph nodes.

Keywords: Programming-by-example - Domain-specific language - Topology-
based geometric modeling - Constraint-solving.

1 Introduction

Program synthesis, often described as "the holy grail of Computer Science" [23)],
aims to automatically generate executable programs from high-level specifications,
alleviating the burden of manual coding. Inductive synthesis, in particular, infers
programs from input-to-output examples [4,|50], such as the FlashFill feature in
Microsoft Excel [21]. In this work, we investigate program synthesis in a specific
application domain, geometric modeling, which provides methods and algorithms
to represent and manipulate geometric shapes. Geometric modeling operations are
typically implemented in a low-level programming language like C or C++, with
advanced performance optimizations, making them difficult to adapt. While APIs
exist to define custom operations [9,20L|49|, they often exceed domain experts’
skills. Therefore, a means to create custom operations remains a longstanding
aspiration, one that a program synthesis approach could fulfill. Rather than
synthesizing low-level code, we propose to synthesize modeling operations in a
Domain-Specific Language (DSL) based on graph transformations [14]25] at the
core ot the Jerboa platform [3] to benefit from the high-level representation of
operations and associated formal verification mechanisms [2}/42].

Related Work Prior work has explored program synthesis for generating geometric
objects with desired properties, e.g., from patterns [7], program traces [8}|26],

https://orcid.org/0000-0003-1282-1933
https://orcid.org/0000-0002-8955-6835
https://orcid.org/0000-0003-4454-7756
https://orcid.org/0000-0003-2075-1533

2 R. Pascual et al.

ruler-compass constructions |22], geometric constraints [37], or an underlying L-
sytems [24,45,/52]. While not advertised as program synthesis, inverse procedural
modeling aims to retrieve the procedure that generated an object to build similar-
looking objects from variations of the procedure [15,27,[51]. Other works have
applied program synthesis techniques to CAD using Constructive Solid Geometry
(CSG) [30L[47]. In particular, [13] proposes to synthesize CSG trees from surface
meshes using the SKETCH system [48]. These methods are similar in spirit to
ours but distinct in goal: they aim to generate objects, whereas we are interested
in synthesizing transformations of geometric objects. Closer to our goal, in [34]
the authors generate geometric expressions from examples with a neural network
learning the parameters of a subdivision scheme. While interesting, this approach
diverges from our goal as we aim to compute the target geometry while supporting
arbitrary topological changes.

Contributions We propose an automatic generation of geometric expressions over
arbitrary topological modifications from an input-to-output example, tailoring
established synthesis methods to geometric modeling. Building on Jerboa’s DSL
and prior work on inferring topological transformations [41], we complete the
synthesis of modeling operations by retrieving the missing geometric expressions.
Inspired by component- and sketch-based synthesis |22,28,/48|, we treat the
synthesis task as completing a sketch skeleton describing an affine combination
of components, called values of interest, grounded in topological abstractions.
The resulting constraints, derived from the input-to-output example provided by
the user, are solved via a solver. We present JerboaStudio, a tool integrated into
the Jerboa platform, to empirically validate our method.

Paper Organization Sec. 2] clarifies our goal using a running example, the flat
extrusion, while Sec. |3| revisits generalized maps for object representation and
Jerboa’s DSL. We outline our synthesis method in Sec. [d] with practical imple-
mentation details discussed in Sec. Bl Sec. [f] evaluates our framework with a
benchmark on subdivision schemes. Sec. [7] provides some concluding remarks.

2 Motivation and Running Example

To illustrate our motivation, consider a 2D flat extrusion. The user provides
two objects (Fig. : an initial pentagonal face and a modified version with a
shrunk copy, sharing the same barycenter and connected vertex-to-vertex with
the original. Our goal is to synthesize a program that computes the new vertex
positions. Using the annotations in Fig. [Ib] we aim to compute the output
positions o1, ..., 05 (in orange) from the input positions i1, ..., 5 (in blue). Since
the added face is a homothety, each oy fork € 1..5 can be expressed as a linear
combination o, = p - i + (1 — p) - C where i, is the corresponding input vertex,
C= % 22:1 i is the barycenter of the original face, and p is the homothety ratio.
Since all o, share the same expression, the synthesis task reduces to inferring
the correct value of p and producing a program that computes this expression.

Program Synthesis for Geometric Modeling 3

(a)

Fig. 1. Synthesis of a geometric computation: @ a geometric modeling operation,
@ explanation about the geometric computations.

ool He-¢

Fig. 2. Variations on the modeling operation of Fig. @ different geometry, @
different initial topology, different topological modification.

Importantly, the expression must generalize beyond pentagons to support reuse
across contexts. For example, a quad as inputs (see Fig. [2b) yields the same
equation for each o; with now k£ € 1..4. We abstract the computation into the
symbolic expression O = p- I + (1 — p) - C, where I and O are meta-variables
for the input and output families. From this symbolic form, we can recover the
concrete expressions with the input-to-output example of Fig.

The objects of Fig. are meshes, described by an internal arrangement
of cells (vertices, edges, faces) — the topology — enriched with data attached to
the cells (positions to vertices, curvatures to edges, and colors to faces) — the
geometry. The operation in Fig. 2a] uses the same topological modification as the
flat extrusion of Fig. [Lla] but with different positions: the geometric computation
only differs in the value of p. Fig. 2b|results from the same operation but applied
to a quad. If we synthesize the operation from the pentagonal example in Fig.
and apply it to this quad, we should recover the correct output. Put differently,
both input-to-output examples should synthesize the same operation. Finally,
Fig. [2d shows a different modeling operation, the ternary subdivision 32|, which
performs a different topological modification.

3 A DSL for Topology-based Geometric Modeling

Geometric modeling requires an internal representation of shapes. For our synthe-
sis framework, the representation must be precise enough to express fine-grained
edits but regular enough to support automated reasoning. We adopt generalized
maps (Gmaps) [11}/33|, which offer a combinatorial structure to describe how cells
(vertices, edges, faces, etc.) are connected. Gmaps are well-suited for our synthesis
framework because (1) they support arbitrary-dimensional meshes (e.g., surfaces,

4 R. Pascual et al.

y \ ~ — e N o
o 1s N <0, > ;/(DL P '(0 N 2 <0, 1> 1 Position for nO
uy Positien 7 - \ 7/ position 2 return nO.position;
\no” Nno” \nl n2 Nz na

(a) (b)
1 / Position for n4
2 return Point3::midpt(Point3::middle(<0,1> position(n0)),n0.position);

(c)
Fig. 3. Flat extrusion: @ rule scheme, @ expression for n0, expression for n4.

volumes); (2) they can be interpreted as graphs with regular patterns, enabling
rule-based rewriting; (3) they separate the topology (connectivity) from the ge-
ometry (e.g., positions, colors). With the encoding of Gmaps as graphs, modeling
operations can be described as graph rewriting rules . These consist of a
left-hand side (LHS) graph identifying a pattern to match and a right-hand side
(RHS) graph for the modified pattern. In Jerboa, rules are generalized to rule
schemes as illustrated in Fig. |[3a} where the rule structure defines topological edits
and node annotations (e.g., position) provides the computational expressions
to update the geometry. These expressions, given in Figs. BB and are the
target of our synthesis framework detailed in Sec. [d] The remainder of this section
introduces the formal background required to interpret such rules.

3.1 Embedded Generalized Maps

Generalized maps can be formalized as a specific subclass of graphs with con-
straints that ensure the topological correctness of the structure.

Definition 1 (Generalized map (see [42])). Given n € N, a generalized map
of dimension n, n-Gmap or simply Gmap, is an undirected graph G = (N, A)
with arcs labeled by a dimension d in 0..n (then called a d-arc) satisfying:

Incidence constraint: each node has exactly one incident arc per dimension,
Cycle constraint: every path labelled ijij (with i+ 2 < j) forms a cycle.

bbbl

Fig. 4. Gmap construction: @ 2D object, @ darts (e) for each valid vertex-edge-face
triplet, O-arcs (e—e) link darts in the same face and edge but not the same vertex,
l-arcs (e=e) link edges, [(€)] 2-arcs (e=e) link faces. Cells: [(T)] (1, 2)-orbit (vertices),
()] (0, 2)-orbit (edges), [(d)] (0, 1)-orbit (faces).

() ()

The incidence constraint enables unambiguous path descriptions as sequences
of dimensions. To distinguish between nodes in Gmaps and in our DSL rules,

Program Synthesis for Geometric Modeling 5

we refer to the nodes in N as darts, following [11]. The semantics of a dart is
given by a tuple of incident cells, and a d-arc connects darts differing only at
dimension d. In a 2-Gmap, darts represent vertex-edge-face triplets, and 0O-arcs
connect darts in different vertices of the same edge and face. Fig. [illustrates the
progressive construction of a Gmap: darts are created (Fig. , then connected
via arcs (Figs. [4d| to , forming the object’s topology. Darts on the boundary of
a cell are self-linked along the corresponding dimension (see 2-loops in Fig. .
Cells, such as vertices, edges, or faces, correspond to subgraphs called orbits.

Definition 2 (Orbit (see [42])). Let G be an n-Gmap, v a dart of G and
0 C 0..n a subset of dimensions. The orbit G{(o)(v) is the maximal subgraph
induced by the dimensions in o and containing v.

The orbit G{o)(v) is of type (o) or is an {(o)-orbit.

The (o)-orbits are the connected components after ignoring arcs labeled
outside (0). Since 0-arcs split vertices but preserve edges and faces, (1, 2)-orbits
contain all darts belonging to a vertex and encode the vertices (Fig. . Similarly,
faces correspond to (0, 1)-orbits (Fig. and edges to (0, 2)-orbits (Fig. [4g)).

Fig. 5. Embeddings: @embedded Gmap, @position : (1,2) — Point3, color :
(0,1) — Color3.

Geometry and attributes, such as vertex positions or face colors, are attached
via embedding functions associating orbits to data types [2], similar to graph
attribution [14,/25]. For example, vertex positions are encoded by position :
(1,2) — Point3 and face colors by color : (0,1) — Color3.

Definition 3 (Embedded generalized map (see [2])). Let 7 : (o) — 7 be
an embedding symbol T together with an orbit type (o) and a data type T.. A
Gmap embedded on w is a pair (G,7g) where G = (N, A) is a Gmap and 7g is
a function N — T, satisfying:

Embedding constraint all darts of an (or)-orbit share the same value of
type Tr.

Embedded Gmaps can be extended to support multiple embedding symbols.
Fig. p] shows the position and color embeddings of the Gmap from Fig. [4]

6 R. Pascual et al.

Fig. 6. Instantiation of the flat extrusion based on the rule scheme of Fig. @
instantiated rule, @ zoom on the LHS and RHS instantiations, ao in coincides
with a in @ sharing the same position Z.

3.2 Modeling Operations as Graph Transformations

In Jerboa [3|, rules are extended to rule schemes parameterized by orbit types to
abstract topological changes [42]: nodes become placeholders for orbits, labeled
by their orbit type. Replacing a node with an orbit is called instantiation. A
distinguished LHS node, the hook, anchors the matching. Other nodes encode
transformations via relabeling functions derived from the hook’s orbit type and
theirs. Fig. shows the rule scheme for the flat extrusion from Fig. [1} The
hook n0 (double line) of type (0, 1) is modified to (0,), encoding the function
(0,1) — (0,), ie., {0~ 0,1+ _}. The symbol denotes the removal of the
initial dimension. Node n4 with type (0, 1) encodes the identity function, creating
the homothetic copy of the initial face.

Instantiating this rule on a pentagon (Fig. replaces the hook n0 with the
(0, 1)-orbit containing the darts a, ..., j. Five copies are created for each RHS
node (color-coded to match the nodes in Fig. , relabeled accordingly. Finally,
the copies are connected following the arcs of the rule scheme: an arc between
two nodes results in an arc between each pair of twin darts in the two copies.
Figs. [65] and [6d zoom on dart a. Subscripts indicate the node index from Fig.
The transformations builds a 1012-path between ay and a4, while arcs connecting
same-color darts originate from the node orbit types. This high-level explanation
elucidates the abstraction used within our synthesis framework. For further details
on the instantiation, we refer the reader to the set-based explanation in |39).

In Fig. [Ba] RHS nodes n0 and n4 carry geometric expressions as indicated by
the annotation position. For n0, the expression (Fig. preserves the initial
positions. For n4, the expression (Fig. computes:

midpt(middle((0,1) position(n0)),position(n0)). (1)

where position gives the position, midpt the midpoint between two positions,
middle the barycenter of a collection of positions, and (0,1) position a col-
lection of positions in an orbit (0,1). This collection is retrieved by a dedi-
cated operator in Jerboa’s DSL, leveraging the high regularity of Gmaps to
gather embedding values within an orbit. During instantiation, n0 is substi-
tuted by the darts associated with n0 before modification. For dart a, we

Program Synthesis for Geometric Modeling 7

derive midpt(middle((0,1) position(a)),position(a)). Substituting n0 by a
makes the expression computable as it solely relies on dart identifiers. First,
middle((0,1) position(a)) computes the barycenter C = %Zzzl i from
Fig.[TH All darts a, ..., j compute the same value. Then, midpt(...,position(a))
computes the midpoint between the barycenter and the position of a, as in the
expression p.I + (1 — p).C of Sec. 2| with p = %

Geometric expressions for rules over embedded Gmaps can be formalized
with algebraic data types [2]. An embedded Gmap enriches a Gmap with an
algebra over a signature combining node variables (from LHS nodes), standard
operations (e.g., middle for the data type Point3), and topological operators
such as collect operators 7y, (e.g., (0,1) _position in Equation), retrieving
To-values within an orbit (o). These last operators allow concise expressions for
geometric computations, justifying the expression O = p- I+ (1 —p)-C in Sec.
Jerboa allows the user to declare and implement new functions (in Java) to be
used in an imperative language for geometric expressions, part of Jerboa’s DSL.
The expressions are replaced with the implemented functions when the rule is
translated into an efficient program via code generation. In this work, we will
use a fragment of the native expressions available in Jerboa (see Sec. [1.2).

4 Synthesizing Geometric Expressions

Sec. [3] explained that Jerboa’s DSL edits the topology via graph rewriting rules
and the geometry via node-based expressions, enabling the separate synthesis
of each kind of change. In [41], we introduced the topological folding algorithm
extracting topological changes by folding an input-to-output example into a rule
scheme, leaving only the geometric expressions to be synthesized. Embeddings,
parameterized by orbit types, anchor geometric expressions in the topologi-
cal structure, providing convenient access to values of interest. We propose to
synthesize linear combinations of such values of interest.

Program synthesis faces two core challenges: the intractability of the program
space and the interpretation of the user intent |23]. Designing a program synthesis
method involves choosing how to represent the user intent, define the program
space, and analyze it to find a candidate program. These choices are interdepen-
dent; for example, a grammar-encoded search space favors enumeration-based
analysis [1]. We now elucidate our choices and rationale, while focusing on the
synthesis of positions.

4.1 User Intent

We adopt a programming-by-example approach to synthesize geometric expres-
sions of modeling operations, using the same user-provided input-to-output
example and leveraging intermediate results from the topological folding algo-
rithm [41]. The user provides (1) an input instance, (2) an output instance, (3) a
mapping of preserved parts. This process is comparable to the substring analysis
in FlashFill [21] but becomes exponentially harder with graphs (see [38), Sec. 7.2]

8 R. Pascual et al.

for details). The algorithm also records the set of darts in the input-to-output
example associated with each node of the rule scheme. We aim to automatically
insert geometric expressions to ensure that instantiating the rule scheme yields
the input-to-output example.

The first step is to identify the RHS nodes requiring a geometric expression.
Jerboa enforces the embedding constraint by propagating the computed embed-
ding values on partially matched orbits [2,|3]. For instance, if part of a vertex
is translated, propagation ensures that all darts within the (1,2)-orbit share
the same position after modification. Only one position expression is needed
(and thus has to be synthesized) per (1, 2)-orbit in the rule scheme. For the rule
scheme of Fig. the RHS contains two (1, 2)-orbits, one with n0 and nl, and
the other with n2, n3, and n4. The first orbit contains a preserved node (n0)
associated with the darts (a,b,...,7) that have the same positions (A, B, ..., E)
in both input and output. We could add the expression return n0.position.
No expression is needed in practice since the initial values can be propagated. For
the second orbit, we must choose one of the nodes n2, n3, or n4 as a candidate for
a geometric expression. In the sequel, we will consider the synthesis of a position
expression for n4. Having identified the programs to be synthesized from the
user-provided example, we now delimit the set of candidate expressions before
validating them against all darts associated with the node.

4.2 Search Space

In the programming-by-example paradygm, program specifications are partial
mappings corresponding to the input-to-output example(s). To mitigate over-
fitting when synthesizing programs, we constrain the search space to a subset
of Jerboa’s geometric expressions used as components in a sketching approach.
Specifically, we focus on orbit-dependent built-in functions.

Component-based Synthesis Component-based synthesis generates programs
from domain-specific primitives called components [17,[22},/28|. Because of the
abstraction layer induced by rule schemes, we seek functions that do not depend
on a specific instantiation, which we call points of interest (POI). Such functions
should be independent of the (size of the) input orbit and remain invariant to
changes in the dart chosen for computation. Orbit-based barycenters of positions
satisfy these conditions, with a generic expression given by:

middle((o) position(z)), (2)

generalizing middle((0, 1) _position(z)) (Sec.[3.2). Orbit types (o) induce an
equivalence relation =, C N x N between darts in the same (o0)-orbit, which
extends to embeddings 7 : (0r) — 7, such that =,)-equivalent darts share the
same T.-value |2, Def. 7]. For instance, position : (1,2) — Point3 partitions a 2-
Gmap into vertices where all darts have the same Point3-value. This reduces the
orbit-based barycenters of positions to four: vertices, edges, faces, and connected
components, written poi,,. The expressions are given in Table @ and illustrated

Program Synthesis for Geometric Modeling 9

Point of

. Name Expression
interest

vertex | py = poiy o | middle

1,2) position(d)
0,2) position(d)
0,1) position(d)
,1,2) position(d))

)
)
face Ps = poigy 1y | middl)

(
(
(
0

(
edge Pe = POi(g 9y | middle(
(
(

e
component|p. = poi ; » |middle(

(a)

Fig. 7. Points of interest: @ geometric expressions, @ examples of computations.

in Fig. [Th] Geometric expressions on RHS nodes refer to values of LHS nodes,
similar to contract programming practices. Thus, the components are the POI
poi(, from one LHS node per (o)-orbit (n0 for the flat extrusion). The choice
of orbit-based barycenters as components meets the standard way in geometric
modeling of using barycentric [10] and generalized barycentric coordinates |18] to
interpolate or deform geometric objects from known positions [29]. Limiting POIs
to orbit-based barycenters aligns well with the program-by-example setting and
offers a minimal yet expressive set of components compatible with rule schemes:
they abstract local geometry while remaining invariant under dart permutations.

Sketching POIs provide elementary built-in functions for synthesis. We comple-
ment them with a control structure akin to a sketch with holes for the numerical
values to be retrieved, delimiting a search space of valid candidates. Here, we
seek to retrieve affine combinations of POIs, similar to the approach of [48]. For
a node np, the synthesized code defines a symbolic equation of the form:

position(ng) =t+ Z Z Wpoiyy (nr) * poi(,) (nr) (3)
(0)€0..2/~ 1 2y NLENL/= (o)

where 0..2/~(; 2 is the quotient of dimensions by the equivalent relation induced
by (1,2) (the rows of Table [7al), and N1 /=, the quotient of LHS nodes by the
(0)-induced relation. The weights wp; (o (nL) and the translation ¢ are the values
to be synthesized, encoded by the keyword 7?7 in the sketch skeleton of Fig.
The sketch is the same for all RHS nodes. For n4 in the flat extrusion, it exactly
matches Fig. |§| with #node# replaced by n0, specializing Equation into:

position(nd) =t + w, - p,(n0) + w, - pc(n0) + wy - ps(n0) + . 4)

vertex edge face

4.3 Resolution via a Solver

During instantiation, geometric expressions are evaluated by substituting the
node with each associated dart. Mimicking this process, we treat the sketch

10 R. Pascual et al.

translation
Point3 res = new Point3(?? , 77 , 7?7);
per #node# in <1,2>—orbit of the left hand side

Point3 pV_#node# = Point3::middle(<1,2> position(#node#));
pV_#node#.scaleVect (77);
res.addVect (pV_#node#);

OO0 Uk W -

per #node# in <0,2>—orbit of the left hand side

10 Point3 pE_#node# = Point3::middle(<0,2> position(#node#));
11 pE_#node#.scaleVect(?7);

12 res.addVect (pE_#node#);

14 per #node# in <0,1>—orbit of the left hand side

15 Point3 pF_#node# = Point3::middle(<0,1> position(#node#));
16 pF_#node#.scaleVect(7?7);

17 res.addVect (pF_#node#);

19 per #node# in <0,1,2>—orbit of the left hand side

20 Point3 pC_#node# = Point3::middle(<0,1,2> position(#node#));
21 pC_#node#.scaleVect(77);

22 res.addVect (pC_#node#);

24 return res;

Fig. 8. Sketch skeleton for a geometric expression, where 77 encodes the values to be
synthesized. Line [2]is a placeholder for the translation ¢. For each POI, the sketch
operates in three steps: (1) the expressions middle (<o>_position (#node#)) (lines |5}

10} and [20) compute the POIs poi, (nr), where #node# is replaced by one n
per equivalence class in N1 /=,); (2) these Point3 values are multiplied by weights

Wpoi, (ny) Via scaleVect (lines@, and; (3) each POT’s contribution is added
to the global computation via addVect.

as a parametric equation with unknown weights (keyword ?7) and generate
one constraint per associated dart. This transformation is valid because (1) the
components (the POIs) only depend on input nodes, and (2) the output value is
known from the user-provided example. We instantiate Equation by substitut-
ing ng and ny, with darts from the input-output example. For the flat extrusion,
substituting n0 with « (Fig. and n4 with a4 (Fig. in Equation yields
a constraint involving w,,, we, wy, w., and t. The 10 darts from the pentagon of
Fig. [6a] yield 10 vector constraints, which we decompose into 30 scalar constraints
(one per coordinate axis) over 4 weights and 3 translation components.

The constrained problem is a system of linear equations over real-valued
variables and delegated to a solver. We experimented with Google OR-Tools with
GLOP and Z3 with quantifier-free floating-point arithmetic. Z3 is a Satisfiabil-
ity Modulo Theories (SMT) solver allowing soft constraints and prioritization,
while GLOP is a simple-to-integrate linear programming solver. The results of
Sec. [6] were obtained with OR-Tools as a backend. To break ties between valid
solutions, we bias the solver toward simpler orbits — vertices, edges, faces, and
finally, connected components — with cells preferred over the translation to avoid
overfitting, similar to ranking or optimization methods [23|. For the flat extrusion,
the solution is w, = 0.5, w, = 0.0, wy = 0.5, = 0.0, t; = 0.0, t, = 0.0, and
t, = 0.0. As postprocessing, we discard POIs with weight below an (adjustable)
threshold of 1073, removing edge and connected component POIs in Fig. @

Program Synthesis for Geometric Modeling 11

no translation

Point3 res = new Point3(0.0,0.0,0.0);

vertex
Point3 p0 = Point3::middle(<1,2> position(n0));
p0.scaleVect (0.5) ;
res.addVect (p0);

OO0 Uk W -

face

10 Point3 p2 = Point3::middle(<0,1> position(n0));
11 p2.scaleVect (0.5);

12 res.addVect (p2);

14 return res;

Fig. 9. Synthesized geometric expression for n4.

Fig. 10. Applications of the synthesized flat extrusion to other faces: @ to an octogon,
@ to a snowflake. Applications of the synthesized operation generalized to surfaces:
to the geometric object of Fig. @ to an arche.

For the variations in Fig. 2] we obtain the same expression for Fig. 2a] with
the modified weights w, = 0.67 and wy = 0.33, while the additional vertices of
Fig. [2¢| have w, = 0.5 and w. = 0.5. Our approach follows [16|, splitting the
synthesis task into sketch gemeration from components and sketch completion
using constraint-solving, jointly encoding component structure, syntactic sketch
restrictions, and user intent into a unified problem which guarantees syntactic
and semantic correctness.

4.4 Application of the Synthesized Operation

As discussed in Sec.[2] our goal is to synthesize geometric expressions for modeling
operations that generalize across shapes. Having synthesized the expressions for
the flat extrusion (Fig. , we can apply it to other faces, such as the quad
in Fig. producing the expected result. As shown in Figs. and the
synthesized operation can edit various shapes. We can also run the topological
folding algorithm on the same example with the orbit type (0, 1,2) to obtain
a rule scheme similar to Fig. with n0 carrying (0,1,2), and RHS nodes
adjusted accordingly. The synthesized geometric expression remains unchanged,
generalizing the flat extrusion to surfaces (Figs. and .

5 Implementation and Practical Details

5.1 Generalization to Vector Spaces and 3D Objects

Our synthesis method is independent of the embedding type and extends beyond
positions. We enrich Jerboa’s standard signature with a type VectorialEbd and

12 R. Pascual et al.

Table 1. Example of vectorial embeddings on a 2-Gmap.

l Embedding [Data Type [Orbit Type[Array length[Clamp‘

position Point3 (1,2) 3 No
color Color3 (0,1) 3 Yes
transparency|Transparency| (0, 1) 1 Yes
normal Vector3 (0, 1) 3 No

(a) (b) (c) (d)

Fig. 11. Layering of subsoil horizons. Input @ and output data for synthesizing
position and color expressions for the layering operation, with an application of the
synthesized operation to a scene: initial surfaces, @ result of the layering operation,
and [(e)| volume explosion hiding the initial surfaces to reveal inner volumes.

(e)

functions scaleVect, addVect, and middle. VectorialEbd serves as a generic
interface, enabling generalization from barycentric points to values of interest.
Subtypes of VectorialEbd are arrays of fixed length. Table [I| summarizes stan-
dard data types and associated embeddings for which our synthesis mechanism
works. To deal with Color3 and Transparency having bounded values, the result
of the computation is clamped via the call to a function clampVect right before
the return statement of line 24]in Fig. [§] Our approach generalizes to volumetric
models (3-Gmaps). We demonstrate this on a layering operation used in geological
modeling , where interpolated soil horizons are synthesized between two input
surfaces (Fig. . The 3D operation involves both position and color embeddings,
resp. defined on (1, 2, 3)- and (0, 1)-orbits. The system synthesized 25 expressions
— 6 for positions, 19 for colors — via barycentric interpolation. Complete synthesis
took under 55ms, which is negligible compared to the time needed to choose (or
build) a representative input-to-output example or implement the operation.

5.2 JerboaStudio

Jerboa includes (1) an editor for designing operations, (2) a kernel for generating
efficient code from rules, and (3) a generic Gmap viewer for applying operations.
The editor allows specialists to create software that domain experts can use
through the viewer. We integrated these components in a tool called JerboaStudio,
available onlineﬂ and illustrated in Fig. In Fig. the user provides input and
output shapes and hints for the input-to-output mapping. Fig. displays the
rule and a synthesized embedding expression. JerboaStudio offers a solution for
the automatic construction of modeling operations combining program synthesis
for geometric expressions and the topological folding algorithm from [41].

3 Last consulted on July 16th, 2025 : https://gitlab.com /jerboateam /jerboa-studio

https://gitlab.com/jerboateam/jerboa-studio

Program Synthesis for Geometric Modeling 13

(a) (b)
Fig. 12. JerboaStudio: @ viewer with a pentagonal face as input (left), the extruded

face as output(right), and the input-to-output mapping (bottom); and @ editor with
the retrieved rule scheme and a synthesized geometric expression (bottom).

5.3 Limits

Syntax-guided synthesis [1] may fail when the target expression lies outside
the syntactic search space. Our search space consists of linear combinations of
orbit barycenters, which can lead to overfitting or no solution being found, as
in the example of the von Koch curve (Fig. . From a square (Fig. [13a]), we
construct the first iteration (Fig. and synthesize an operation. Applying
it once provides the expected result, but reapplying it again yields an invalid
second iteration (Fig.[I3d): one expression (computed from edge midpoints) is
correct; the other, involving a derivation angle from the original edge, is not. Our
method computes the latter using the face’s barycenter and translates the vertex
in the wrong direction. A skilled user could edit the synthesized expression to fix
it and obtain the desired second iteration (Fig. [I3d). Figs. and show the
input and output, with preservation links identified by the darts (a to h). The
synthesized expressions (Fig. for n3 combine edge (poi) and face (poi()
barycenters, explaining the deviation in Fig. This solution is found based on
the regularity of the input square but would not be with subsequent iterations
for which no expression exists within our syntactic space. The corrected version
(Fig. uses Jerboa features outside the original syntactic space.

6 Evaluation

We synthesized geometric expressions for subdivision schemes to validate our
approach. These are standard operations used in modeling to refine shapes by
applying changes to entire connected components. Table [2| reports results for 6
surface subdivisions, 2 volume subdivisions, and 2 surface-to-volume refinements.
Each rule has a single LHS node. We use the same cube (48 darts) as a shared
input instance for all operations leading to sketches with 8 unknowns solved on 48
equations. The experiments were conducted with Java 11, and OR-Tools 9.6.2534,
on an Intel®) Core™ Ultra 7, @4.80 GHz with 32 GB RAM. For each operation, we
report the number of expressions to synthesize (# Expr), synthesized (# Synth),
semantically correct after manual inspection (# Correct), solver time in ms

14 R. Pascual et al.

(a) (b) () (d)

Fig. 13. Synthesis of the von Koch curve: @ a square, @ the first iteration of the
operation, invalid second iteration obtained by applying the synthesized operation,
@ valid second iteration built after fixing the geometric expression.

n3
Point3 res =
new Point3(0.0,0.0,0.0);
/ edge
Point3 pl = Point3::
middle(<0> _ position(n0));
pl.scaleVect (1.57735026919) ;
res.addVect (pl);
/) face
10 Point3 p2 = Point3::
11 middle (<0, 1> position(n0));
12 p2.scaleVect(—0.57735026919);
13 res.addVect (p2);
14 //res
15 return res;

©00O Uk W -

Fig. 14. Synthesizing the von Koch curve: @ input and @ output as a part of an
embedded Gmap, rule scheme deduced from the topological folding algorithm (node
colors encode the retrieved associations), synthesized position expression for n3.

1 Point3 src; Point3 tgt; Vector3 fNormal;

2 if (n0.orient){ @
3 src = n0O.position;

4 tgt = n0@0.position;

5 fNormal = Vector3::newellMethod(nO);

6 } else{ (x0) @ @ @
7 src = n0@O0.position;

8 tgt = nO0.position;

9 fNormal = Vector3::newellMethod(n0@O0); @
10 }

11 Vector3 eVect — new Vector3(src,tgt);

12 Vector3 eNormal = eVect.cross(fNormal).normalize ();

13 eNormal.scale(Point3::sqrt3 / 6 * eVect.norm());
14 eNormal.add(Point3::midpt(n0O.position, n0Q@O.position));
15 return eNormal;

Fig. 15. Explanation for the synthesized expression of Fig[l[4d fixing the expression
for n3, requires expression outside the current search space as the new vertices are
combinations of the face and edge barycenters.

Program Synthesis for Geometric Modeling 15

Table 2. Benchmark Summary

Operation [# Expr[# Synth (%)[# Correct (%)[SolT (ms)[SynT (ms)]
Surface Subdivisions

Catmull-Clark [6] 3 3 (100%) 1 (33%) 1.2 10

Doo-Sabin [12] 1| 1(100%) | o (0%) 0.4 11

Powell-Sabin [44] 2 | 2(100%) | 2 (100%) 0.9 11

Blender’s Subdivide [19]| 2 2 (100%) 2 (100%) 0.9 9

Sierpinski Carpet [35] 2 2 (100%) 2 (100%) 1.0 13

V3 |31) 2 2 (100%) 1 (50%) 0.9 11
Volume Subdivisions

Menger [36] 3 3 (100%) 3 (100%) 1.4 26

(2,2,2)-Menger [46] 9 | 9(100%) | 9 (100%) 2.9 64

Surface to Volume Refinements
Mesh to Tet 1 1 (100%) 1 (100%) 0.5 12
Mesh to Hex 3 3 (100%) 3 (100%) 1.2 16

(SolT), and complete synthesis time in ms (SynT). The artifacts for reproducing
the benchmark are available as supplementary material [40] hosted on Zenodo.
The solver handled each sketch in 0.3-0.5 ms. Full integration (from example to
editor-ready operation) takes 0.5-2 s, making the pipeline responsive enough for
interactive use. We correctly synthesized 24 out of 28 expressions, completing 7
of 10 operations, with failures due to expressions lying outside the search space.
The method generalizes well to typical modeling tasks, while more expressive
sketches (either in the control structure or components used) would be needed to
address the remaining cases.

7 Conclusion

We presented a new method for automatically generating efficient code for
geometric modeling operations with arbitrary topological changes. We use a
rule-based DSL combined with an algebraically rooted language for geometric
computations. Our component-based strategy uses a sketch as a control structure
to define a search space of affine combinations over values of interest, completed
by a solver from generated constraints. Future work includes interactive synthesis,
where users can refine results through (counter)examples, posing challenges
for user interaction, especially with 3D objects. Another promising direction is
adapting Metasketches [5], which partitions the search space into ordered sets of
sketches and guides the search with a gradient function.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.
References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia,
S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis.

16

10.

11.

12.

13.

14.

15.

16.

17.

R. Pascual et al.

In: 2013 Formal Methods in Computer-Aided Design. pp. 1-8 (October 2013).
https://doi.org/10.1109/FMCAD.2013.6679385

Arnould, A., Belhaouari, H., Bellet, T., Le Gall, P., Pascual, R.: Preserving con-
sistency in geometric modeling with graph transformations. Mathematical Struc-
tures in Computer Science 32(3), 300-347 (March 2022). https://doi.org/10.1017
S0960129522000226

Belhaouari, H., Arnould, A., Le Gall, P., Bellet, T.: Jerboa: A Graph Transfor-
mation Library for Topology-Based Geometric Modeling. In: Giese, H., Konig,
B. (eds.) Graph Transformation. pp. 269-284 (2014). https://doi.org/10.1007/
978-3-319-09103-2 13

Biermann, A.W.: The Inference of Regular LISP Programs from Examples. IEEE
Transactions on Systems, Man, and Cybernetics 8(8), 585-600 (1978). https://doi
org/10.1109/TSMC.1978.4310035

Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with
metasketches. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. pp. 775-788 (January 2016).
https://doi.org/10.1145/2837614.2837666

Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer-Aided Design 10(6), 350-355 (November 1978).
https://doi.org/10.1016/0010-4485(78)90110-0

Cheema, S., Buchanan, S., Gulwani, S., LaViola, J.J.: A practical framework
for constructing structured drawings. In: Proceedings of the 19th international
conference on Intelligent User Interfaces. pp. 311-316 (February 2014). https:
//doi.org/10.1145/2557500.2557522

Chugh, R., Hempel, B., Spradlin, M., Albers, J.: Programmatic and direct ma-
nipulation, together at last. ACM SIGPLAN Notices 51(6), 341-354 (June 2016).
https://doi.org/10.1145,/2980983.2908103

. Conlan, C.: The Blender Python API: Precision 3D Modeling and Add-on Develop-

ment. Apress, 1 edn. (June 2017). https://doi.org/10.1007/978-1-4842-2802-9
Coxeter, H.S.M.: Introduction to Geometry. John Wiley (1969)

Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. CRC Press (September 2014)

Doo, D., Sabin, M.A.: Behaviour of recursive division surfaces near extraordinary
points. Computer-Aided Design 10(6), 356-360 (November 1978). https://doi.org)
10.1016/0010-4485(78)90111-2

Du, T., Inala, J.P., Pu, Y., Spielberg, A., Schulz, A., Rus, D., Solar-Lezama, A.,
Matusik, W.: InverseCSG: automatic conversion of 3D models to CSG trees. ACM
Transactions on Graphics 37(6), 213:1-213:16 (December 2018). https://doi.org/
10.1145/3272127.3275006

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer-Verlag (2006). https://doi.org,/10.1007/3-540-31188-2
Emilien, A., Vimont, U., Cani, M.P., Poulin, P., Benes, B.: WorldBrush: interac-
tive example-based synthesis of procedural virtual worlds. ACM Transactions on
Graphics 34(4), 106:1-106:11 (July 2015). https://doi.org/10.1145/2766975

Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based synthesis
for complex APIs. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. pp. 599-612 (January 2017). https://doi
org/10.1145/3009837.3009851

Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Notices 50(6), 229-239 (June 2015).
https://doi.org/10.1145/2813885.2737977

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1017/S0960129522000226
https://doi.org/10.1017/S0960129522000226
https://doi.org/10.1017/S0960129522000226
https://doi.org/10.1017/S0960129522000226
https://doi.org/10.1007/978-3-319-09108-2_18
https://doi.org/10.1007/978-3-319-09108-2_18
https://doi.org/10.1007/978-3-319-09108-2_18
https://doi.org/10.1007/978-3-319-09108-2_18
https://doi.org/10.1109/TSMC.1978.4310035
https://doi.org/10.1109/TSMC.1978.4310035
https://doi.org/10.1109/TSMC.1978.4310035
https://doi.org/10.1109/TSMC.1978.4310035
https://doi.org/10.1145/2837614.2837666
https://doi.org/10.1145/2837614.2837666
https://doi.org/10.1016/0010-4485(78)90110-0
https://doi.org/10.1016/0010-4485(78)90110-0
https://doi.org/10.1145/2557500.2557522
https://doi.org/10.1145/2557500.2557522
https://doi.org/10.1145/2557500.2557522
https://doi.org/10.1145/2557500.2557522
https://doi.org/10.1145/2980983.2908103
https://doi.org/10.1145/2980983.2908103
https://doi.org/10.1007/978-1-4842-2802-9
https://doi.org/10.1007/978-1-4842-2802-9
https://doi.org/10.1016/0010-4485(78)90111-2
https://doi.org/10.1016/0010-4485(78)90111-2
https://doi.org/10.1016/0010-4485(78)90111-2
https://doi.org/10.1016/0010-4485(78)90111-2
https://doi.org/10.1145/3272127.3275006
https://doi.org/10.1145/3272127.3275006
https://doi.org/10.1145/3272127.3275006
https://doi.org/10.1145/3272127.3275006
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1145/2766975
https://doi.org/10.1145/2766975
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/2813885.2737977

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Program Synthesis for Geometric Modeling 17

Floater, M.S.: Generalized barycentric coordinates and applications. Acta Numerica
24, 161-214 (May 2015). https://doi.org/10.1017/S0962492914000129
Foundation, B.: Blender, https://www.blender.org/

Gould, D.: Complete Maya Programming: An Extensive Guide to MEL and C+-+
API. Elsevier, 1 edn. (2003). https://doi.org/10.1016 /B978-1-55860-835-1.X5000-9
Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. ACM SIGPLAN Notices 46(1), 317-330 (January 2011). https://doi.org)
10.1145/1925844.1926423

Gulwani, S., Korthikanti, V.A., Tiwari, A.: Synthesizing Geometry Constructions.
ACM SIGPLAN Notices 46(6), 5061 (June 2011). https://doi.org/10.1145/1993316
1993505

Gulwani, S., Polozov, O., Singh, R.: Program Synthesis. Foundations and Trends®)
in Programming Languages 4(1-2), 1-119 (July 2017). https://doi.org/10.1561/
2500000010

Guo, J., Jiang, H., Benes, B., Deussen, O., Zhang, X., Lischinski, D., Huang, H.:
Inverse Procedural Modeling of Branching Structures by Inferring L-Systems. ACM
Transactions on Graphics 39(5), 155:1-155:13 (June 2020). https://doi.org/10.1145/
3394105

Heckel, R., Taentzer, G.: Graph Transformation for Software Engineers: With
Applications to Model-Based Development and Domain-Specific Language En-
gineering. Springer International Publishing (2020). |https://doi.org/10.1007/
978-3-030-43916-3

Hempel, B., Chugh, R.: Semi-Automated SVG Programming via Direct Manipula-
tion. In: Proceedings of the 29th Annual Symposium on User Interface Software and
Technology. pp. 379-390 (October 2016). https://doi.org/10.1145/2984511.2984575
Hu, Y., Dorsey, J., Rushmeier, H.: A novel framework for inverse procedural texture
modeling. ACM Transactions on Graphics 38(6), 186:1-186:14 (November 2019).
https://doi.org/10.1145/3355089.3356516

Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based
program synthesis. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1. pp. 215-224 (May 2010). https://doi.org/10
1145/1806799.1806833

Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes.
ACM Trans. Graph. 24(3), 561-566 (July 2005). https://doi.org/10.1145/1073204
1073229

Kania, K., Zieba, M., Kajdanowicz, T.: UCSG-NET- Unsupervised Discovering
of Constructive Solid Geometry Tree. In: Proceedings of the 34th International
Conference on Neural Information Processing Systems. pp. 8776-8786 (December
2020)

Kobbelt, L.: sqrt(3)-subdivision. In: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques. pp. 103-112 (July 2000). https:
//doi.org/10.1145/344779.344835

Lieng, H., Kosinka, J., Shen, J., Dodgson, N.A.: A Colour Interpolation Scheme
for Topologically Unrestricted Gradient Meshes. Computer Graphics Forum 36(6),
112-121 (2017). https://doi.org/10.1111 /cgf. 12862

Lienhardt, P.: Topological models for boundary representation: a comparison with
n-dimensional generalized maps. Computer-Aided Design 23(11), 59-82 (1991).
https://doi.org,/10.1016,/0010-4485(91)90100-B

Liu, H.T.D., Kim, V.G., Chaudhuri, S., Aigerman, N., Jacobson, A.: Neural subdi-
vision. ACM Transactions on Graphics 39(4), 124:124:1-124:124:16 (July 2020).
https://doi.org/10.1145/3386569.3392418

https://doi.org/10.1017/S0962492914000129
https://doi.org/10.1017/S0962492914000129
https://www.blender.org/
https://doi.org/10.1016/B978-1-55860-835-1.X5000-9
https://doi.org/10.1016/B978-1-55860-835-1.X5000-9
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/1993316.1993505
https://doi.org/10.1145/1993316.1993505
https://doi.org/10.1145/1993316.1993505
https://doi.org/10.1145/1993316.1993505
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3394105
https://doi.org/10.1145/3394105
https://doi.org/10.1145/3394105
https://doi.org/10.1145/3394105
https://doi.org/10.1007/978-3-030-43916-3
https://doi.org/10.1007/978-3-030-43916-3
https://doi.org/10.1007/978-3-030-43916-3
https://doi.org/10.1007/978-3-030-43916-3
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.1145/3355089.3356516
https://doi.org/10.1145/3355089.3356516
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1073204.1073229
https://doi.org/10.1145/1073204.1073229
https://doi.org/10.1145/1073204.1073229
https://doi.org/10.1145/1073204.1073229
https://doi.org/10.1145/344779.344835
https://doi.org/10.1145/344779.344835
https://doi.org/10.1145/344779.344835
https://doi.org/10.1145/344779.344835
https://doi.org/10.1111/cgf.12862
https://doi.org/10.1111/cgf.12862
https://doi.org/10.1016/0010-4485(91)90100-B
https://doi.org/10.1016/0010-4485(91)90100-B
https://doi.org/10.1145/3386569.3392418
https://doi.org/10.1145/3386569.3392418

18

35.
36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

R. Pascual et al.

Mandelbrot, B.B.: Fractals : form, chance, and dimension. Freeman (1977)
Menger, K.: Dimensionstheorie. B.G. Teubner (1928)

Merrell, P., Manocha, D.: Constraint-based model synthesis. In: 2009 SIAM/ACM
Joint Conference on Geometric and Physical Modeling. pp. 101-111 (2009). https:
//doi.org/10.1145/1629255.1629269

Pascual, R.: Inference of graph transformation rules for the design of geometric
modeling operations. PhD Thesis, Université Paris-Saclay (Nov 2022), https://
www.theses.fr/2022UPAST146

Pascual, R.: Instantiation of Jerboa Rule Schemes, a Set-based Explanation (Novem-
ber 2024). lhttps://doi.org/10.48550 /arXiv.2411.15986

Pascual, R., Belhaouari, H.: Program Synthesis for Geometric Modeling - Benchmark
Artifacts (Jul 2025). https://doi.org/10.5281 /zenodo.15982906

Pascual, R., Belhaouari, H., Arnould, A., Le Gall, P.: Inferring topological operations
on generalized maps: Application to subdivision schemes. Graphics and Visual
Computing 6, 200049 (May 2022). https://doi.org/10.1016/j.gvc.2022.200049
Pascual, R., Le Gall, P., Arnould, A., Belhaouari, H.: Topological consistency
preservation with graph transformation schemes. Science of Computer Programming
214, 102728 (February 2022). |https://doi.org/10.1016/j.scico.2021.102728

Perrin, M., Rainaud, J.F.: Shared Earth Modeling: Knowledge Driven Solutions
for Building and Managing Subsurface 3D Geological Models. Editions TECHNIP
(2013)

Powell, M.J.D., Sabin, M.A.: Piecewise Quadratic Approximations on Triangles.
ACM Transactions on Mathematical Software 3(4), 316-325 (December 1977).
https://doi.org/10.1145/355759.355761

Prusinkiewicz, P., Samavati, F., Smith, C., Karwowski, R.: L-system description of
subdivision curves. International Journal of Shape Modeling 09(01), 41-59 (June
2003). https://doi.org/10.1142/S0218654303000048

Richaume, L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Unfolding Level 1
Menger Polycubes of Arbitrary Size With Help of Outer Faces. In: Couprie, M.,
Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) Discrete Geometry for Computer
Imagery. pp. 457-468 (2019). https://doi.org/10.1007/978-3-030-14085-4 36
Sharma, G., Goyal, R., Liu, D., Kalogerakis, E., Maji, S.: CSGNet: Neural Shape
Parser for Constructive Solid Geometry. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 5515-5523 (2018).
https://doi.org/10.48550/arXiv.1712.08290

Solar-Lezama, A.: Program sketching. International Journal on Software Tools
for Technology Transfer 15(5), 475495 (October 2013). |https://doi.org/10.1007
s10009-012-0249-7

Squillacote, A.H., Ahrens, J., Law, C., Geveci, B., Moreland, K., King, B.: The
ParaView guide. Kitware (2007)

Summers, P.D.: A Methodology for LISP Program Construction from Examples.
Journal of the ACM 24(1), 161-175 (January 1977). https://doi.org/10.1145 /321992
322002

Wu, F., Yan, D.M., Dong, W., Zhang, X., Wonka, P.: Inverse procedural modeling
of facade layouts. ACM Transactions on Graphics 33(4), 121:1-121:10 (July 2014).
https://doi.org/10.1145,/2601097.2601162

St’ava, O., Benes, B., Méch, R., Aliaga, D.G., Kristof, P.: Inverse Procedural
Modeling by Automatic Generation of L-systems. Computer Graphics Forum 29(2),
665-674 (2010). https://doi.org/10.1111/j.1467-8659.2009.01636.x

https://doi.org/10.1145/1629255.1629269
https://doi.org/10.1145/1629255.1629269
https://doi.org/10.1145/1629255.1629269
https://doi.org/10.1145/1629255.1629269
https://www.theses.fr/2022UPAST146
https://www.theses.fr/2022UPAST146
https://doi.org/10.48550/arXiv.2411.15986
https://doi.org/10.48550/arXiv.2411.15986
https://doi.org/10.5281/zenodo.15982906
https://doi.org/10.5281/zenodo.15982906
https://doi.org/10.1016/j.gvc.2022.200049
https://doi.org/10.1016/j.gvc.2022.200049
https://doi.org/10.1016/j.scico.2021.102728
https://doi.org/10.1016/j.scico.2021.102728
https://doi.org/10.1145/355759.355761
https://doi.org/10.1145/355759.355761
https://doi.org/10.1142/S0218654303000048
https://doi.org/10.1142/S0218654303000048
https://doi.org/10.1007/978-3-030-14085-4_36
https://doi.org/10.1007/978-3-030-14085-4_36
https://doi.org/10.48550/arXiv.1712.08290
https://doi.org/10.48550/arXiv.1712.08290
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/321992.322002
https://doi.org/10.1145/321992.322002
https://doi.org/10.1145/321992.322002
https://doi.org/10.1145/321992.322002
https://doi.org/10.1145/2601097.2601162
https://doi.org/10.1145/2601097.2601162
https://doi.org/10.1111/j.1467-8659.2009.01636.x
https://doi.org/10.1111/j.1467-8659.2009.01636.x

	Program Synthesis for Geometric Modeling

