A Generic Query-Modify Framework for Volumetric Mesh Processing

Guillaume Damiand®*, Vincent Nivoliers* and Romain Pascual®

“CNRS, UCBL, INSA Lyon, LIRIS, UMR5205, F-69622, Villeurbanne, France
bMICS, Centralesupelec, Université Paris-Saclay, 9 rue Joliot Curie, 91192, Gif-sur-Yvette Cedex, France

ARTICLE INFO

Keywords:

Combinatorial maps
Mesh processing
Query-modify framework
Tetrahedral recombination

ABSTRACT

We introduce a query-modify framework for automating volumetric mesh processing. Our method
enables flexible and efficient modifications of geometric structures composed of multiple volumes
with minimal user-implemented code. Modifications are provided as rules consisting of a query mesh
and a target mesh representing structural information to be extracted and replaced. The rules enable
both localized queries to be matched with a portion of an input mesh and targeted modifications
on the matched portion of the input mesh. Our approach generalizes standard mesh manipulations
and adapts to various applications, including geometric modeling, remeshing, and topology-aware
transformations. We showcase our framework on several use cases, including the first complete
implementation of a tetrahedral recombination method based on 171 cases, exhaustively classifying
all possible recombinations. Our framework allows for arbitrarily connected collections of volumes
as queries, enabling automated and application-driven mesh modifications.

1. Introduction

Many mesh processing algorithms follow a common
workflow: first, identify specific portions of the mesh and
then locally rewrite its combinatorics by creating or remov-
ing vertices, edges, or faces. A simple example is mesh
decimation, where adjacent triangle pairs are identified and
removed, and the resulting disconnected edges are recon-
nected. Implementing such a procedure is straightforward
when the identified portions are simple, such as detecting
pairs of adjacent triangles. However, more complex pro-
cedures might involve many cases, making manual iden-
tification tedious and error-prone. For instance, converting
tetrahedral meshes into hexahedral ones requires combining
neighboring tetrahedra into hexahedra, which means know-
ing all possible groups of tetrahedra that form a hexahedron.
Meshkat and Talmor [31] identified six ways to decompose
a cube into tetrahedra, leading to the design of an ad hoc
procedure that automatically generates search trees to find
matches automatically. Sokolov et al. [38] later extended
this to ten cases to account for numerical precision. More
recently, Pellerin et al. [35] demonstrated that a generic hex-
ahedron (rather than a cube) admits 174 decompositions into
tetrahedra, of which 171 have a valid geometric realization.
However, no algorithm currently exploits these 171 cases
for transforming tetrahedral meshes into hexahedral or hex-
dominant meshes.

Abstractly, the local rewriting of the mesh combinatorics
can be described as a two-step process. First, a query is per-
formed on the input mesh to identify relevant substructures,
and then a modification is applied to transform the matched
pattern. In this work, we propose a generic framework for

*Corresponding author
<] guillaume.damiand@cnrs. fr (G. Damiand);
vincent.nivoliers@univ-lyoni.fr (V. Nivoliers);
romain.pascual@centralesupelec.fr (R. Pascual)
ORCID(S): 0000-0003-1580-5517 (G. Damiand); 0000-0001-5242-1585
(V. Nivoliers); 0000-0003-1282-1933 (R. Pascual)

query-based mesh operations relying on recording and re-
producing traversals of combinatorial maps. Our method
relies on a volumetric query mesh encoded as a combina-
torial map called the query and the associated modifications
encoded in a second map called the farget. Arbitrary query
and target patterns provide a rich and flexible solution that
can formally be described via graph rewriting [14, 21]. How-
ever, expressing an arbitrary transformation as a query-target
pair requires specifying a precise mapping of all parts of
both patterns from a so-called shared interface. Additionally,
when designing a dedicated framework, rather than relying
on general-purpose graph rewriting techniques or tools, one
can leverage domain-specific properties, i.e., properties of
the graphs being modified, to improve efficiency.

This work identifies three specific restrictions that cover
a wide range of standard operations in geometric modeling.
These restrictions assume that query and target patterns
are connected combinatorial maps. The first, called query-
extend, exploits query patterns included in the target patterns
to extend the current object. The second, query-delete, is
symmetric and assumes the target pattern to be included in
the query pattern to delete parts of the object. The third,
query-replace, requires both patterns to have isomorphic
boundaries, enabling replacement of the interior of the query
pattern. It directly extends the query-replace framework
of Damiand and Nivoliers [12] by supporting multi-cell
queries.

These three possibilities build upon the core idea of
identifying a pattern (the query) for modification. Besides
allowing a shared algorithm for performing the query and,
down the line, a shared implementation, it also streamlines
the specification of modeling operation for the user that only
needs to provide this pattern. As a fallback for cases that
cannot be easily expressed using these three approaches, we
introduce the query-apply operation, which allows custom
code to be written.

This paper defines the four query-modify operations
alongside their corresponding algorithms. These operations

G. Damiand et al.: Preprint submitted to Elsevier

Page 1 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

constitute our first main contribution: a new generic query-
modify (Q& M) framework that handles connected sets of
volumes as a query or target. We show four experiments to
illustrate various uses of our method for computer graphics
and mesh processing. The first and main application is the
first implementation of a tetrahedral recombination method
exhaustively using all 171 geometrically valid decomposi-
tions of a hexahedron into tetrahedra [35]. This application
is our second main contribution. The second and third exper-
iments show how to use our framework to modify existing
meshes: the second edits a volumetric model of a house
built from an IFC file, and the last modifies two surface
meshes imported from Blender. The final experiment is a
toy example that generates a terrain mesh with small houses,
illustrating the flexibility of the query-apply operation.

The paper is organized as follows. Section 2 discusses
related work on procedural modeling, graph transforma-
tions, and tetrahedral recombination. Section 3 introduces
the definitions needed for this work, focusing on combina-
torial maps, isomorphisms, and the previous query-replace
method. Section 4 provides a high-level overview of our ap-
proach, which is then detailed in section 5 for the query part
and section 6 for the modification part. Section 7 presents
our four applications, while section 9 concludes and gives
directions for future work.

2. Related work

2.1. Procedural modeling

Automatic mesh generation and editing have been ex-
tensively studied, particularly in procedural generation. This
process can be seen as a rewriting system that transforms
an input mesh using predefined rules. Several frameworks
express such rules, such as L-systems [28] and shape gram-
mars [40]. L-systems use formal grammars to generate se-
quences of symbols, or words, interpreted as geometric
objects [37, II.5 and III.6]. They have been widely used
for modeling plants [36] and urban landscapes [29]. Shape
grammars, introduced in [40], operate directly on geometric
shapes by recursively applying transformation rules. Initially
developed for paintings and sculptures [40], they have been
widely used in architecture (e.g., CGA shape [32]) and
computer-aided engineering [19]. For a broader overview,
see Cagan’s retrospective [6]. L-systems and shape gram-
mars excel at generating data from scratch but require in-
ternal access to the encoding of both rules and objects to
edit the ruleset. Thus, designing new rules to be applied to
existing data is difficult as it means producing the matching
words from generic geometric objects, essentially reverse-
engineering a procedural representation from raw meshes.
Moreover, their high-level rule formulation abstracts the
low-level description of the modification. As a result, each
rule has its own implementation. In contrast, our approach
directly manipulates objects using example-based rules de-
fined as small mesh fragments. Users specify transforma-
tions visually — by providing before and after patterns — with-
out coding or accessing the internal data representations.
This no-code workflow lowers the entry barrier and supports

rapid prototyping, making it well-suited for mesh editing
tasks that go beyond pure procedural generation.

2.2. Graph transformations

We represent geometric objects using combinatorial
maps, introduced by Lienhardt [27], which extend the half-
edge data structure [41] to arbitrary dimensions. Combina-
torial maps can be interpreted as graphs, enabling Pascual et
al. [33] to define modeling operations via graph transforma-
tions, ensuring the topological correctness of the resulting
objects. Arnould et al. [1] extended this formalism to handle
attributes such as vertex coordinates, allowing modifications
to affect both the mesh geometry and its combinatorics.
The Jerboa library [3] implements these techniques, offering
generic rules applicable to existing data. Designing new
modeling operations in Jerboa still requires some effort.

Querying a geometric object to locate patterns relates to
the graph isomorphism problem, which is tractable for com-
binatorial maps. Isomorphism can be solved by checking for
identical words [17], a method applied in [12] for query-
replace operations. Damiand and Nivoliers [12] introduced
the notion of signature as a speed-up technique. A signature
is a special word, i.e., a sequence of symbols, that unequiv-
ocally encodes the topology of a cell. Thus, using signatures
inherently limits queries to a single cell: a single volume,
face, or edge. Generalizing their method to arbitrary queries
is nontrivial due to combinatorial explosion. Our method
removes signatures and records query traversals reproduced
on the input to identify matching regions.

2.3. Tetrahedra recombination

We illustrate our method in hex-dominant meshing,
where a classical pipeline involves laying out vertices on
a grid pattern aligned with a predefined direction field,
connecting them with Delaunay tetrahedra, and merging ad-
jacent tetrahedra into hexahedra [31]. To identify such com-
binations, Meshkat and Talmor [31] developed an automatic
procedure that checks whether a set of tetrahedra matches a
pattern by enumerating traversals of the graph of adjacent
tetrahedra for six identified cases using two operations. LINK
merges tetrahedra and QUAD merges tetrahedral facets into
quads. Sokolov et al. [38] extended this to ten cases by
accounting for slivers in Delaunay tetrahedra. Pellerin et
al. [35] showed that up to 171 different tetrahedral combina-
tions can form a hexahedron and proposed a method that se-
lects merges using a maximal independent set on a constraint
graph. Still, the method for identifying the matching set of
tetrahedra is based on a dedicated algorithm that does not
exploit the full 171 cases by lack of a generic framework to
express how to find these cases. Our framework solves this
problem by providing a generic way to express the query
and replace operations from user-specified patterns. While
this approach is dedicated to merging tetrahedra, it already
contains the idea of reproducing a recorded traversal. We
use combinatorial maps rather than a set of tetrahedra with
face adjacencies to obtain finer control over traversal order,
independent of how adjacent tetrahedra are retrieved.

G. Damiand et al.: Preprint submitted to Elsevier

Page 2 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

3. Foundations

In this section, we introduce the model of combinatorial
maps that we use to represent objects.

3.1. Why 3D combinatorial maps?

Our approach processes the combinatorial description
of the topology of a volumetric object made of polyhedral
cells. Among representations for such objects, combinatorial
maps are lightweight data structures that fully encode the
topological relations between the cells without restriction
to specific complexes. The motivation for 3-maps instead
of a more classical mesh data structure is threefold: first,
it is ordered, allowing the definition of topological words
(see defs. 4 and 5); second, it allows handling volumetric
meshes with arbitrary topology but explicit relations be-
tween the volumes; and third, it encodes the topological
validity of the mesh such that the topological soundness of
Q&M framework can be assessed by showing that opera-
tions transform valid 3-map into valid 3-map. Essentially,
performing queries and replacements on combinatorial maps
allows for a precise description of the topological parts to be
modified and ensures that the operation does not introduce
any topological error.

The core context of a fopological word introduced in
this work can be defined on any ordered data structure. The
order is needed as it provides a unique way to iterate through
elements, immediately ruling out adjacency- or incidence-
list-based structures. Therefore, the half-edge data structure
would also support the definition of words and the global
method described here, but only in 2D. Indeed, half-edge
data structures describe isolated volumes, meaning that a
connected set of volumes cannot be queried. Actually, 3-
maps are simply a generalization of half-edges that encode
volumetric relations: f, is previous, f is next, and f, is
opposite, while f; is a new relation providing a volumetric
opposite.

The volumetric aspect of 3-map is needed to model
buildings with multiple connected volumes. Even in the
case of surface meshes, transformations may involve inter-
mediate configurations with non-manifold faces, which 3-
maps can handle directly. Compared to tetrahedral-based
data structures, 3-maps can represent and combine cells of
arbitrary topology, which, for instance, allows converting a
tetrahedral mesh into a hexahedral one within the same data
structure with intermediate states where the hexahedra are
triangulated and therefore, no longer real hexahedra.

Another main interest of using 3-maps is to guarantee the
topological soundness of our approach. Indeed, soundness
follows from the same arguments as in [33] since our method
relies on query and target maps with isomorphic functions
and preserved regions. In practice, all modifications are
performed using sewing, unsewing, removal, and the query-
replace operation of [12]. These high-level primitives were
already proven sound, i.e., they preserve the topological
validity of a mesh, ensuring that the three target-based mod-
ification operations (and any query-apply operation based on
them) are sound.

Figure 1: (a) An example of a 3-map showing a triangular prism
sharing a face with a tetrahedron. The tetrahedron contains 12
darts, 3 per face and the triangular prism contains 18 darts, 3
per triangular face and 4 per quad face. (b) Zoom in on the
face between the two volumes. The orientation of the arrows
explicit the g, function: g,(1) = 2, and (1) = 3. For the other
dimensions, the involution changes the cell, e.g., $,(3) = 4, and

£,3) = 5.

3.2. Combinatorial maps

A combinatorial map consists of darts and mappings be-
tween them. A dart represents a copy of an edge for a specific
face and the volume incident to the edge. The mappings sew
darts together to describe the adjacency between the object’s
cells.

Definition 1 (3D Combinatorial map [27]). A 3D combi-
natorial map (3-map) is defined by a tuple M = (D, p, f>, 3)
where

e D is a finite set of darts;

e f, is a permutation on D (a one-to-one mapping from
Do D);

e f, and f5 are involutions on D (a one-to-one mapping
from D to D such that p; = ﬂi_l);

e f0p; is an involution on D.

Combinatorial maps generalize the half-edge data struc-
ture where f; corresponds to ‘next’ and f, to ‘opposite.” An
example is provided in fig. 1. The permutation f; essentially
encodes a volumetric ‘opposite,” while the missing ‘previ-
ous’ is given by ﬂl_l, usually written f,. When we want to
encode meshes with boundaries, we add a special dart e and
extend the permutations f; to functions DU {e} — D U {¢}
with the convention that §;(e) = e fori € {0,...,3}. Any
dart d such that §;(d) = e is said to be i-free as it encodes the
boundary of an i-cell. Otherwise, the dart is i-sewn. The cells
of the mesh (vertices, edges, faces, and volumes) are orbits of
the darts under the action of some specific permutations f;,
which can be retrieved via a breadth-first search algorithm
(see [11] for all the precise definitions).

A combinatorial map can be reinterpreted as a graph,
where darts are the nodes and p; represents i-labeled arcs.
Thus, querying and replacing a part of a map can be ex-
plained via graph rewriting similar to the construction de-
veloped in [33]. Although this theoretical framework ensures

G. Damiand et al.: Preprint submitted to Elsevier

Page 3 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

the validity of our query-replace approach, our motivation is
practical. We only require a fragment of the theory, namely
a tool to compute a match of a query map into an input map,
i.e., a subgraph isomorphism.

3.3. Isomorphism

Matching a query in an input mesh is a partial isomor-
phism problem: a subset of the input must exactly match the
pattern. Such isomorphisms can easily be expressed with 3-
maps.

Definition 2 (Map Isomorphism [27]). Two 3-maps M =
(D, By, B, B3) and M' = (D', {,ﬂé,ﬁg) are isomorphic if
there exists a one-to-one mapping f . D — D', called
isomorphism function, such that Vd € D,Vi € {1,2,3}

FBi(d) = B (f(@)).

This definition was extended in [9] to deal with i-free
darts by requiring that f(e) = €, ensuring that the boundary
is mapped onto the boundary. While computing arbitrary
graph isomorphism is known to be a hard problem [15, 18],
efficient algorithms exist for specific families of graphs. For
instance, planar graphs [22], graphs with polyhedral embed-
dings [24], or an embedding on a surface of fixed genus [4]
admit efficient isomorphism and subgraph isomorphism test-
ing. In these approaches, the key idea is to consider an or-
dering of the edges around a node to obtain a deterministic
graph traversal. The same technique can be used with com-
binatorial maps, exploiting the natural ordering given by the
dimension of the f; functions [39]. Additionally, combina-
torial maps are rigid in the sense of [13], which ensures that
we can greedily check for isomorphisms. As a result, isomor-
phism can be checked by mapping a single dart and indexing
all remaining darts via the same traversal performed on the
two maps. Then, it suffices to check the pairing of any dart
in the first map with all darts from the second map. Standard
speed-up techniques can also be performed, e.g., comparing
the number of darts.

We use a similar technique where the traversal of the first
map is encoded as a word to be read while analyzing the
second map. To build this word, we first abstract the traversal
of the map as a labeling of the darts.

Definition 3 (Labeling [17]). Given a 3-map M =
(D, 1, By, 3), a labeling of M is a bijective function
[: Duf{e} - {0,...,|D|} such that I(¢) = 0.

Such a labeling can be computed via any traversal al-
gorithm as long as the neighbors of a dart are always con-
sidered in the same order. We chose a breadth-first traver-
sal, considering dart neighbors ordered by the permutations
(first §,, then f,, and finally f), and labels are given to the
darts in prefix order. In the sequel, labeling always means
a breadth-first traversal labeling by increasing dimensions.
This process is illustrated in 2D on fig. 2.

Given a labeling, the full combinatorics of the map can
be expressed as a word built from the labeling by listing the
labels of each neighbor.

Figure 2: Encoding the combinatorics of a map as a word.
In this case, a breadth-first labeling is built: starting from a
chosen dart labeled 1, the darts are traversed using f, then
p,, and labels are given in prefix order. The associated word
encodes, for each dart, the labels of its neighbors, with 0 used
to handle the special ¢ dart.

Definition 4 (Word [17]). Given a connected 3-map M =
(D, 1, Py, P3) and a labeling | © DU {e} — {0,...,|D|}
the word associated with (M, 1) is the sequence

W(M, l) =<< wl,l, LU2,1, LU3,1, w1,2, ceny LU3|D| >
such that Vi € {1,2,3}, Vk € {1,...,|D|}, w;, = I(B;(d}))
where d, is the dart labelled with k, i.e., d, = 17! (k).

Such a word fully encodes the topology of the map.
Words can, therefore, be used to assert that maps are iso-
morphic: two maps are isomorphic if and only if they admit
labelings that yield the exact same word [17]. An example
of a word is provided in fig. 2. This figure uses some
special symbols to deal with boundary conditions that will
be explained in section 5.1.2.

3.4. Query-replace

The query-replace construction of [12] only handles the
subdivision of topological cells (single volumes for 3-map).
In their approach, each rule is encoded as a single 3-map,
where the boundary describes the query and the interior de-
fines the replacement. Their matching algorithm is based
on signatures, which deterministically encode the topology
of each volume into a word. Then, matching is performed
efficiently by computing the signature of each input volume
and checking it against a dictionary of query signatures.

In this paper, we generalize this framework in several
directions. First, we redefine the query and replace opera-
tions to support queries spanning multiple volumes. This
extension requires a more general notion of matching, and
places constraints on the replace operation, notably that it
must preserve the boundary of the query.

We also introduce two new operations — extend and delete
— which respectively add or remove substructures from the
mesh without requiring boundary preservation. Finally, we
define a fourth operation, apply, which allows users to asso-
ciate custom code with a query, enabling fully generic trans-
formations. These four operations (redefined replace, and

G. Damiand et al.: Preprint submitted to Elsevier

Page 4 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

new extend, delete, and apply) form the basis of our extended
query-modify framework.

4. Overview of our method

We provide a global overview of our method before de-
tailing it in the following two sections.

Our method modifies an initial 3D mesh M, the input, in
two steps. First, we identify occurrences of a second mesh
0, called a query, in M, extending the query-replace ap-
proach of [12] to queries on connected volumes rather than
a single one. The second step modifies the match of Q in
M. We introduce four possible modifications: extend, that
adds and glues new volumes around Q); delete, that removes
some volumes of Q; replace, that substitutes the interior of
0; and apply, which executes a user-defined function on Q.
The first three modifications use a third mesh T, called the
target, while the fourth is defined by the applied function.

The following two sections present new contributions
compared to the previous work of [12]. First, we redefine
both the query and replace operations since a new formal-
ization is needed to handle multi-volume patterns. This re-
definition leads to two theoretical contributions of this pa-
per: the definition of the query word (see def. 5) via special
symbols encoding boundary conditions and the annotation
algorithm (see alg. 1) to find a match from a query word.
Second, we introduce three new modification operations: ex-
tend, delete, and apply. Together with the replace operation,
we contribute three algorithms to modify a matched topolog-
ical query based on conditions about the preserved parts and
a fallback approach when these conditions cannot be met.

5. Query

The query operation first finds a submap of the input
isomorphic to the query map by encoding a traversal of the
query as a word and reproducing it on the input. We require
the query pattern to be connected for efficient traversal, as
assumed in def. 4. We allow boundary on the query map for
the dimension 3 and require all darts to be 1- and 2-sewn.

5.1. Query for a single pattern

We start by explaining how to process a single query,
first by creating an annotation from a word before extending
the notion of a word to a query word, encoding boundary
condition.

5.1.1. Basic case

Even if a query is formally given as a 3-map, we en-
code its combinatorics as a word (Definition 4) for efficient
queries. This word explicitly describes how to check occur-
rences of the query map within the input map. A match is
found by identifying a partial input labeling, which we call
an annotation such that the induced submap has the same
word as the query. More precisely, an annotation maps darts
to either a unique integer or a special symbol used to deal
with boundaries (as explained in section 5.1.2). The mapping

is partial, thus describing a sub-isomorphism, but requires
that different darts get mapped to different integers.

Since the query is fixed, we use the word associated with
a (BFS) labeling of the query to mimic the traversal on the
input map. Thus, labels are propagated according to the word
to retrieve the associated annotation, as detailed in alg. 1,
starting with label 1 on an input dart. In this basic approach,
boundary darts of the query can be mapped to any dart (in-
cluding €) in the input. The following section refines this
behavior by introducing boundary conditions.

Algorithm 1: Annotate a 3-map with a query
word.

Input: M = (D, f;, p,, f3): a connected 3-map
W' a query word describing the searched
pattern
d, € D: a starting dart of M

Output: An annotation of M for the query word W

or fail
1 let annotation be an empty map with darts as keys
2 let dart__annotated be an array of size [W'|/3 + 1
filled with @

3 annotation[d] « 1; dart_annotated[1] « d,

4 let O be an empty queue

5 add dg to Q

6 while Q is not empty do

7 pop d from the head of O

8 fori < 1to3do
// linked dart and constraint

5 d; < fi(d)

10 ¢ <« W(annotation[d] — 1) X 3 + i]
// check word constraint

11 if ¢ = 0 then continue // € in query

12 if d; is annotated then

13 | assert ¢ = annotation[d,]

14 else

15 assert d; # € and

dart_annotated[c] = @

16 annotation[d;] < ¢

17 dart_annotated[c] « d;

18 add d; to O

19 return annotation

5.1.2. Boundary conditions

From defs. 3 and 4, ws., = 0Oif the dart labeled k belongs
to the query boundary. In [12], queries were extracted as the
boundary of the replace pattern, ensuring fully automatic
boundary detection and word construction. Our extension
to multi-cell patterns aims to provide more control over the
query pattern, and we define four constraints on how a query
boundary dart can be matched to an input dart d:

wildcard (+) match any input dart, as in alg. 1;

strict boundary (¢) only match a boundary dart: 5(d) = €;

G. Damiand et al.: Preprint submitted to Elsevier

Page 5 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

strict interior (¢) do not match a boundary dart: f5(d) # €;

no connection («+») do not 3-sew to another matched input
dart. This constraint prevents new f; connections be-
tween darts of the matched submap that were not orig-
inally sewn together in the query.

Examples of these boundary conditions are given in fig. 3. To
handle these additional behaviors, we extend the definition
of a word.

Definition 5 (Query word). Given a connected input 3-map
= (D, By, b, p3) and alabeling | : DU{e} —
the query word associated with (M, 1) is the ﬁmte sequence

I/I/q(M, l) =< wl.],lel, LU3.1,I/U1_2, ceey I/U3|D| >

in{l,...,|D|} U {e,é,x*,«} such that for all i € {1,2,3}
and k € {1,.... D}, if fi(dy) # e, then wy, = 1(B(d}))
(where d;, = 1=Y(k)) and otherwise (i.e., pid) =€)w;; €
{e, &, x,»}.

The query word is built from a valid query map, where
all darts are 1- and 2-sewn. The additional symbols ¢, €, *, <>

apply only to 3-free darts. In alg. 1, we refine the constraint
checks (line 11) between c and d; as follows:

Cc >

d | {1,...,|D|} * € €& <

di=¢ X /o x /

d; is not annotated (a) v X vV (o
annotation[d;] € {1, ..., |D|} (b) X VvV X
annotation[d;] = @ X x v /

where v means that the dart fulfills the constraint and X
that it violates it. Cases (a) and (b) are handled as in alg. 1
while case (c) accepts and annotates the dart with @ to pre-
vent it from receiving another label later. This case is il-
lustrated on fig. 3 where the « and e boundary conditions
prevent some matches. In particular, the € condition requires
the matched dart to be on the boundary, and the < condition
prevents two quads from being connected.

5.2. Multiple queries

Many modeling operations are described by a table of
local topological configurations to be processed. Implement-
ing the case analysis on an input mesh can be tedious, de-
pending on the number and complexity of the configura-
tions. For example, in section 7.1, we implement a tetrahedra
recombination method with 171 configurations of up to 15
tetrahedra [35]. A naive approach would be to iteratively
test each input dart against every query word using alg. 1.
Here, we show that the search can be improved by handling
multiple queries on the same dart and properly managing
overlapping matches.

5.2.1. Multiple query words on the same dart

Given a set of query words (def. 5), we propose using
a prefix tree (or trie [26, Section 6.3]). In such a tree, each
node stores a symbol from the alphabet. A path from the root

.- | DI},

N b
- | DR

v v
Figure 3: 2D cases for the boundary conditions. Valid matches
are marked with a v and invalid ones with a x. Query (a) uses
an e constraint enforcing the match onto a boundary dart. In
query (b), the «+» boundary conditions allow matching anything
except another matched dart, thus preventing unintended
connections between parts of the matched pattern that were

unconnected in the query.
<2\
&
\ZL 2N

2%3417526%4%839» 10% T*

(0
Z&

~ queries and words

A‘Q 2*
14_
2*3*4516637*0*
*

2%3%451%63785%96104+ 11%8x%

81(1) Br(2 ¢ prefix tree —

)
D 0000 HOOONUCHOOC
9000060 @
s .. DOOOOEOO®

2 2

éOO@OOQ@Q@Q@@@Q@Q@

Figure 4: A prefix tree encoding multiple 2D queries simulta-
neously. Queries (a), (b), and (c) are first encoded into words
via a labeling. These words are then merged into a prefix
tree. With such a tree, trying to build a match on a given
starting dart means extending valid prefixes until a query is
indeed found. Thus, queries with a common prefix are checked
simultaneously, and branches are pruned when incompatible
with the input.

to a node represents a prefix of a query word. An example
is given on fig. 4. A node is terminal when the path corre-
sponds to a complete query word. In particular, all leaves are
terminal, while internal nodes are terminal when the corre-
sponding query word is a prefix of another. Algorithm 1 can
be extended to handle prefix trees and test multiple query
words by traversing the input 3-map and the tree simulta-
neously. The path from the root to the current node tracks
the prefix accepted so far. A match is found when a terminal
node is reached. The associated annotation is then recorded.
The search continues recursively for child nodes that satisfy
the constraints.

G. Damiand et al.: Preprint submitted to Elsevier

Page 6 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

5.2.2. Overlapping matches

The prefix tree efficiently checks multiple queries from
a single dart in the input mesh. However, since matches may
overlap, we need a strategy to determine a valid set of mod-
ifications to apply. The intended behavior is similar to L-
systems, where all occurrences of a given sequence of sym-
bols are modified simultaneously. We propose two solutions:
(1) alocal greedy search over the input map and (2) a global
search that ranks valid matches.

The greedy approach selects matches in the order they
are found. Once a match is selected, no other match may
overlap its labeled darts. Using the annotations from sec-
tion 5.1.2, we label every dart involved in a selected match
with @ before re-running alg. 1 from another dart. This
process prevents the algorithm from assigning a label to an
already matched dart, efficiently filtering out overlapping
matches.

Beyond the mesh’s combinatorics, additional criteria can
help rank query results. To this end, we propose a global
approach that first collects all possible matches, including
overlapping ones, and then ranks them based on an external
metric. Inspired by another work of Pellerin et al. [34], we
construct a graph where each node represents a match, and
edges link overlapping matches. Ideally, we would weight
each match and find a maximally weighted independent set
in this graph. However, this is NP-complete, and its com-
plexity grows exponentially with the number of matches.
Instead, we sort matches by the desired criterion and select
them in order, discarding conflicting matches.

6. Modify

Our query-modify framework identifies and modifies a
pattern in an input mesh. The pattern is precisely defined
by its encoding as a 3-map. Once a match is found, we per-
form the modification using four operations: extend, delete,
replace, and apply. The first three operations are no-code
solutions, requiring only the query and target meshes from
the user. While they follow the same abstract behavior — re-
moving the query and inserting the target — they differ in their
intended behavior and, therefore, their underlying assump-
tions. The fourth operation, apply, generalizes the first three
operations by applying an arbitrary function to the match.
It removes the previous constraints but requires manual im-
plementation by the user and special care to preserve a valid
topology.

In this section, we write Q for the query, T for the target,
and M for the input, each given as a 3-map. From them, we
compute:

1. mgy, a mapping from Q to T' describing the links be-
tween the query and the target;

2. mgyy, a mapping from Q to M, obtained from alg. 1,
describing the links between the query and the input.

We now detail the three structured modify operations,
their modifications, and the constraints that guarantee their

soundness. We recall that we assume Q and T to be con-
nected, without boundary for dimensions 1 and 2, but possi-
ble boundaries for dimension 3.

6.1. Extend

The extend operation preserves the match of the query
in the input mesh while attaching new volumes at its border,
effectively extending the query. Thus, Q must be a submap of
T, meaning that myy is an isomorphism from Q to a subset
of T (i.e., some darts in T have no pre-image in Q). We
write D\ for the set of darts in 7" without a pre-image in
Q. This set corresponds to the new elements added by the
extend operation. After adding these darts to M, they are
reconnected at the border of the query match with alg. 2.

Algorithm 2: Extend a 3-map M, given a query
0, atarget T', and mappings mgyy and mg .

1 Copy all darts from Dy to M, building a
mapping myy, from each dart in Dy, to its copy
// Copy all links f,
2 for any two darts d and d' in Dy such that
d = p,(d)do
3 i-sew their copies by sewing my,,(d) and
L mya(d)
// Connect the new volumes
4 for each dart d in D\ do
5 if d is 3-sewn to d’ = p5(d) that is not in Do
then
6 L 3-sew myy,(d) and my M(mélT(d’))

For the operation to be valid, all darts in M attached to a
new volume must be 3-free before the operation. The query
automatically annotates these darts with € (section 5.1.2).

6.2. Delete

The delete operation, summarized in alg. 3, is essentially
the inverse of extend: it preserves only a subpart of the query
in the input, deleting the rest. Thus, T must be a submap of
O, meaning that mg; is an isomorphism from a subset of Q
to T (i.e., some darts in Q have no image in 7'). We denote by
D\ r the darts in Q without an image in 7', corresponding
to the elements removed by the operation. To maintain the
topological consistency, we first disconnect these darts from
the rest of the mesh before deleting them. Since Q and T
are restricted to having only 3-boundaries, only f; links may
exist between D, r and the rest of the query mesh, ensuring
that only volumes are disconnected.

6.3. Replace

The replace operation performs a rewriting step, replac-
ing the query with the target while preserving the border of
the match. The operation first merges all matched volumes
into one using the removal operation [10], then replaces the
volume’s interior with the target structure as in [12], as ex-
plained in alg. 4

G. Damiand et al.: Preprint submitted to Elsevier

Page 7 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

Algorithm 3: Delete volumes from a 3-map M,
given a query Q, a target T, and mappings mgp
and mg ;.

// Disconnect the volumes to delete
1 for any darts d € Dg\r and d ¢ Do\ r such that
d = py(d") do
2 | 3-unsew the darts mgp), (d) and mgpy,(d”)
// Delete the disconnected volumes

Algorithm 4: Replace interior of volumes in a 3-
map M, given a query Q, a target T, and mappings
mor and mg ;.

// Merge all volumes of the match into one
1 for each 3-sewn dart d € Q do
2 L Remove the face containing mg,(d) in M,
merging the two incident volumes.

// Replace the interior of the volume
3 Replace the interior using T, mor, and Mo

Since the replace operation requires that the boundary of
the query is preserved, it cannot simulate either the extend
operation or the delete one. In all generality, a query-replace
can also not be simulated by a sequence of a query-delete
followed by a query-extend as the replace operation merges
the volumes.

6.4. Apply

The previous three operations describe modifications
through a query and target map, expanding, removing, or
substituting mesh parts while maintaining topological con-
sistency. We introduce the apply operation for more complex
transformations, applying an arbitrary function to the match.
The implementation is simplified by using the result of
alg. 1 and only asking the user for an implementation of the
function. As a result, some parts of the apply operation still
need manual implementation, but it allows for modifications
beyond the predefined transformations. In particular, the
extend, delete, and replace operations can be seen as specific
apply operations.

6.5. Dealing with the geometry

The explanations so far have focused on the modifica-
tion of mesh topology. Geometry must also be considered to
describe the shape of the mesh properly. We now describe
how vertex positions are handled during the extend, delete,
and replace operations. For the apply operation, geometry
management is delegated to the user-provided function.

We again consider a query Q, its match in an input mesh
M, and a target mesh T'. In a 3-map, each vertex corresponds
to an orbit in the combinatorial structure, i.e., a set of darts
that define a unique vertex together. Each such vertex is then
associated with a single 3D point. This structure has two im-
portant implications. First, we can consider a matched vertex

as preserved if at least one of its darts is preserved, i.e., if it
appears in the mapping mgy. On the contrary, a vertex is
considered deleted, respectively created, if all its darts are.
Second, a unique position must be assigned to each vertex.
However, vertex merging from the input mesh M never oc-
curs in the proposed modify operations (only volumes are
merged in the replace operation). Thus, no merging conflict
needs to be solved.

We propose minimally modifying the geometry, mean-
ing that vertices unaffected by the transformation retain their
original position. This includes preserved vertices and those
not involved in the operation, conveying the motivation that
our Q&M framework encodes local edits. If a vertex is
deleted, i.e., all its darts are in DQ\T, the associated 3D point
is discarded. If a vertex is created, i.e., all its darts are in
Dy, then a new 3D point must be computed. We propose
to use the generalized barycentric coordinates of each new
vertex in the target mesh expressed on the preserved vertices
of T, following the method of [23]. More precisely, positions
for the new vertices are interpolated using these barycentric
coordinates with the positions of the preserved vertices in the
input mesh M. This computation ensures the new geometry
is consistent with the shape of the original pattern in the
target mesh T while adapting to the input mesh M (see
examples in section 7).

6.6. Implementation details

A 3D combinatorial map can be encoded as an array of
darts. Each dart d stores four indices, one for each dart linked
to d by p;, fori € {0,1,2,3}. The query mechanism di-
rectly implements alg. 1. The three modification operations
(extend, delete, and replace) are also direct implementations
of their respective algorithms (algs. 2 to 4). The sew (resp.
unsew) operation simply updates the relevant indices of the
involved darts. Replacing the interior of a volume follows
the approach described in [12]. The apply operation simply
encapsulates the user-provided function to be executed on
the matched darts.

7. Experiments

We implemented the four query-modify operations
(query-extend, query-delete, query-replace, and query-
apply) in C++, using CGAL’s combinatorial maps [7] and
linear cell complexes [8], which provides an additional layer
for handling the geometry. All experiments were conducted
on an Intel® i9-10900K GPU @ 3.70 GHz with 64 GB of
RAM. Our code will be publicly available upon acceptance
of the paper.

We designed four experiments to show the versatility
of our query-modify operations. The first experiment (sec-
tion 7.1) implements a tetrahedral recombination method,
converting a tetrahedral mesh into a hexahedral one using all
171 topological configurations of tetrahedra from [35]. Since
they made these configurations available, we directly used
them as query-replace operations, achieving, to our knowl-
edge, the first exhaustive implementation of tetrahedral re-
combination. The second experiment (section 7.2) shows

G. Damiand et al.: Preprint submitted to Elsevier

Page 8 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

how to combine query-delete and query-extend to modify
features of an existing model as a way to ease design pro-
cesses. The third experiment (section 7.3) uses our method
to modify production meshes extracted from Blender open
movie projects. The last experiment (section 7.4) is a toy
example to illustrate the query-apply operation via the gen-
eration of a terrain with small houses.

7.1. Tetrahedra recombination

In our first and main experiment, we apply our query-
modify operation to implement a tetrahedra recombination
method (introduced in section 2.3). From a tetrahedral mesh
as input, sets of tetrahedra are combined into hexahedra when-
ever possible. This first experiment is a core contribution of
our framework since, to our knowledge, a method of iden-
tifying all 171 different cases from [35] was never imple-
mented. Our solution is the first successful implementation,
made feasible by our query-replace operation. It follows these
three main steps:

1. load the 171 VTK files from [35] and create 171 cor-
responding query configurations;

2. for each query mesh, generate a corresponding target
mesh by merging all its tetrahedra into a single trian-
gulated hexahedron;

3. apply as many query-replace operations as possible to
the input tetrahedral mesh.

Different strategies can be considered to find all possi-
ble matches, as discussed in section 5.2.2. This experiment
adopts a global approach based on the scaled Jacobian [25]
as a geometric quality metric. The scaled Jacobian quantifies
how much a hexahedron deviates from a perfect cube, rang-
ing from 1 (a cube) to negative values (invalid elements, e.g.,
with self-intersections). This strategy follows four steps:

1. compute all possible matches of the 171 queries in the
given mesh, allowing overlaps;

2. compute the scaled Jacobian of each match, consider-
ing the hexahedron formed by the union of the matched
tetrahedra;

3. sort the matches in decreasing order of their scaled
Jacobian;

4. apply query-replace operations to matches from high-
est to lowest Jacobian values, discarding conflicting
matches after each replacement to avoid overlaps.

We automatically annotate all the darts on the border of
the queries with < to avoid degenerate matches, e.g., folded
ones with less than eight vertices.

We compare our results with the method of [34], which
identifies and assembles groups of tetrahedra into higher-
order elements like hexahedra, prisms, and pyramids. Their
approach relies on a vertex-based strategy. For hexahedron
recombination, the algorithm examines combinations of 8

Ko

Figure 5: The six hexahedral meshes used in our tetrahedra
recombination experiment. From left to right: Armadillo,
Dragon, Dualocta, Rockerarm, Sculpture, and Torus-twist. The
colormap represents the scaled Jacobian of the hexahedra.

vertices corresponding to potential hexahedron configura-
tions with 8 nested for-loops. Poor-quality candidates are
filtered out using the scaled Jacobian as a geometric quality
measure. For comparison, we used the publicly available
code from https://www.hextreme.eu/download/, written HXT
in our results. We additionally used the HXT’s implementa-
tion of the scaled Jacobian as our geometric quality metric,
meaning that the only difference is the combinatorial match-
ing.

It is important to note that the HXT method does not
cover the full set of 171 cases of [35], and to our knowl-
edge, no method has provided such an implementation yet.
Manually handling so many configurations would require
significant effort, an issue our Q&M framework circumvents
by design.

7.1.1. Results on a synthetic dataset

This experiment aims to evaluate our implementation of
the tetrahedra recombination method from [34]. To establish
a ground truth, we constructed optimal scenarios by trans-
forming hexahedral meshes into tetrahedral meshes without
adding new points. Each hexahedron was randomly triangu-
lated by splitting quads into triangles, then decomposed into
a compatible set of tetrahedra. This construction guarantees
that an optimal recombination exists, i.e., without remaining
tetrahedra. Thus, we can quantify how close our results are to
this optimal. In practice, we used the six hexahedral meshes
shown in fig. 5, obtained from HexLab.net [5].

The results of our method and those of Pellerin et al.
[34] are shown in table 1. We provide metrics for the initial
hexahedral meshes, their tetrahedralized versions, and the
results of both methods. For each case, we indicate the num-
ber of recombined hexahedra and the number of remaining
tetrahedra. Our method consistently achieves perfect recom-
bination, recovering 100% of the original hexahedra. While
producing very good results, HXT does not always recover
all hexahedra.

Performance-wise, our method is significantly slower
than HXT, as expected, since HXT uses a much simpler
matching algorithm. Our implementation prioritizes gen-
erality over performance, but several optimizations could
significantly improve runtime. A minor gain would come
from replacing the recursive query traversal with an iterative
version. More substantial improvements include paralleliz-
ing the matching process. At the tree level, we can start

G. Damiand et al.: Preprint submitted to Elsevier

Page 9 of 14

https://www.hextreme.eu/download/
https://www.hexalab.net/

A Generic Query-Modify Framework for Volumetric Mesh Processing

Hex mesh Tet mesh Q&M Jacobian strategy HXT

#v ##d #v #d #Q #h #t | Memory Time #Q #h #t ‘ Memory | Time

Armadillo 29,935 | 718,440 149,675 | 1,796,100 || 827,729 | 29,935 0 | 130 MB | 205.8s || 392,572 | 29,667 | 1,146 | 163.7MB | 4.26s
Dragon 14,009 | 336,216 70,045 840,540 || 358,737 | 14,009 0 70.8MB 89.5s 175,128 | 13,997 55 84.3MB | 2.36s
Dualocta 1,344 32,256 6,720 80,640 30,072 1,344 0 26.1MB 7.8s 12,999 1,344 0 11.7MB | 0.19s
Rockerarm || 10,600 | 254,400 53,000 636,000 || 280,360 | 10,600 0| 59.7MB | 69.4s || 130,372 | 10,282 | 1,370 | 61.5MB | 2.08s
Sculpture 2,240 | 53,760 11,200 134,400 52,040 | 2,240 0| 29.2MB 12.9s 24,306 | 2,240 0 17.6MB | 0.35s
Torus-twist 768 18,432 3,840 46,080 12,800 768 0| 241MB 3.3s 6,007 768 0 9.4MB | 0.10s

Table 1

Mesh statistics about the initial hexahedral meshes (Hex mesh), the generated tetrahedral ones (Tet mesh), and the result of
Q&M and HXT. For Hex mesh and Tet mesh, #v and #d respectively denote the number of volumes and darts. For the final
recombined meshes: #Q is the total number of query found, #h and #t are the number of hexahedra and remaining tetrahedra,
Memory is the maximal resident memory used (in Mega-Bytes) and Time is the computation time of the method (in seconds).

with a single thread at the root, and spawn a new thread for
each branch, such that branches can be explored indepen-
dently without requiring synchronization. Matching could
also be parallelized at the mesh level, as candidate starting
points can be evaluated concurrently using read-only access.
Additional speedups could be achieved through lightweight
geometric filtering. For example, restricting searches to
local neighborhoods using bounding spheres, or aborting
early when the matched geometry becomes overly distorted.
These optimizations remain compatible with the generality
of the framework and are left for future work.

Our method also identifies over twice as many valid
queries on average, confirming that HXT does not find
all possible recombinations. While this does not lead to
important differences in these synthetic scenarios, the dif-
ference becomes more significant for real-world meshes, as
demonstrated in the following experiment.

Table 1 suggests that the runtime scales linearly with
mesh size. The total runtime is the sum of the costs of
individual queries and thus depends on both the complexity
of the mesh and the structure of the prefix tree encoding
the query patterns. In this experiment, the query set is fixed
(the 171 cases), and each pattern is small relative to the
mesh. As a result, the dominant factor becomes the number
of starting points in the mesh, leading to an approximately
linear runtime. A detailed performance breakdown is beyond
the scope of this paper, which focuses on demonstrating the
general applicability and extensibility of our query-modify
framework.

To grasp the memory impact of our method, we com-
pared the maximum Resident Set Size (RSS) of both meth-
ods and found no significant difference. On average, our
method used 56.7 MB, while HXT used 58 MB. While RSS
is not a perfect measure of memory usage for each data
structure, it provides a good approximation for comparing
the two methods.

7.1.2. Results on real cases

In the previous experiment, we compared our method
and HXT on specific meshes designed to ensure optimal re-
combination. While this was useful for evaluating the meth-
ods, these meshes are somewhat artificial. In this second
experiment, we apply our method to real tetrahedral meshes

Figure 6: Three tetrahedral meshes from HexMe database
(images from [2]).

704

60+

50 4

40

30 4

Remaining tetrahedra (%)

4 —=- Mean Q&M
=== Mean HXT
104 W Q&M

N HXT

0 25 50 75 100 125 150 175

Figure 7: Percentage of remaining tetrahedra (relative to the
initial meshes) for our method (Q&M) and the HXT method.
The x-axis lists the 189 input meshes used in the evaluation.

from the HexMe! database [2], which contains 189 tetrahe-
dral meshes generated by their authors to “enable consistent
and practically meaningful evaluation of hexahedral mesh-
ing algorithms and related techniques”. Three examples are
shown in fig. 6.

We ran the same experiment on 189 meshes using our
Q&M method (based on the 171 configurations and the
scaled Jacobian) and HXT. Both methods use the imple-
mentation of the same geometric criterion, but our method
consistently outperforms HXT, with only 36% remaining
tetrahedra on average versus 62% for HXT (see fig. 7). This
result suggests that HXT misses many matches that our
method captures. The trade-off is the computation time: our
method takes 814 seconds on average versus 36 seconds
for HXT. As mentioned earlier, our implementation is not
optimized for this specific task, but it can be improved.

These results demonstrate the potential of our method for
transforming tetrahedral meshes into hexahedral ones. While

'HexMe: https://www.algohex.eu/publications/hex-me-if-you-can/.

G. Damiand et al.: Preprint submitted to Elsevier

Page 10 of 14

https://www.algohex.eu/publications/hex-me-if-you-can/

A Generic Query-Modify Framework for Volumetric Mesh Processing

Query-modify framework

Figure 8: Example of use of our new query-modify operation to
change all the handles of a given 3D model of a house (volumes
are rendered in a randomly assigned color).

our simple Jacobian-based strategy is insufficient for high-
quality results (and is not the goal of our work), more ad-
vanced methods can build on our query-modify framework
as a core tool.

7.2. Modification of a 3D model

We applied our query-modify framework to update an
existing 3D model in a second experiment. This experiment
addresses a practical use case: designers often create 3D mod-
els using object databases, meaning that model parts inher-
ently share the same topology. Queries via words encoding
this topology enable simultaneous modification of all occur-
rences of a given part, making our framework highly useful
for real-world applications. Starting from a 3D mesh of a
house (fig. 8 left), loaded from an IFC (Industry Foundation
Classes) file containing 895 volumes, we modified its door
handles. While the doors are different, they share the same
handle, meaning that an architect could easily replace them
using our query-modify operations:

1. remove some part of the handle while preserving its
support via a query-delete operation using the mesh
labeled M as the query (in fig. 8) and labeled M, as
the target;

2. add a new handle onto the support via a query-extend
operation with M, as the query and M; as the target
(cf. fig. 8).

Applying these two query/modify operations transforms
both handles, as illustrated for one door in fig. 8 bottom/right.
The computation is fast: 0.04s for the first query, 0.0001s
for the delete, 0.17s for the second query, and 0.02s for the
extend. Thus, the total operation takes 0.23s. Beyond effi-
ciency, one main advantage of this method is its simplic-
ity. No additional code is needed—only three meshes are
required: the initial mesh of the door handle extracted from
the house model, a second mesh with one volume removed,
and a third with a new handle added using a 3D modeler.
The example illustrates that parts of the initial mesh, here
the door handles, can be detected only from the topology
without requiring additional metadata.

Flexibility is another key benefit: we can edit the third
mesh in a 3D modeler to customize the result. Intuitively,
our method allows editing all handles of the house by only
modifying one.

p

Target

Result

Figure 9: On this production model, many mechanical parts
are duplicated across the model. In this context, our method
provides a means for coherently modifying all the replicas. The
Quadbot model is courtesy of Francesco Siddi from the Blender
Tears of Steel open movie project.

i Extend Replace i
Doy g

Figure 10: On this model, we first apply an extend operation,
leading to a non-manifold intermediate state, and follow with
a replace operation to restore the manifoldness of the model.
On the replace operation, the query had to be marked with
an € boundary condition to prevent matches on the antennas.
Ladybug model courtesy of Simon Thommes, Blender Sprite
Fright open movie project.

i‘

7.3. Modification of production surface meshes

We demonstrate here the usability of our method on pro-
duction meshes extracted from Blender open movie projects.
These examples demonstrate that production meshes have
self-similar portions that can benefit from our method for
batch modifications, as in fig. 9. Blender uses a bmesh data
structure, extending half-edges to represent non-manifold
meshes.

This shows an interest in using combinatorial maps and
volumes, even when dealing with surface meshes. Indeed,
combinatorial maps deterministically represent non-mani-
fold structures that can be present in the input or as inter-
mediate steps as in fig. 10.

This final experiment shows the value of our method in
real-case scenarios. Indeed, surface meshes used in produc-
tion often contain repeated elements, which can all be edited
simultaneously with our query-modify framework. Our solu-
tion particularly appeals to designers as it enables coherent

G. Damiand et al.: Preprint submitted to Elsevier

Page 11 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

S B R

Figure 11: Example of terrain generation with houses. (a) Gen-
eration of a grid of voxels of size 5 x 5. (b) Result after one
query-apply operation. (c) Final result after one query-extend
operation.

Figure 12: Result of terrain generation with houses on a
128 x 128 grid.

modifications of all replicas without coding or interactive
manipulations.

7.4. Terrain generation with houses

We implemented a last experiment to generate a 3D ter-
rain with houses. This experiment is a toy example intended
to illustrate the flexibility of our query-modify operations.
The generation is done in three steps.

(1) A voxel grid is generated from a height map using the
diamond-square method [16]. Voxels are then created and
assembled into a 3-map using methods from CGAL.

(2) Flat spaces are created for placing houses using a query-
apply operation. The query consists of 3 X 3 cubes with tri-
angulated bottom faces. The apply operation merges the vol-
umes and their upper faces, and flattens the resulting face to
the average height of the original points.

(3) The final modification adds houses to the flattened spots
with a query-extend operation. The query mesh is the tar-
get of the previous query-apply. The target mesh, shown in
fig. 11b, extends the query with three additional volumes to
form a house. The meshes were created using a 3D modeler.
Applying the query-extend operation on the modified terrain
automatically adds one house to each flattened area.

The mesh shown in fig. 12 has been obtained by gener-
ating a 128 X 128 grid, flattening areas with 50 query-apply
operations and adding houses with as many query-extend
operations. Size metrics and computation time are given in
table 2, showing the method’s efficiency. Our method gener-
ates a terrain of arbitrary size with minimal implementation

Step | Volumes Darts Computation Time (s)

@) 16,384 425084 0.028

2) 15,984 419,984 0.012 (0.008 query, 0.004 apply)

3) 16,134 431,684 0.68 (0.62 query, 0.06 extend)
Table 2

Evolution of size metrics and computation times for the terrain
generation.

\-%

P

(a) undesired matches

(b) automorphisms

Figure 13: Limitations of topological matching. Some unde-
sired portions of the mesh may exhibit the same topology (a)
thus leading to undesirable modifications. Queries can also be
automorphic (b) which results on unpredictable modifications,
here with random feet orientation.

effort: a function for the grid creation (~20 lines of code)
and a function in the apply operation (~10 lines). The rest of
the process relies on two calls to query-modify operations.
Refining the houses would only require updating the target
mesh in a 3D modeler without code update.

8. Limitations

Our approach solely focuses on topological matching.
We are therefore able to locate topologically identical pieces
of meshes, even though their geometry differs, and will not
match portions with similar shapes, but different topology.
This is enough in several cases, as illustrated in the previous
results.

However, relying solely on topological matching also in-
troduces risks of false positives when distinct geometric com-
ponents share the same topology. For instance, in fig. 13a,
the leg mesh is topologically equivalent to part of the an-
tenna mesh. In the ladybug experiment (fig. 10), we avoided
such mismatches by constraining the query boundary with
fixed labels (e) rather than wildcards (*). To improve ro-
bustness, lightweight geometric filters — such as bounding
box comparisons, orientation checks, or proximity measures
— can help eliminate irrelevant matches, as already done in
our hexahedral recombination experiments using the scaled
Jacobian (section 7.1).

Such filters can also assist in handling query automor-
phisms, where topological symmetry leads to multiple valid
matches. Without disambiguation, the current implemen-
tation selects one arbitrarily, potentially leading to unpre-
dictable results in batch editing. For example, the boot
modification in fig. 13b can be applied in four orientations. A

G. Damiand et al.: Preprint submitted to Elsevier

Page 12 of 14

A Generic Query-Modify Framework for Volumetric Mesh Processing

simple geometric heuristic, such as preferring toes that point
toward the head, can restore consistent behavior.

While we leave full integration of generic strategies to
future work, we believe such extensions could significantly
enhance practical robustness.

9. Conclusion

In this paper, we defined a new generic query-modify
framework that allows automatic volumetric mesh process-
ing by topological matching. The first part of our method is
the query of a pattern into a given 3D mesh. Matching the
query is efficient thanks to a topological word representing
the pattern’s combinatorics. Moreover, several words can be
grouped in a search tree, allowing fast simultaneous queries
of several patterns. The second part of our method allows
us to extend, delete, or replace some volumes of the pattern
given a target mesh. A more generic operation allows the ap-
plication of any code associated with some query, providing
a fully generic method.

The strong points of our method are: (1) its genericity —
the framework is applicable to a wide range of use cases, as
demonstrated in our experiments; (2) its topological validity
— grounded in the formal definitions of combinatorial maps,
isomorphisms, and our operations, the framework ensures
topological correctness of the result; (3) its simplicity — the
extend, delete, and replace operations require no additional
coding but only query and target meshes. The apply oper-
ation, while requiring a small implementation effort, offers
full flexibility for custom modifications.

Our query-modify framework could still be improved by
relaxing some constraints imposed on the query and target
meshes. We could enable non-connected query and target
meshes, meshes with 1D or 2D boundaries, or annotated
darts outside certain boundaries, raising questions about the
representational power of words and their practical use. For
instance, allowing non-connected query meshes leads to an
exponential complexity without further optimizations. An-
other promising direction is the composition of multiple mod-
ification steps, which requires new constraints to ensure topo-
logical soundness. We can also investigate how to process
overlapping queries and determine whether their associated
modify operations are independent and can be realized si-
multaneously, in the spirit of critical pair analysis [20, 30].
As a speed-up technique, we could explore how paralleliza-
tion can enable synchronous operations applications.

More challenging future work remains to improve our
framework’s simplicity and expressiveness, including auto-
matically generating query-modify operations from query
and target meshes to obtain complex operations without
human intervention. We could also explore using our query-
modify framework for partial matchings or geometric match-
ing. Exact topological matching is helpful for many real-
world objects as designers use copy-pasting and databases
containing parts to build larger objects. Our method is nat-
urally appealing in these cases as it allows for simultaneous
modification of all isomorphic parts. However, extending

our framework to consider partial or geometrical matching
would enable dealing with slightly modified copies of an
original part. Such an extension raises many difficult ques-
tions that should be studied in future work. For instance, how
do we partially match a given word or define modification
over partial queries? How can we encode geometric prop-
erties in an equivalent of the topological words that allow
efficient matching and generic edits?

References

[1] Arnould, A., Belhaouari, H., Bellet, T., Le Gall, P., Pascual, R.,
2022. Preserving consistency in geometric modeling with graph
transformations. Mathematical Structures in Computer Science 32,
300-347. doi:10.1017/50960129522000226.

[2] Beaufort, P.A., Reberol, M., Kalmykov, D., Liu, H., Ledoux, F.,
Bommes, D., 2022. Hex Me If You Can. Computer Graphics Forum
doi:10.1111/cgf.14608.

[3] Belhaouari, H., Arnould, A., Le Gall, P., Bellet, T., 2014. Jerboa: A
graph transformation library for topology-based geometric modeling,
in: Giese, H., Konig, B. (Eds.), Graph Transformation, Springer
International Publishing. pp. 269-284.

[4] Bonsma, P., 2012. Surface Split Decompositions and Subgraph
Isomorphism in Graphs on Surfaces, in: Diirr, C., Wilke, T. (Eds.),
29th International Symposium on Theoretical Aspects of Computer
Science (STACS 2012), pp. 531-542. doi:10.4230/LIPIcs.STACS.
2012.531.

[5] Bracci, M., Tarini, M., Pietroni, N., Livesu, M., Cignoni, P., 2019.
Hexalab.net: An online viewer for hexahedral meshes. Computer-
Aided Design 110, 24-36. doi:https://doi.org/10.1016/j.cad.2018.
12.003.

[6] Cagan, J., 2001. Engineering Shape Grammars: Where We Have
Been and Where We Are Going, in: Antonsson, E.K., Cagan, J. (Eds.),
Formal Engineering Design Synthesis. Cambridge University Press,
pp. 65-92. doi:10.1017/CB09780511529627 . 006.

[7] Damiand, G., 2011. Combinatorial maps, in: CGAL User and Refer-
ence Manual. 3.9 ed. http://www.cgal.org/Pkg/CombinatorialMaps.

[8] Damiand, G., 2012. Linear Cell Complex, in: CGAL User and Refer-
ence Manual. 4.0 ed. http://www.cgal.org/Pkg/LinearCellComplex.

[9] Damiand, G., De La Higuera, C., Janodet, J.C., Samuel, E., Solnon,
C., 2009. Polynomial algorithm for submap isomorphism: Applica-
tion to searching patterns in images, in: Proc. of 7th Workshop on
Graph-Based Representation in Pattern Recognition (GBR), Springer
Berlin/Heidelberg. pp. 102-112. doi:10.1007/978-3-642-02124-4_11.

[10] Damiand, G., Lienhardt, P., 2003. Removal and contraction for n-
dimensional generalized maps, in: Proc. of 11th International Confer-
ence on Discrete Geometry for Computer Imagery (DGCI), Springer
Berlin/Heidelberg. pp. 408-419.

[11] Damiand, G., Lienhardt, P., 2014. Combinatorial Maps: Efficient
Data Structures for Computer Graphics and Image Processing. A K
Peters/CRC Press.

[12] Damiand, G., Nivoliers, V., 2022. Query-replace operations for
topologically controlled 3d mesh editing. Computers & Graphics
(C&G) 106, 187-199.

[13] Danos, V., Heckel, R., Sobocinski, P., 2014. Transformation and
Refinement of Rigid Structures, in: Giese, H., Konig, B. (Eds.),
Graph Transformation, Springer International Publishing. pp. 146—
160. doi:10.1007/978-3-319-09108-2_10.

[14] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G., 2006. Fundamentals
of Algebraic Graph Transformation. Monographs in Theoretical
Computer Science. An EATCS Series, Springer-Verlag. doi:10.1007/
3-540-31188-2.

[15] Fortin, S., 1996. The Graph Isomorphism Problem. Technical Report.
University of Alberta Libraries. doi:10.7939/R35X64C5K.

[16] Fournier, A., Fussell, D., Carpenter, L., 1998. Computer rendering of
stochastic models. Association for Computing Machinery. pp. 189—
202.

G. Damiand et al.: Preprint submitted to Elsevier

Page 13 of 14

http://dx.doi.org/10.1017/S0960129522000226
http://dx.doi.org/10.1111/cgf.14608
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.531
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.531
http://dx.doi.org/https://doi.org/10.1016/j.cad.2018.12.003
http://dx.doi.org/https://doi.org/10.1016/j.cad.2018.12.003
http://dx.doi.org/10.1017/CBO9780511529627.006
http://www.cgal.org/Pkg/CombinatorialMaps
http://www.cgal.org/Pkg/LinearCellComplex
http://dx.doi.org/10.1007/978-3-642-02124-4_11
http://dx.doi.org/10.1007/978-3-319-09108-2_10
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.7939/R3SX64C5K

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

[30]

[31]

(32]

[33]

[34]

A Generic Query-Modify Framework for Volumetric Mesh Processing

Gosselin, S., Damiand, G., Solnon, C., 2011. Efficient search of
combinatorial maps using signatures. Theoretical Computer Science
(TCS) 412, 1392-1405. doi:10.1016/7.tcs.2010.10.029.

Grohe, M., Schweitzer, P., 2020. The graph isomorphism problem.
Communications of the ACM 63, 128—134. doi:10.1145/3372123.
Haakonsen, S.M., Rgnnquist, A., Labonnote, N., 2023. Fifty years
of shape grammars: A systematic mapping of its application in
engineering and architecture. International Journal of Architectural
Computing 21, 5-22. doi:10.1177/14780771221089882.

Heckel, R., Kiister, J.M., Taentzer, G., 2002. Confluence of Typed
Attributed Graph Transformation Systems, in: Corradini, A., Ehrig,
H., Kreowski, H.J., Rozenberg, G. (Eds.), Graph Transformation
(ICGT 2002), Springer. pp. 161-176. doi:10.1007/3-540-45832-8_14.
Heckel, R., Taentzer, G., 2020. Graph Transformation for Soft-
ware Engineers: With Applications to Model-Based Development
and Domain-Specific Language Engineering. Springer International
Publishing. doi:10.1007/978-3-030-43916-3.

Hopcroft, J.E., Wong, J.K., 1974. Linear time algorithm for isomor-
phism of planar graphs, in: STOC, ACM. pp. 172-184.

Ju, T., Schaefer, S., Warren, J., 2005. Mean value coordinates
for closed triangular meshes, in: ACM SIGGRAPH 2005 Papers,
Association for Computing Machinery. pp. 561-566. doi:10.1145/
1186822.1073229.

Kawarabayashi, K.i., Mohar, B., 2008. Graph and map isomorphism
and all polyhedral embeddings in linear time, in: Proceedings of the
fortieth annual ACM symposium on Theory of computing, pp. 471-
480. doi:10.1145/1374376.1374443.

Knupp, P.M., 2000. Achieving finite element mesh quality via
optimization of the jacobian matrix norm and associated quan-
tities. part i—a framework for surface mesh optimization. In-
ternational Journal for Numerical Methods in Engineering 48,
401-420. doi:https://doi.org/10.1002/(SICI)1097-0207(20000530)
48:3<401: : ALD-NME880>3.0.C0; 2-D.

Knuth, D.E., 1998. The Art of Computer Programming, Volume 3:
Sorting and Searching. 2nd ed., Addison-Wesley.

Lienhardt, P., 1994. N-Dimensional generalized combinatorial maps
and cellular quasi-manifolds. Inte. J. of Computational Geometry and
Applications 4, 275-324.

Lindenmayer, A., 1968. Mathematical models for cellular interactions
in development II. Simple and branching filaments with two-sided
inputs. Journal of Theoretical Biology 18, 300-315. doi:10.1016/
0022-5193(68)90080-5.

Marvie, J.E., Perret, J., Bouatouch, K., 2005. Fl-system: A functional
I-system for procedural geometric modeling. The Visual Computer
21, 329-339. d0i:10.1007/500371-005-0289-z.

Mens, T., Taentzer, G., Runge, O., 2005. Detecting structural refactor-
ing conflicts using critical pair analysis. Electronic Notes in Theoreti-
cal Computer Science 127, 113-128. doi:https://doi.org/10.1016/3.
entcs.2004.08.038. proceedings of the Workshop on Software Evolu-
tion through Transformations: Model-based vs. Implementation-level
Solutions (SETra 2004).

Meshkat, S., Talmor, D., 2000. Generating a mixed mesh of hexahe-
dra, pentahedra and tetrahedra from an underlying tetrahedral mesh.
International Journal for Numerical Methods in Engineering 49, 17—
30. doi:https://doi.org/10.1002/1097-0207(20000910/20)49:1/2<17::
AID-NME920>3.0.C0;2-U.

Miiller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L., 2006.
Procedural modeling of buildings. ACM Trans. Graph. 25, 614-623.
doi:10.1145/1141911.1141931.

Pascual, R., Le Gall, P., Arnould, A., Belhaouari, H., 2022. Topo-
logical consistency preservation with graph transformation schemes.
Science of Computer Programming 214. doi:10.1016/j.scico.2021.
102728.

Pellerin, J., Johnen, A., Verhetsel, K., Remacle, J.F., 2018a. Iden-
tifying combinations of tetrahedra into hexahedra: A vertex based
strategy. Computer-Aided Design 105, 1-10. doi:10.1016/j.cad.2018.
05.004.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Pellerin, J., Verhetsel, K., Remacle, J.F., 2018b. There are 174
subdivisions of the hexahedron into tetrahedra. ACM Transactions
on Graphics 37, 1-9. doi:16.1145/3272127.3275037.

Prusinkiewicz, P., Hammel, M.S., Mjolsness, E., 1993. Animation
of plant development, in: Proceedings of the 20th Annual Conference
on Computer Graphics and Interactive Techniques, Association for
Computing Machinery. pp. 351-360. doi:10.1145/166117.166161.
Rozenberg, G., Salomaa, A., 1980. The Mathematical Theory of L
Systems. Academic press.

Sokolov, D., Ray, N., Untereiner, L., Lévy, B., 2016. Hexahedral-
dominant meshing. ACM Trans. Graph. 35. doi:10.1145/2930662.
Solnon, C., Damiand, G., de la Higuera, C., Janodet, J.C., 2015.
On the complexity of submap isomorphism and maximum common
submap problems. Pattern Recognition (PR) 48, 302-316. doi:1e.
1016/j.patcog.2014.05.019.

Stiny, G., Gips, J., 1971. Shape Grammars and the Generative
Specification of Painting and Sculpture, in: Freiman, C.V., Griffith,
J.E., Rosenfeld, J.L. (Eds.), IFIP Congress 1971, pp. 1460-1465.
Weiler, K., 1985. Edge-based data structures for solid modelling in
curved-surface environments. Computer Graphics and Applications
5, 21-40.

G. Damiand et al.: Preprint submitted to Elsevier

Page 14 of 14

http://dx.doi.org/10.1016/j.tcs.2010.10.029
http://dx.doi.org/10.1145/3372123
http://dx.doi.org/10.1177/14780771221089882
http://dx.doi.org/10.1007/3-540-45832-8_14
http://dx.doi.org/10.1007/978-3-030-43916-3
http://dx.doi.org/10.1145/1186822.1073229
http://dx.doi.org/10.1145/1186822.1073229
http://dx.doi.org/10.1145/1374376.1374443
http://dx.doi.org/https://doi.org/10.1002/(SICI)1097-0207(20000530)48:3<401::AID-NME880>3.0.CO;2-D
http://dx.doi.org/https://doi.org/10.1002/(SICI)1097-0207(20000530)48:3<401::AID-NME880>3.0.CO;2-D
http://dx.doi.org/10.1016/0022-5193(68)90080-5
http://dx.doi.org/10.1016/0022-5193(68)90080-5
http://dx.doi.org/10.1007/s00371-005-0289-z
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2004.08.038
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2004.08.038
http://dx.doi.org/https://doi.org/10.1002/1097-0207(20000910/20)49:1/2<17::AID-NME920>3.0.CO;2-U
http://dx.doi.org/https://doi.org/10.1002/1097-0207(20000910/20)49:1/2<17::AID-NME920>3.0.CO;2-U
http://dx.doi.org/10.1145/1141911.1141931
http://dx.doi.org/10.1016/j.scico.2021.102728
http://dx.doi.org/10.1016/j.scico.2021.102728
http://dx.doi.org/10.1016/j.cad.2018.05.004
http://dx.doi.org/10.1016/j.cad.2018.05.004
http://dx.doi.org/10.1145/3272127.3275037
http://dx.doi.org/10.1145/166117.166161
http://dx.doi.org/10.1145/2930662
http://dx.doi.org/10.1016/j.patcog.2014.05.019
http://dx.doi.org/10.1016/j.patcog.2014.05.019

	Introduction
	Related work
	Procedural modeling
	Graph transformations
	Tetrahedra recombination

	Foundations
	Why 3D combinatorial maps?
	Combinatorial maps
	Isomorphism
	Query-replace

	Overview of our method
	Query
	Query for a single pattern
	Basic case
	Boundary conditions

	Multiple queries
	Multiple query words on the same dart
	Overlapping matches

	Modify
	Extend
	Delete
	Replace
	Apply
	Dealing with the geometry
	Implementation details

	Experiments
	Tetrahedra recombination
	Results on a synthetic dataset
	Results on real cases

	Modification of a 3D model
	Modification of production surface meshes
	Terrain generation with houses

	Limitations
	Conclusion

