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Abstract

In a previous publication, we introduced an abstract logic via an
abstract notion of quantifier. Drawing upon concepts from categorical
logic, this abstract logic interprets formulas from context as subobjects
in a specific category, e.g., Cartesian, regular, or coherent categories,
Grothendieck, or elementary toposes. We proposed an entailment system
formulated as a sequent calculus which we proved complete. Building on
this foundation, our current work explores model theory within abstract
logic. More precisely, we generalize one of the most important and power-
ful classical model theory methods, namely the ultraproduct method, and
show its fundamental theorem, i.e.,  Loś’s theorem. The result is shown as
independently as possible of a given quantifier.
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1 Introduction

The need to abstract the notion of logic emerged as a response to the profu-
sion of logic in mathematics and computer science. In the 1930s, A. Tarski
and his Polish school proposed a generalization of the inference relation ⊢ [46].
This generalization was only of syntactic nature, leaving aside any considera-
tion for the semantics. The absence of an abstract notion of semantics prevented
the generalization of any result from model theory. Among the constructions
of abstract logic with a generalized notion of semantics, we can cite J. Bar-
wise’s approach [12] and the theory of institutions [24]. Although being the
first work generalizing semantics, Barwise’s construction only dealt with exten-
sions of first-order logic (FOL). Some model theory results could be established
within this framework, the most famous being Lindstrom’s theorem [32], which
characterizes FOL in terms of fundamental theoretic properties (compactness
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and Loweineim-Skolem theorem). Institutions provided a much deeper general-
ization, addressing software specification and semantics issues. The extension
provided by institutions is manifold:

• institutions include a notion of signature category;

• sentences are members of a set (syntax free, as in Tarskian logics) and
models are objects of a category (semantics free);

• institutions preserve the renaming property extended to any signature
morphism. This property is called the satisfaction condition.

The theory of institutions provided a framework for generalizing many re-
sults across computer science [2, 3, 4, 14, 45] and model theory [6, 20, 22, 23]. In
contrast to Barwise’s approach, institutions eschew any presumption regarding
the internal structure, neither for the sentences nor for the models (although
it remains feasible to define propositional connectives and FOL quantifiers in-
ternally [20]). However, generalizing standard results often requires the closure
of formulas under some or all propositional connectives and FOL quantifiers.
For instance, Robinson’s consistency [23] and Craig’s interpolation [19] in in-
stitutions suppose the closure of sentences under negations, finite conjunctions,
and universal quantification. Similarly, the formalization of abductive reasoning
of [3] within institutions assumes sentences closed under propositional connec-
tives. In [5], we proposed to define abstractly the notion of logic by supposing
that,

1. as in institutions, no commitment is made to the internal structure of
models except that they have a carrier taken in a category with some
properties (called prop-category in the paper – see Definition 2.1 below),

2. unlike in institions, formulas are inductively defined from propositional
connectives, an abstraction of atomic formulas (called basic formulas in
the paper), and an abstract notion of quantifiers.

As in categorical logic, we defined in [5] semantics by interpreting formulas
from context as subobjects of an object of a given category (Cartesian1, regular,
coherent, Grothendieck toposes, elementary toposes – see [27]). Therefore, the
semantic framework of [5] abstracts both contexts and subobjects in the spirit of
Lawvere’s hyperdoctrines [29, 30]. Subsequently, our abstract logic follows the
principles of categorical logic: an internal logic has been defined as an extension
of propositional logic (PL) over this semantic framework.

In this abstract logic, as is customary in categorical logic, we proposed an
entailment system formulated as a sequent calculus for which we proved a com-
pleteness result. Here, we propose to pursue the generalization of model theory
results. More precisely, we propose to generalize one of the most important and
powerful classical model theory methods, namely the ultraproducts method [17].

1Also called cartesian monoidal categories.
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Hence, we propose to study conditions for the development of the ultraproducts
method as independently as possible of quantifiers.

Ultraproducts are quotients of directed products of a family of structures,
typically used in abstract algebra and logic, especially in model theory. The
authors in [13] provide various applications of ultraproducts to model theory,
algebra, and nonstandard analysis. In particular, the chapter by J. Keisler [28]
surveys the classical results on ultraproducts of first-order structures. J. Keisler
explains that the idea goes back to the construction of nonstandard models of
arithmetic by T. Skolem [44], then studied for fields by E. Hewitt [25] before
a generalization to first-order structures by J.  Loś [33]. S. Galbor also surveys
applications where methods based on ultrafilters play significant roles [42]: in
model theory for the compactness theorem, theorems about axiomatizability,
and characterizations of elementary equivalence, in algebra to construct new
fields such as the hyperreal numbers, or in nonstandard analysis for the theories
of infinitesimal numbers.

The ultraproducts method has already been abstractly investigated within
the framework of FOL and its restrictions [7, 20, 21]. We will show that some of
these results can be considered as an instance of our main result. In the context
of categorical logic, a more general result than  Loś’s theorem (in the sense that
it implies the classical version in Set) has been demonstrated by replacing the
notion of first-order theory with that of pretopos and by defining models as
functors from a pretopos to Set [34]. Classical  Loś’s theorem is then derived by
replacing pretopos with the syntactic category of the suitable first-order theory.
In [34], M. Makkai also showed that any small pretopos C can be recovered from
the category of models Mod(C) together with some additional structure given
by the ultraproduct construction (ultracategories).

Note that no assumption is made on the category of models in our abstract
categorical logic (except, of course, small products on which filtered products are
defined). This lack of structure associated with the interpretation of formulas
is the source of the main difficulty in proving  Loś’s result. Indeed, the standard
notion of filtered products is built componentwise on models and only provides
finite intersections. Consequently, more information is required to prove the
result in the case of basic formulas (also called atomic formulas). Intuitively,
the base case of the induction proof of  Loś’s result can only be obtained by
assuming some conditions. Hence, we will provide necessary conditions – namely
a sup-generation condition and a finiteness condition – that guarantee the result
for basic formulas. These conditions echo those given by R. Diaconescu for
institutions [20].

The main contributions of this paper are a generalization of the ultraprod-
uct method and a generalization of  Loś’s theorem, the fundamental result on
ultraproducts, both independently of quantifiers. Additionally, the relevance of
all introduced definitions and results is demonstrated on several different logics
throughout the paper.

In the preliminary section, besides briefly reviewing some terminology, con-

4



cepts, and notations about filters and filtered colimits, we recall the categorical
definitions of filtered products and present the notion of prop-categories, which
generalizes the standard notion of subobjects in category theory. Section 3 re-
views the abstract categorical logic defined in [5] via the notions of semantical
systems, quantifiers, and internal logic. Section 4 extends the fundamental the-
orem of ultraproducts as independently as possible of a given quantifier. Note
that Section 3 is substantially similar to Sections 2, 3, and 4 of [5]. However,
we add additional properties to the various notions, which we then leverage to
obtain  Loś’s theorem in Section 4, which is the main result presented in this
paper.

2 Preliminaries

We assume familiarity with the main notions of category theory, such as cate-
gories, functors, natural transformations, limits, colimits, and Cartesian closed-
ness, and refer the interested reader to textbooks such as [10, 35]. We also
assume basic knowledge of first-order and modal logics (ML) [17, 18].

2.1 Notations

In the whole paper, C and D denote generic categories, X and Y denote objects
of categories (the collection of objects of a category C is written ∣C∣). When a
category C is Cartesian closed, XY denotes the exponential object of X and Y .
The symbols f , g, and h denote morphisms, and given a morphism f ∶ X → Y ,
we write dom(f) = X for the domain of f and cod(f) = Y for its co-domain;
F,G,H ∶ C → D denote functors from a category C to a category D, F op the
opposite functor of F , α,β ∶ F ⇒ G natural transformations, and Nat(F ;G)
the class of all natural transformations between F and G. Identity morphisms
are written Id, and initial and terminal objects ∅ and 1, respectively. Finally,
monomorphisms are denoted by ↣, i.e., if m is a monomorphism from X into
Y , then we write m ∶X ↣ Y .

2.2 Prop-categories

Definition 2.1 (Prop-category). A prop-category C is a category with a
contravariant functor PropC ∶ Cop → HeytAlg where HeytAlg is the category
of Heyting algebras. Given an object X ∈ ∣C∣, the lower and upper bounds of
PropC(X) are respectively denoted by �X and ⊺X , its order by ⪯X , or simply
⪯ when there is no ambiguity, and the meet, join and implication operations
respectively by ∧, ∨, and →.2

Given a morphism f ∶ X → Y ∈ C, PropC(f) ∶ PropC(Y ) → PropC(X) is
called the pullback functor or base change along f (the posets PropC(X)

2In a Heyting algebra, the implication → is right-adjoint to the meet operation ∧, i.e., given
a Heyting algebra (H,⪯H), for all elements a and b in H, there exists a greatest element c in
H such that a ∧ c ⪯H b, which is a→ b.
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and PropC(Y ) are considered as categories). It will be denoted f∗, i.e., f∗ =
PropC(f).
Remark 2.2. Compared to [5], we now require that the functor PropC is a
functor Cop → HeytAlg rather than Cop → Pos where Pos is the category of
posets. Indeed, Heyting algebras allow for the interpretation of propositional
logic (PL) connectives.

Prop-categories generalize the notion of subobjects in an arbitrary category.
We recall the categorical notion of subobjects to explain the generalization.
Given an object X in a category C, the set of monomorphisms into X admits a
preorder ⪯X such that a ∶ A↣X is less than or equal to b ∶ B ↣X (i.e., a ⪯X b)
whenever there exists a morphism x ∶ A→ B such that a = b ○ x.

Then, a subobject of X is an equivalence class for the equivalence relation
≃X induced by ⪯X , and Sub(X) is the set of equivalence classes for ≃X . The
preorder ⪯X yields a partial order on Sub(X), which we also write ⪯X . We will
also identify the equivalence classes of Sub(X) with any of its representatives.
For instance, in Set, the category of sets and functions, subobjects are subsets,
while in Graph, the category of graphs and graph morphisms, subobjects are
subgraphs.

When C has pullbacks, subobjects give rise to the contravariant functor Sub ∶
Cop → Pos which to every X ∈ ∣C∣ associates Sub(X) and to every morphism
f ∶X →X ′ associates the mapping Sub(f) ∶ Sub(X ′)→ Sub(X) which to every
Y ′ ↣X ′ associates Y ↣X making the diagram

Y Y ′

X X ′

a pullback.
To equip Sub(X) with a structure of Heyting algebra, the category C must

satisfy additional properties fulfilled, for instance, by elementary toposes. Ele-
mentary toposes, together with the contravariant functor Sub, are the archetyp-
ical class of examples of prop-categories [27], which we will use. We now recall
the definition of elementary toposes alongside their main results.

2.2.1 Elementary topos

An elementary topos C is a finitely complete Cartesian closed category with a
subobject classifier Ω. Having a subobject classifier means that there is a mor-
phism out of the terminal object true ∶ 1→ Ω such that for every monomorphism
m ∶ Y ↣ X there is a unique morphism χm ∶ X → Ω (called the characteristic
morphism of m) such that the following diagram is a pullback:

Y 1

X Ω

!

truem

χm
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When C is an elementary topos, Sub(X) is a Heyting algebra [27], and
(Sub(X),⪯X) forms a distributive bounded lattice with IdX and ∅↣X as the
largest and smallest elements, respectively, and which admits an implication →
right-adjoint to the meet operation ∧. Note that an elementary topos is also
finitely cocomplete, i.e., has finite colimits, and therefore, it has an initial object
∅ which is the colimit of the empty diagram, meaning that ∅ ↣ X is always
well-defined.

The following properties hold in any topos [9, 27]:

• Every morphism f can be factorized uniquely as mf ○ ef where ef is an
epimorphism and mf is a monomorphism. The codomain of ef is often

denoted by Im(f) and is called the image of f , and then (A f→ B) = (A
ef→

Im(f)
mf↣ B).

• Every object X ∈ ∣C∣ has a power object defined by ΩX and denoted PX.
As a power object, it satisfies the following adjunction property:

HomC(X × Y,Ω) ≃ HomC(X,PY )

Given a morphism f ∈ HomC(X×Y,Ω) (respectively f ∈ HomC(X,PY )) we
denote by f# its equivalent by the above bijection. The morphism f# is
called the transpose of f . Note that, by construction, we have (f#)# = f .

In particular, the transpose of the identity IdPX ∶ PX → PX is the
characteristic morphism of a subobject ∋X↣ PX ×X.

As in the category Set, the power object function which maps every object
X ∈ ∣C∣ to its power object PX can be extended into a contravariant functor
P ∶ C → C which associates to every morphism f ∶ X → Y the morphism Pf ∶
PY → PX whose transpose classifies the morphism R ↣ PY ×X where R is the
pullback of the diagram

R ∋Y

PY ×X PY × Y
IdX×f

Likewise, the power object function can also be extended into a covariant functor
∃ which associates to every morphism f ∶ X → Y the morphism ∃f ∶ PX → PY
whose transpose classifies the image of the morphism

g ∶ ∋X↣ PX ×X IdPX×f→ PX × Y,
i.e., ∃f = χ#

Im(g)↣PX×Y .

By the bijection HomC(1, PX) ≃ Sub(X), the morphism ∃f ∶ PX → PY
gives rise to a Heyting morphism ∃f ∶ Sub(X)→ Sub(Y ) satisfying (see [27]):3

∃f(A↣X) ⪯Y B ↣ Y iff A↣X ⪯X f∗(B ↣ Y ).
3It is also known that f∗ has a right-adjoint ∀f which makes the functor Sub a tripos over

C (see [39] for a restropective on this subject).
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Toposes are sufficiently set-behaved to internalize a logic in which one may
reason as if they were picking elements in a set and accommodate internally
constructive proofs, i.e., using neither the law of excluded middle nor the axiom
of choice. This internal language of toposes is recalled in Appendix A, and will
be used in the remainder of this paper.

There are a multitude of examples of toposes. The most emblematic is
Grothendieck toposes, defined as any category equivalent to the category of
sheaves over a site [15]. Interestingly, presheaves form a simpler case of toposes
and subsume most algebraic structures used in computer science, such as sets,
graphs, and hypergraphs. We now detail the case of presheaves, both their
construction and the fact that they form toposes.

2.2.2 Presheaf categories Ĉ as a special example of toposes

Let C be a small category, i.e., both collections of objects and arrows are
sets. Let us denote by Ĉ the category of contravariant functors F ∶ Cop → Set
(presheaves).4 Since C is a small category, Ĉ is complete and co-complete (i.e.,
it has all limits and colimits). We now detail why it is also a topos (a different
proof, relying on a different construction of toposes, may be consulted in [9, Sec-
tion 2.1, Theorem 4]). First of all, observe that the functor Sub ∶ Ĉ → Set, which
maps every presheaf F to its set of subobjects Sub(F ), is naturally isomorphic
to the functor which maps each presheaf F to the set of its sub-presheaves.
Therefore, we can assume that G(C) ⊆ F (C) for all G ∈ Sub(F ) and C ∈ ∣C∣,
and then such a subobject will be denoted by G ⊆ F .

Ĉ is Cartesian closed. The product of two functors F,G ∶ Cop → Set is the
functor H ∶ Cop → Set defined for every C ∈ ∣C∣ by H(C) = F (C) ×G(C), and
for every f ∶ A → B ∈ C by the mapping H(f) ∶ H(B) → H(A) defined by
(a, b)↦ (F (f)(a),G(f)(b)).

By Yoneda’s Lemma, the exponential of functors F,G ∶ Cop → Set to the
object C ∈ ∣C∣ should give an isomorphism GF (C) ≃ Nat(Hom( ,C),GF ). How-
ever, the definition of Cartesian closedness requires that

Nat(Hom( ,C),GF ) ≃ Nat(Hom( ,C) × F,G).

This leads naturally to define the exponential of F and G by the functor GF ,
which associates to any object C ∈ ∣C∣, the set of natural transformations from
Hom( ,C) × F to G. For every f ∶ A → B ∈ C, GF (f) ∶ GF (B) → GF (A) is the
mapping which associates to any natural transformation α ∶ Hom( ,B)×F ⇒ G
the natural transformation β ∶ Hom( ,A) × F ⇒ G defined for every object
C ∈ ∣C∣ by βC(g ∶ C → A, c ∈ F (C)) = αC(f ○ g, c).

4We use here the French notation Ĉ to denote the category of presheaves over a base
category C.
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Ĉ has a subobject classifier. For every A ∈ ∣C∣, a set S of arrows f in C
is said to be a sieve on A if S is a set of morphisms with codomain A closed
under precomposition with morphisms in C, i.e.:

1. For all arrows f ∈ S we have cod(f) = A, and

2. For all arrows f ∈ S and g ∈ Hom(C) such that cod(g) = dom(f), we have
f ○ g ∈ S.

We write Sieve(A) for the set of sieves on A. Moreover, the map Sieve ∶ C →
Set is naturally extended to a contravariant functor Ω ∶ C → Set, i.e., a presheaf
Ω ∈ Ĉ, as follows:

Ω ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C Ð→ Set
A z→ Sieve(A)

f ∶ A→ B z→ Ω(f) ∶ { Sieve(B) Ð→ Sieve(A)
S z→ {g ∶ C → A ∣ f ○ g ∈ S}

In fact, Ω is the subobject classifier. Indeed, let us consider:

• the natural transformation true ∶ 1⇒ Ω which5 for every A ∈ C associates
to the unique element in 1(A) the maximal sieve on A (i.e., the unique
sieve which contains IdA);

• for every presheaf F ∈ ∣Ĉ∣, the bijection:

χ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sub(F ) Ð→ Hom(F,Ω)

G ⊆ F z→ χ(G)A ∶ { F (A) Ð→ Sieve(A)
x z→ {f ∶ B → A ∣ F (f)(x) ∈ G(B)}

whose inverse is:

χ−1 ∶ { Hom(F,Ω) Ð→ Sub(F )
ξ z→ A↦ {x ∈ F (A) ∣ IdA ∈ ξ(A)(x)}

Then we clearly have a correspondence between subobjects of F ∈ ∣Ĉ∣ and
morphisms F → Ω, via the following pullback:

G 1

F Ω

!

truei

χ(G)

This makes Ω a subobject classifier in Ĉ. Hence, given a presheaf X ∶ Cop → Set,
the power object PX ∶ Cop → Set is the presheaf which, given an object C ∈ ∣C∣,
gives the set

PX(C) = Nat(HomC(−,C) ×X,Ω) ≃ Sub(HomC(−,C) ×X)
51 ∶ Cop → Set is the presheaf which associates to any A ∈ ∣C∣ the terminal object 1 in Set.
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To sum up this subsection, prop-categories build on a generalization of sub-
objects via the functor Prop. The objects of a prop-category will serve as the
carriers of models, while the functor Prop will permit distinguishing between
the values that validate the formula and those that do not. Classic examples
of prop-categories are elementary toposes, in particular, presheaf toposes, sub-
suming sets, and graph-like structures.

2.3 Filters, filtered colimits

2.3.1 Set-theoretic filters and ultrafilters

Let I be a nonempty set. A filter F over I is a subset of ℘(I) such that:6

• I ∈ F ;

• if A,B ∈ F , then A ∩B ∈ F , and

• if A ∈ F and A ⊆ B, then B ∈ F .

A filter F is proper when F is not ℘(I), and it is an ultrafilter when for every
A ∈ ℘(I), A ∈ F if, and only if I ∖A ∉ F . In particular, this implies that if F is
an ultrafilter, then ∅ ∉ F .

Some examples of filters are:

• The trivial filter on a set I is F = {I}.

• The filter generated by some J ⊆ I is FJ = {A ∈ ℘(I) ∣ J ⊆ A}. It is called
a principal filter. If I is finite, all filters on I are principal.

• Assume I is infinite. Fréchet’s filter is defined as

F∞ = {A ∈ ℘(I) ∣ A is cofinite}

This filter is not principal. Indeed, let J ∈ F∞ and let i0 ∈ J . J ∖ {i0} is
still cofinite.

An ultrafilter is then a maximal filter for the inclusion. Using Zorn’s lemma, it
is easy to see that any filter is contained in an ultrafilter.

A conventional approach to the satisfaction of a formula in a context is to
interpret it as the set of values that validate it. Hyperdoctrines introduced by
Lawvere [29, 30] generalize this approach to categorical logic. Here, we follow
Pitt’s terminology to hyperdoctrines [40], as we did in [5].

6
℘(I) denotes the powerset of I.
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2.3.2 Filtered products in categories

The standard definition of ultraproducts (e.g., in FOL) relies on constructing
filtered products where the filter is an ultrafilter. Therefore, the central con-
struction is that of filtered products. The general concept of filtered products
in arbitrary categories comes from the consideration that filtered products in
FOL can be seen as directed colimits of products of models. To our knowledge,
this generalization first appeared in [37]. This definition of filtered products
as colimits of directed diagrams of projections between the (direct) products
determined by the corresponding filter is a particular instance of the categorical
concept of a reduced product. It has become the de-facto construction [7, 20,
21].

Definition 2.3 (Filtered product). Let F be a filter over a set of indices I,
and let X = (Xi)i∈I be an I-indexed family of objects in C. Then, F and X
induce a functor AF ∶ F op → C, mapping each subset inclusion J ⊆ J ′ of F to
the canonical projection pJ ′,J ∶∏J ′Xi →∏J Xi.

The filtered product of X modulo F is the colimit µ ∶ AF ⇒∏F X of the
functor AF . Diagrammatically, this reads

Πj∈J ′Xj Πj∈JXj

ΠFX

Y

PJ′,J

µJ

∃!y

µJ′

νJ′ νJ

meaning that the blue diagram commutes (for any J ⊆ J ′) and that for any other
commutative diagram as the red one, there exists a unique morphism (in pink)
y ∶ ΠFX → Y .

Then C is said to have filtered products if any filter F and any X =
(Xi)i∈I I-indexed family of objects in C yield a filtered product of X modulo F .

Filtered products being colimits of products, they are unique up to isomor-
phisms, allowing talking about the filtered product. To illustrate the definition,
let us show that all presheaf categories B̂ have filtered products. The construc-
tion is a direct extension of the one in sets.

Proposition 2.4. Let B be a small category. The category of presheaves B̂ has
filtered products.

Proof. Let (Gi)i∈I be a family of presheaves in B̂. Let F be a filter on I. We
construct the filtered product ∏F G of (Gi)i∈I modulo F as:

∏
F

G ∶ Bop → Set; b↦∏
i∈I
Gi(b)/∼F

where ∼F is the equivalence relation defined on the family of sets (Gi(b))i∈I by:
(ai)i∈I ∼F (a′i)i∈I ⇔ {i ∈ I ∣ ai = a′i} ∈ F .
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For each J ∈ F , let µJ ∶ ∏j∈J Gj → ∏F G defined for every b ∈ ∣B∣ by the
mapping µJb ∶∏j∈J Gj(b)→∏F G(b);a↦ [a′]∼F where a = (a′)J , i.e., a′ is some
extension of a to an I-indexed family. Because F is a filter, µJ is well-defined.
Hence, the family µ = (µJ)J∈F forms a cocone AF ⇒ ∏F G where AF ∶ F →
B̂;J ↦ ∏j∈J Gj , J ⊆ J ′ ↦ pJ ′,J . Let ν ∶ AF ⇒ N be another cocone. For every
b ∈ ∣B∣, let us define the mapping θb ∶ ∏F G(b) ⇒ N(b) by: [a]∼F ↦ νIb(a). It
is not difficult to show that θ = (θb)b∈∣B∣ is a natural transformation, and then

µ ∶ AF ⇒∏FM is indeed the colimit of AF ∶ F → B̂.

We now introduce a result on filtered products that we will use later.

Proposition 2.5. Let F be a filter on a set I and (Xi)i∈I be a family of objects
in C. If pJ ′,J ∶∏J ′Mj →∏JMj is an epimorphism for all inclusions J ⊆ J ′ in
F , then all coprojections µJ ∶∏J Xj →∏F X (for J ∈ F ) are epimorphisms.

Proof. Let F be a filter on a set I. For J ⊆ I, F ∣J = {J ∩K ∣ K ∈ G} is a filter
on J , called the reduction of F to J , satisfying ∏F X ≃ ∏F ∣J X for any family
(Xi)i∈I in C (see [20, Prop. 6.3]).

Now, let us fix a family (Xi)i∈I in C and J ∈ F . Let f, g ∶∏F X → Y be two
morphisms in C such that f ○µJ = g ○µJ . By the previous isomorphism, we can
consider f and g as morphisms ∏F ∣J X → Y . By hypothesis, for all K ⊆ J , pJ,K
is an epimorphism. In particular, for all K ∈ F ∣J , we obtain that f ○µK = g○µK .
Since ∏F ∣J X is a colimit, the family (µK)K∈F ∣J is jointly epic. Therefore, f = g
and µJ is an epimorphism.

2.3.3 Locally finitely presentable category

More abstractly, filtered products are an instance of colimit where the underly-
ing diagram is a filtered category. We follow the presentation from [1].

Definition 2.6 (Filtered category). A filtered category is a category C in
which every finite diagram has a cocone.

Definition 2.7 (Filtered colimit). A filtered colimit is a colimit of a functor
D ∶ I → C where I is a filtered category.

As discussed in [1], directed (co)limits and filtered (co)limits are equivalent,7

and a filtered product effectively corresponds to a filtered colimit and not filtered
limit as the name would suggest. Filtered colimits enable the definition of
finitely presentable objects.8

Definition 2.8 (Finitely presentable object). An object c of a category C is
finitely presentable if the hom-functor HomC(c, ) ∶ C → Set preserves filtered
colimits. For a category C, we write CFP for its full subcategory of finitely
presentable objects.

7There is a mistake in proof of [1], but a correct one appears in [8], replacing finite sub-
categories with finite diagrams, and therefore unions with disjoint unions.

8Finitely presentable objects are called finitely presented in [20] and also called compact
in the literature.
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This is equivalent to the following condition:

• for every morphism µ ∶ c→ d to the vertex of a colimiting co-cone ν ∶D → d
of a directed diagram D ∶ (I,≤) → C, there exists i ∈ I and a morphism
µi ∶ c→D(i) such that µ = νi ○ µi, and

• for any two morphisms µi and µj as above, there exists k such that k > i,
k > j, and Di,k ○ µi =Dj,k ○ µj .

Many examples are given in [1].

Proposition 2.9. A finite colimit of finitely presentable objects is finitely pre-
sentable.

Definition 2.10 (Locally finitely presentable category [1]). A locally small
category9 C is locally finitely presentable if

• it has all small colimits (i.e., is cocomplete),

• it has a set A of finitely presentable objects such that every object in C is
a filtered colimit of objects in A.

Note that several equivalent definitions of locally finitely presentable cat-
egories might be found in the literature. For instance, the second condition
can equivalently be stated as all isomorphism classes of objects in CFP form a
set (i.e., CFP is skeletally small), and the restriction of the Yoneda embedding
y ∶ C → ĈFP defined by y(X) = HomC( ,X) is faithful and reflects isomorphisms
(i.e., is conservative).

3 Abstract categorical logic

We now present the logical framework of [5] in which we will prove  Loś’s theorem
(see Theorem 4.21). It essentially consists of

• a semantical system that enables abstract quantifiers to be defined as
families of mappings induced by a context morphism, and

• a syntax based on an inductive construction of formulas over basic formu-
las directly interpretable by models.

3.1 Semantical systems

Definition 3.1 (Semantical system). A semantical system S is given by:

• a prop-category C;

• a category Ctx whose objects are called contexts;

9A category whose hom-sets are sets.
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• a category of models Mod with small products;

• a functor ∣ ∣ ∶Mod→ CCtx.

The categories Ctx and Mod provide our categorical framework’s expected
generalizations of contexts and models. The objects of the category C will
denote model carriers and, therefore, interpret formulas through the functor
PropC . The functor ∣ ∣ relates these three categories, in such a way that ∣M∣(σ)
describes model carriers of M in C, given the context σ. Compared to [5], the
category of models Mod is now required to have small products such that we
can consider filtered products.

Proposition 3.2. For every context morphism f ∶ σ → τ , the family

(∣M∣(f)∗ ∶ PropC(∣M∣(τ))→ PropC(∣M∣(σ)))M∈∣Mod∣

is a natural transformation.

Proof. Let µ ∶ M → M′ be a model morphism and f ∶ σ → τ be a context
morphism. As ∣µ∣ is a natural transformation, the following diagram commutes:

∣M∣(σ) ∣M∣(τ)

∣M′∣(σ) ∣M′∣(τ)

∣µ∣τ∣µ∣σ

∣M∣(f)

∣M′∣(f)

As functors preserve commutative diagrams, we can apply PropC to the previous
diagram, which yields that the following diagram

PropC(∣M∣(σ)) PropC(∣M∣(τ))

PropC(∣M′∣(σ)) PropC(∣M′∣(τ))

∣µ∣∗τ∣µ∣∗σ

∣M∣(f)∗

∣M′∣(f)∗

is commutative.

3.1.1 Categorical first-order structures

Let Σ = (S,F,R) be a multi-sorted first-order signature and V = (Vs)s∈S an S-
indexed family of variables. We define the semantical system SΣ = (C,Ctx,Mod, ∣ ∣)
as follows:

• C is an elementary topos with small products provided with the functor
Sub ∶ Cop →HeytAlg.10

10We could also have chosen any first-order hyperdoctrine of which a number of examples
are given in [39].
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• Ctx is the category whose

– objects are all α-equivalence classes [x⃗] of finite sequences x⃗ = (x1 ∶
s1, . . . , xn ∶ sn) of distinct variables in V , where xi ∶ si means that
the variable xi is of sort si;

– morphisms are the projections of α-equivalence classes and the se-
quences of terms built using the signature Σ. A morphism π ∶ [x⃗] →
[y⃗] is a projection if there exists z⃗ such that x⃗ = y⃗.z⃗. A morphism t⃗ ∶
[x⃗] → [y⃗] with y⃗ = (y1 ∶ s1, . . . , yn ∶ sn) and x⃗ = (x1 ∶ s′1, . . . , xm ∶ s′m)
is a sequence of first-order terms (t1 ∶ s1, . . . , tn ∶ sn) built from the
signature Σ if the variables of each term ti are in {x1, . . . , xm}.

• Mod is the category whose

– objects are the Σ-structures M defined by an S-indexed family of
objects of C, i.e., for every s ∈ S, Ms ∈ ∣C∣, and then for every f ∶
s1×. . .×sn → s ∈ F , fM ∶Ms1×. . .×Msn →Ms is a morphism of C and
for every r ∶ s1×. . .×sn ∈ R, rM is a subobject in Sub(Ms1×. . .×Msn),
and

– morphisms between two Σ-structures M and N are families of mor-
phisms µ = (µs ∶Ms → Ns)s∈S such that:

∗ for every f ∶ s1 × . . . × sn → s ∈ F , the diagram

Ms1 × . . . ×Msn Ms

Ns1 × . . . ×Nsn Ns

fM

µsµs1
×...×µsn

fN

commutes,

∗ for every r ∶ s1 × . . . × sn ∈ R, there exists a morphism O → O′

such that the diagram

O Ms1 × . . . ×Msn

O′ Ns1 × . . . ×Nsn

µs1
×...×µsn

rM

rN

commutes.

Let us show that Mod has small products. Let (Mi)i∈I be a family of
models. Let ∏IMi be the model defined by:

– for every s ∈ S, (∏IMi)s =∏IMis ,
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– for every f ∶ s1 × . . . × sn → s ∈ F , by the universal property of small
products in C, f∏IMi is the unique morphism such that the following
diagram

∏IMis1
× . . . ×∏IMisn ∏IMis

Mis1
× . . . ×Misn Mis

f∏IMi

pI,isnpI,is1
×...×pI,isn

fMi

commutes for all i ∈ I,

– for every r ∶ s1 × . . . × sn ∈ R, r∏IMi is the subobject ∏I Oi ↣
∏IMis1

× . . . ×∏IMisn where rMi ∶ Oi ↣Mis1
× . . . ×Misn .

Since each (∏IMi)s for s ∈ S is obtained as a small product in C, it follows
that ∏IMi is the small product of (Mi)i∈I .

• ∣ ∣ ∶Mod→ CCtx is the functor which:

– given a model M, associates the functor ∣M∣ ∶ Ctx→ C defined:

∗ for every context [x⃗] with x⃗ = (x1 ∶ s1, . . . , xn ∶ sn) by

∣M∣([x⃗]) =Ms1 × . . . ×Msn

∗ for every projection π ∶ [x⃗]→ [y⃗] by the projection morphism

∣M∣(π) ∶ ∣M∣([x⃗])→ ∣M∣([y⃗])

∗ for every t⃗ = (t1 ∶ s1, . . . , tn ∶ sn) ∶ [x⃗] → [y⃗] with y⃗ = (y1 ∶
s1, . . . , yn ∶ sn) by the morphism

([[M]][x⃗](t1), . . . , [[M]][x⃗](tn)) ∶ ∣M∣([x⃗])→ ∣M∣([y⃗])

where [[M]][x⃗](ti) ∶ ∣M∣([x⃗]) →Msi is the interpretation of the
term ti in the modelM. Here, the interpretation of ti is defined
inductively as follows:

· if ti is a variable, it is an xj in x⃗, and [[M]][x⃗](ti) is the
projection on the sort associated with xj ;

· if ti is f(t′1, . . . t′m) for some function symbol f , with t′1 ∶
s′1, . . . t

′
m ∶ s′m then [[M]][x⃗](ti) is the composition

∣M∣([x⃗])
([[M]][x⃗](t′1),...,[[M]][x⃗](t

′
m))ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→Ms′1 × . . .×Ms′m

fMÐÐ→Msi

– given a morphism µ ∶M →M′ ∈ Mod associates the natural trans-
formation ∣µ∣ ∶ ∣M∣ ⇒ ∣M′∣ defined for every context [x⃗] with x⃗ =
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(x1 ∶ s1, . . . , xn ∶ sn) by ∣µ∣[x⃗] = (µs1 , . . . , µsn). It is straightforward
to show that for every γ ∶ [x⃗]→ [y⃗] the diagram

∣M∣([x⃗]) ∣M′∣([x⃗])

∣M∣([y⃗]) ∣M′∣([y⃗])

∣µ∣[x⃗]

∣M′∣(γ)∣M∣(γ)

∣µ∣[y⃗]

commutes.

3.1.2 Categorical higher-order structures

Given a multi-sorted first-order signature Σ = (S,F,R), profiles of functions
and relations are now types whose set, denoted Σ-Typ, is inductively defined as
follows:

• Basic types. S ⊆ Σ-Typ;

• Product types. If A,B ∈ Σ-Typ, then A ×B ∈ Σ-Typ;

• Function types. If A,B ∈ Σ-Typ, then BA ∈ Σ-Typ;

• Power types. If A ∈ Σ-Typ, then PA ∈ Σ-Typ.

Now, functions in F and relations in R have profiles in Σ-Typ. Hence, a function
f ∈ F has a profile defined by an ordered pair (A,B) of Σ-Typ, and we write
f ∶ A → B to mean that f has the profile (A,B). Likewise, a relation r ∈ R has
a profile defined by a type A ∈ Σ-Typ.

The semantical system SΣ for interpreting higher-order categorical logic is
then any tuple (C,Ctx,Mod, ∣ ∣) defined as in Section 3.1.1 with the condition
that we have a stock of variables x ∶ A for each type A ∈ Σ-Typ, and the fact
that model carriers are extended to elements in Σ-Typ.

3.1.3 First-order institutions

Although in institution theory we deal with closed formulas (also called sen-
tences), open formulas can also be considered through signature morphisms.
Indeed, a set of variables can be identified with a signature extension (variables
are then treated as constants), and the valuation of variables in a model is just a
model expansion along with signature morphisms. We show that we can define
a semantical system for each signature on which we define the usual first-order
quantifiers. Before doing so, let us recall the definition of an institution.

Definition 3.3 (Institution [24]). An institution I = (Sig, Sen,Mod,⊧) con-
sists of

• a category Sig whose objects are called signatures and are denoted by Σ,
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• a functor Sen ∶ Sig → Set giving for each signature Σ a set Sen(Σ) whose
elements are called sentences,

• a contravariant functor Mod ∶ Sigop → Cat giving for each signature its
category of models, and

• a Sig-indexed family of relations ⊧Σ⊆ ∣Mod(Σ)∣ × Sen(Σ) called satis-
faction relation, such that the following property, called the satisfaction
condition, holds: for all θ ∶ Σ → Σ′ in Sig, for all M′ in ∣Mod(Σ′)∣, and
for all φ in Sen(Σ),

M′ ⊧Σ′ Sen(θ)(φ)⇐⇒Mod(θ)(M′) ⊧Σ φ

We do not give examples here because many are described in [20], and we
refer readers interested in such examples to this book. A supplementary condi-
tion is needed to capture the notion of FOL quantification: quasi-representable
signature morphism [20, Chap. 5, p. 102]. A signature morphism χ ∶ Σ → Σ′

is quasi-representable if for each Σ′-model M′, the following isomorphism (of
comma categories) holds

M′/Mod(Σ′) ≃Mod(χ)(M′)/Mod(Σ).

Then, given a morphism µ ∶ Mod(χ)(M′) → N in Mod(Σ), the morphism
µ′ ∶M′ → N ′ induced by the above bijection is the χ-expansion of µ. Note that
in FOL, each signature extension with constants is quasi-representable, but any
morphism extending the signature with either relation or non-constant function
symbol is not quasi-representable.

In the sequel, we request two additional properties for institutions (to handle
filtered products) and only consider institutions I = (Sig,Sen,Mod,⊧) such
that:

• for every signature Σ ∈ ∣Sig∣, Mod(Σ) is with small products.

• for every signature morphism χ, the forgetful functor Mod(χ) creates
small products.

We define the semantical system SI(Σ) = (C,Ctx,Mod, ∣ ∣) as follows:

• C is the category whose

– objects are the sets ∣M∣(χ) defined for every object M of Mod(Σ)
and every quasi-representable signature morphism χ ∶ Σ→ Σ′ as

∣M∣(χ) = {M′ ∈ ∣Mod(Σ′)∣ ∣Mod(χ)(M′) =M}

– morphisms are the mappings

(µ, θ) ∶ { ∣M∣(χ2) → ∣N ∣(χ1)
M2 ↦ Mod(θ)(cod(µ′))

where θ ∶ Σ1 → Σ2 is a signature morphism such that θ ○ χ1 = χ2

with χi ∶ Σ→ Σi (for i ∈ {1,2}), and µ′ is the unique χ2-expansion of
µ ∶M→ N .
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Let us detail the construction of (µ, θ). We consider a morphism µ ∶M→
N in Mod(Σ) and a morphism θ ∶ Σ1 → Σ2 in Sig such that the following
triangle commutes.

Σ1

Σ

Σ2

χ1

θ

χ2

Applying the functor Mod yields the following commutative triangle.

Mod(Σ1)

Mod(Σ)

Mod(Σ2)

Mod(χ1)

Mod(θ)

Mod(χ2)

ThenM2 in ∣M∣(χ2) is a model in ∣Mod(Σ2)∣ such that Mod(χ2)(M2) =
M. We can therefore reinterpret µ as a morphism Mod(χ2)(M2) → N
and consider its unique χ2-expansion µ′ ∶M2 → N ′ where N = cod(µ) is a
model in ∣Mod(Σ2)∣. Applying Mod(θ) to N yields an element of ∣N (χ1)∣
which we consider as the image of M2 by (µ, θ).

Since objects in C are sets and morphisms are functions, PropC is the
contravariant power set functor. In other words, given an object ∣M∣(χ) ∈
∣C∣, Prop(∣M∣(χ)) = ℘(∣M∣(χ)), and given a morphism (µ, θ) in C, (µ, θ)∗
is the mapping S′ ↦ (µ, θ)−1(S′), i.e.

(µ, θ)∗ ∶ S′ ↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Mod(χ2)(M2) =M,
M2 and Mod(θ)(cod(µ′)) ∈ S′,

where µ′ unique χ2-expansion of µ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

• PropC is the contravariant powerset functor ℘ from Section 2.2.1 (as we
are dealing with sets).

• Ctx is the opposite of the full subcategory of the under (or co-slice) cate-
gory Σ/Sig where objects are all quasi-representable morphisms;

• Mod =Mod(Σ); and

• ∣ ∣ ∶Mod→ CCtx is the functor which

– to every M ∈ ∣Mod∣ associates the functor

∣M∣ ∶ Ctx→ C;χ↦ ∣M∣(χ); θ ↦ (IdM, θ)

– to every µ ∶M→ N associates the natural transformation

∣µ∣ ∶ ∣M∣⇒ ∣N ∣
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defined for every quasi-representable signature morphism χ ∶ Σ → Σ′

by the mapping ∣µ∣χ = (µ, IdΣ′). Let θ ∶ χ2 → χ1 be a morphism in
Ctx. It is quite straightforward to show that the diagram

∣M∣(χ2) ∣M′∣(χ2)

∣M∣(χ1) ∣M′∣(χ1)

∣M∣(θ)

∣µ∣χ1

∣µ∣χ2

∣M′∣(θ)

commutes.

3.1.4 Modal logic (ML) and co-algebras [26, 41]

Let C be an elementary topos with small products. Let F ∶ C → C be a
functor which preserves small products.11 Hence, the semantical system SF =
(C,Ctx,Mod, ∣ ∣) is defined by:

• Ctx is the trivial category with a unique object written ●;

• Mod is the category whose objects are F -coalgebras defined by pairs
(X,αX ∶ X → F (X)) where X ∈ ∣C∣ and αX is a morphism of C, and a
morphism between two F -coalgebras (X,αX) and (Y,αY ) is a morphism
µ ∶X → Y such that the following diagram

X Y

F (X) F (Y )

µ

αYαX

F (µ)

commutes.

Let us show that Mod has small products.12 Let ((Xi, αXi))i∈I be a
family of F -coalgebras. Since C has small products, ∏I Xi uniquely exists
in C (with the associated projections), which directly extends to∏I F (Xi)
because F preserves small products. We can then define α∏I Xi by the
universal property of small products, i.e., as the unique morphism such
that

∏I Xi Xi

∏I F (Xi) F (Xi)

pI,i

αXiα∏I Xi

F (pI,i)

commutes for each i ∈ I. Then ∏I(Xi, αXi) = (∏I Xi, α∏I Xi).
11In practice, and most of the time in computer science, the category C is Set [41].
12This is an instantiation of a more general result which means that any type of limit that

is preserved by F also exists in the category of F -coalgebras [41].
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• ∣ ∣ ∶Mod→ CCtx is the functor which to every coalgebra (X,αX) associates
the functor ∣(X,αX)∣ ∶ ● ↦ X, and to every morphism µ ∶ (X,αX) →
(Y,αY ) associates the natural transformation ∣µ∣ ∶ ∣(X,αX)∣ ⇒ ∣(Y,αY )∣
defined by ∣µ∣● = µ.

3.2 Quantifiers

Definition 3.4 (Quantifier). Let S = (C,Ctx,Mod, ∣ ∣) be a semantical system.
Let f ∶ σ → τ be a morphism in Ctx. For n ∈ N, a n-ary quantifier over f is
a family (QfM)M∈∣Mod∣ where for every M ∈ ∣Mod∣, QfM ∶ PropnC(∣M∣(σ)) →
PropC(∣M∣(τ)) is a mapping,13 isotone in every argument for the orders ⪯∣M∣(σ)
and ⪯∣M∣(τ).

Definition 3.5 (Distributing quantifier). A quantifier Qf is distributing over
a model morphism µ ∶M→M′ if the following diagram

PropnC(∣M∣(σ)) PropC(∣M∣(τ))

PropnC(∣M′∣(σ)) PropC(∣M′∣(τ))

QfM

∣µ∣∗τ(∣µ∣∗σ,...,∣µ∣
∗
σ)

QfM′

commutes.

We could have required quantifiers to be natural transformations, but this is
rarely verified except for certain types of model morphisms (essentially certain
families of epimorphisms). This distributivity property will be useful to prove
 Loś’s result.

3.2.1 First-order and higher-order quantifiers

Elementary toposes interpret first-order and higher-order logics because the
functor Sub ∶ Cop → HeytAlg is a tripos over C. In other words, for ev-
ery morphism f ∶ X → Y in an elementary topos C, the pullback functor
f∗ ∶ Sub(Y ) → Sub(X) has a right-adjoint ∀f ∶ Sub(X) → Sub(Y ) and a left-
adjoint ∃f ∶ Sub(X)→ Sub(Y ). So, given a morphism t⃗ ∶ [x⃗]→ [y⃗], ∀t⃗ and ∃t⃗ are
defined for every model byM by: ∀t⃗M = ∀[[M]][x⃗](t⃗) and ∃t⃗M = ∃[[M]][x⃗](t⃗),
where [[M]][x⃗](t⃗) is the interpretation defined in Section 3.1.1. More details on
these quantifiers can be found in [5].

In later proofs, we will use the exact expressions of the quantifiers for the
projection morphisms, which we now give. Let π ∶ [x⃗] → [y⃗] be a projection
morphism in Ctx (with x⃗ = y⃗.z⃗ for some finite sequence of variables z⃗). Us-
ing the internal language of C (see Appendix A), the morphisms ∀πM,∃πM ∶
P ∣M∣([x⃗])→ P ∣M∣([y⃗]) yield

∀πM(S) = {y ∶ ∣M∣([y⃗]) ∣ ∀z ∶ ∣M∣([z⃗]), (y, z) ∈∣M∣([x⃗]) S}
13Propn

C
∶ C

op
→ Pos;X ↦ PropC(X) × . . . × PropC(X) is the n-fold product of the con-

travariant functor PropC .
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∃πM(S) = {y ∶ ∣M∣([y⃗]) ∣ ∃z ∶ ∣M∣([z⃗]), (y, z) ∈∣M∣([x⃗]) S}
where S ∶ P ∣M∣([x⃗]) is a variable.

Proposition 3.6. Let µ ∶ M → M′ be a model morphism such that for ev-
ery context [x⃗] in Ctx, ∣µ∣[x⃗] is an epimorphism,14 then FOL quantifiers are
distributing over µ.

Proof. Let µ ∶M →M′ be a model morphism such that for every context [x⃗]
in Ctx, ∣µ∣[x⃗] is an epimorphism. Let π ∶ [x⃗] → [y⃗] be a projection morphism in
Ctx (with x⃗ = y⃗.z⃗ for some z⃗). Finally, let X ′ ∶ P ∣M′∣([x⃗]) be a variable.

We detail the case of universal quantifiers. From the expressions of ∀πM
and ∣µ∣∗[x⃗] in the internal logic of elementary toposes (where M is a model and

[x⃗] a context), we obtain

∀πM○∣µ∣∗[x⃗](X ′) = {my ∶ ∣M∣([y⃗]) ∣ ∀mz ∶ ∣M∣([z⃗]), ∣µ∣[x⃗](my,mz) ∈∣M′∣([x⃗]) X
′}

and

∣µ∣∗[y⃗]○∀πM′(X ′) = {my ∶ ∣M∣([y⃗]) ∣ ∀m′z ∶ ∣M′∣([z⃗]), (∣µ∣[y⃗](my),m′z) ∈∣M′∣([x⃗]) X
′}

Let my ∶ ∣M∣([y⃗]) be a variable such that my ∈∣M∣([y⃗]) ∣µ∣∗[y⃗] ○ ∀πM′(X ′).
Let mz ∶ ∣M∣([z⃗]) be a variable. Then ∣µ∣[x⃗](my,mz) = (∣µ∣[y⃗](my), ∣µ∣[z⃗](mz)).
Since ∣µ∣[z⃗](mz) is some m′z ∶ ∣M′∣([z⃗]), it follows that ∣µ∣[x⃗](my,mz) ∈∣M′∣([x⃗])
X ′, i.e., that my ∈∣M∣([y⃗]) ∀πM ○ ∣µ∣∗[x⃗](X ′).

Conversely, let my ∶ ∣M∣([y⃗]) be a variable such that my ∈∣M∣([y⃗]) ∀πM ○
∣µ∣∗[x⃗](X ′) Let m′z ∶ ∣M′∣([z⃗]) be a variable. Since ∣µ∣[z⃗] is an epimorphism, there

exists mz ∶ ∣M∣([z⃗]) such that ∣µ∣[z⃗](mz) = m′z. Then, ∣µ∣[x⃗](my,mz) ∈∣M′∣([x⃗])
X ′, which implies that (∣µ∣[y⃗](my),m′z) ∈∣M′∣([x⃗]) X

′, i.e., that my ∈∣M∣([y⃗])
∣µ∣∗[y⃗] ○ ∀πM′(X ′).

For existential quantifiers, starting from mz ∶ ∣M∣([y⃗]), ∣µ∣[z⃗](mz) provides
a variable of ∣M′∣([y⃗]) meaning that any my ∈∣M∣([y⃗]) ∃πM ○ ∣µ∣∗[x⃗](X ′) satisfies

my ∈∣M∣([y⃗]) ∣µ∣∗[y⃗] ○ ∃πM′(X ′). Similarly to the universal quantifier, the fact

that ∣µ∣[z⃗] is an epimorphisms allows retrieving an mz ∶ ∣M∣([y⃗]) from an m′z ∶
∣M′∣([y⃗]) such that ∣µ∣[z⃗](mz) = m′z, which yields that any my ∈∣M∣([y⃗]) ∣µ∣∗[y⃗] ○
∃πM′(X ′) satisfies my ∈∣M∣([y⃗]) ∃πM ○ ∣µ∣∗[x⃗](X ′).

The proof extends to quantifiers over any context morphism.

These constructions directly extend to HOL quantifiers since the category
of contexts is essentially the same.

By Proposition 2.5 and Proposition 3.6, under the hypothesis that for ev-
ery J ⊆ J ′ ∈ F , pJ,J ′ is an epimorphism, we have that FOL quantifiers are
distributing over pJ ′,J and µJ .

14Let us recall that epimorphisms in toposes are regular. A regular epimorphism is a
morphism µ ∶ X → Y (in a given category) that is the coequalizer of some parallel pair of
morphisms. The usefulness of such a morphism is that in a regular category, it satisfies:

∀y ∶ Y,∃x ∶ X,µ(x) = y
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3.2.2 First-order quantifiers in institutions

Institutions admit FOL quantifiers for any morphism θ ∶ χ1 → χ2 in Ctx for the
semantical system given in Section 3.1.3. We recall their expressions next, while
additional details may be consulted in [5]. Given a morphism θ ∶ χ1 → χ2 and
a model M ∈ ∣Mod(Σ)∣, ∀θM and ∃θM are defined for every S ⊆ ∣M∣(χ2) as
follows:

∀θM(S) = {M1 ∈ ∣M∣(χ1) ∣ ∀M2 ∈ ∣Mod(Σ2)∣,Mod(θ)(M2) =M1 implies M2 ∈ S}
∃θM(S) = {M1 ∈ ∣M∣(χ1) ∣ ∃M2 ∈ ∣Mod(Σ2)∣,Mod(θ)(M2) =M1 and M2 ∈ S}

Proposition 3.7. Institution FOL quantifiers are distributing over any mor-
phism µ ∶M→ N which satisfies the following property:

• Existence of extension. for every quasi-representable morphism χ ∶
Σ → Σ′, and every model N ′ ∈ ∣Mod(Σ′)∣ such that Mod(χ)(N ′) = N ,
there exists a morphism µ′ ∶M′ → N ′ which is the unique χ-expansion of
µ (and then Mod(χ)(M′) =M).

In FOL over presheaves, this holds when morphisms are epic (i.e., for every
s ∈ S, for every b ∈ ∣B∣, µsb ∶Ms(b)→Ms(b) is a surjective mapping).

Proof. For every such morphism µ ∶M → N and every θ ∶ χ2 → χ1 ∈ ∣Ctx∣, the
following diagram

℘(∣M∣(χ2)) ℘(∣M∣(χ1))

℘(∣N ∣(χ2)) ℘(∣N ∣(χ1))

∀θM

∣µ∣∗χ1
∣µ∣∗χ2

∀θN

commutes. Indeed, unfolding the definitions of ∀θ and ∣µ∣∗, we obtain the
following formulas for ∣µ∣∗χ1

(∀θN (S)) and ∀θM(∣µ∣∗χ2
(S)), where S is a subset

of ∣N ∣(χ2):

∣µ∣∗χ1
(∀θN (S)) = {M1 ∈ ∣M∣(χ1) ∣ ∀N2 ∈ ∣Mod(Σ2)∣, Mod(θ)(N2) = cod(µ1) implies N2 ∈ S}

where µ1 is the unique χ1-expansion of µ ∶Mod(χ1)(M1)→ N , and

∀θM(∣µ∣∗χ2
(S)) = {M1 ∈ ∣M∣(χ1) ∣ ∀M2 ∈ ∣Mod(Σ2)∣, Mod(θ)(M2) =M1 implies cod(µ2) ∈ S}

where µ2 is the unique χ2-expansion of µ ∶Mod(χ1)(Mod(θ)(M2))→ N .

Let M1 ∈ ∣µ∣∗χ1
(∀θN (S)). Let M2 ∈ Mod(Σ2) such that Mod(θ)(M2) =

M1. Then it follows that µ ∶Mod(χ1)(Mod(θ)(M2))→ N and we can consider
µ1 ∶Mod(θ)(M2)→ cod(µ1), the unique χ1-expansion of µ. Now, let µ2 ∶M2 →
cod(µ2) be the unique χ2-expansion of µ. By the uniqueness of extensions, we
have that µ2 is the unique θ-expansion of µ1, and then Mod(θ)(cod(µ2)) =
cod(µ1) from which we can conclude that cod(µ2) ∈ S.
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Let M1 ∈ ∀θM(∣µ∣∗χ2
(S)). Let N2 ∈ Mod(Σ2) such that Mod(θ)(N2) =

cod(µ1) where µ1 ∶M1 → cod(µ1) is the unique χ1-expansion of µ ∶Mod(χ1)(M1)→
N . By the property of existence of extension, there exists a morphism µ2 ∶M2 →
N2, which is the unique θ-expansion of µ1, and then of µ. Hence, we have that
Mod(θ)(M2) =M1, from which we can conclude that N2 ∈ S.

From the duality of ∃θ with ∀θ (i.e., ∀θM(S) = ∃θM(Sc)c), we directly have
that

∃θM ○ ∣µ∣∗χ2
= ∣µ∣∗χ1

○ ∃θN

Once again, FOL existential quantifiers are weakly distributing over any
model morphism.

3.2.3 Modalities in coalgebraic logic

In the framework of coalgebras, the notion of predicate lifting has been iden-
tified as the concept underlying modal operator semantics [38]. Let us place
ourselves in the semantical system of Section 3.1.4. Let F ∶ C → C be a functor.
A n-ary predicate lifting is then a natural transformation λ ∶ Pn ⇒ P ○ F op
such that for every X ∈ ∣C∣, λX is preserving orders. In other words, for all
variables x1, . . . , xn, x

′
1, . . . , x

′
n ∶ X such that x1 ⪯X x′1, . . . , xn ⪯X x′n, then

λX(x1, . . . , xn) ⪯F (X) λX(x′1, . . . , x′n).
Given a F -coalgebra (X,αX), one can (internally) define a morphism α−1X ∶

PF (X)→ PX such that for a variable Y ∶ PF (X),

α−1X (Y ) = {x ∶X ∣ αX(x) ∈F (X) Y }

In the category Ctx, the only morphism is Id●, then given an n-ary predicate
lifting λ and a co-algebra (X,αX), we can internally define [λ]X ∶ PnX → PX
by: [λ]X = α−1X ○ λX .

Proposition 3.8. The family [λ] = ([λ]X)X∈∣C∣ is a natural transformation.

Proof. Since λ is a natural transformation, it suffices to show that α−1 ∶ P ○F ⇒
P is a natural transformation. Let µ ∶ X → X ′ be a morphism of coalge-
bras. From the definition of [λ]X , showing that α−1 is a natural transformation
amounts to show that:

P(µ) ○ α−1X′ = α−1X ○P(F (µ))

Let Y ′ ∶ PF (X ′) be a variable. By definition, we have the two following equa-
tions:

P(µ)(α−1X′(Y ′)) = {x ∶X ∣ αX′(µ(x)) ∈F (X′) Y ′}
α−1X (P(F (µ))(Y ′)) = {x ∶X ∣ F (µ)(αX(x)) ∈F (X′) Y ′}

Since µ is a coalgebra morphism F (µ)(αX(x)) = αX′(µ(x)) for any x ∶X, which
yields the desired commutative property.
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Corollary 3.9. The family [λ] is distributing over any model morphism.

Corollary 3.10. If λ is an n-ary predicate lifting, so is [λ].
Proof. It is quite simple to show that α−1X is isotone, and then [λ]X is isotone
on its arguments since λX is.

We now present two examples of isotone 1-ary predicate liftings [38]. Let
us suppose that we have a natural transformation β ∶ F ⇒ ∃, where ∃ ∶ C → C
is the covariant functor introduced in Section 2.2.1. Then, we internally define
the two following predicate liftings ∀β,∃β ∶ ∃⇒ ∃ ○ F as

∀βX(Y ) = {y ∶ F (X) ∣ βX(y) ⪯X Y }
∃βX(Y ) = {y ∶ F (X) ∣ ∃x ∶X,x ∈X βX(y) ∧ x ∈X Y }

where Y ∶ PX is a variable.
Showing that ∀β = (∀βX)X∈∣C∣ and ∃β = (∃βX)X∈∣C∣ are isotone for every

X ∈ ∣C∣ is quite straightforward. Then, ∀X = α−1X ○ ∀βX and ∃X = α−1X ○ ∃βX
respectively correspond to the standard interpretations of the modalities ◻ and
◇ in the coalgebra (X,αX).

Moss’ classical Nabla operator [36] can also be defined as a family ∇ of n-
ary quantifiers ∇n ∶ Subn ⇒ Sub defined for every coalgebra (X,αX). Let us
suppose a natural transformation β ∶ F ⇒ P. Then, we can define internally the
natural transformation λ ∶ P ○P ⇒ P ○ F op as follows: let X ∈ ∣C∣ be an object
and let Y ∶ PPX be a variable

λX(Y ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∀x,x ∈PX Y ⇒ (∃z, z ∈X βX(y) ∧ z ∈X x))
y ∶ F (X) ∧

(∀z, z ∈X βX(y)⇒ (∃x,x ∈PX X ∧ z ∈X x))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Then, for every n ∈ N, let us set ∇nX(x1, . . . , xn) = α−1X (λX({x1, . . . , xn})).

∇n is a natural transformation as α−1 and λ are. Likewise, we can observe that
the following formula expressed in the internal language of the topos C

x1 ⪯X y1 ∧ . . . ∧ xn ⪯X yn ⇒ λX({x1, . . . , xn}) ⪯PX λX({y1, . . . , yn})

is satisfied, ensuring that ∇nX is isotone.
Before presenting the internal logic of [5], we point out that, quite interest-

ingly, propositional connectives are subsumed by our definition of quantifiers.

Remark 3.11. The propositional operators ∧ and ∨ can be defined as quantifiers
of arity 2 from the context identity Idσ ∶ σ → σ ∈ Ctx:

∧ ∶ PropC(∣M∣(σ))→ PropC(∣M∣(σ)); (ι, ι′)↦ ι ∧ ι′

and
∨ ∶ PropC(∣M∣(σ))→ PropC(∣M∣(σ)); (ι, ι′)↦ ι ∨ ι′

Similarly, extending the definition of quantifiers to either isotone or antitone
mappings would enable the definition of negation as a quantifier of arity 1.
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3.3 Internal logic

3.3.1 Syntax

Standardly, formulas are defined inductively from basic formulas. Basic for-
mulas are usually directly interpretable in models. This leads to the following
definition. As is customary, we assume that each quantifier Qf of arity n has
its syntactic equivalent, also denoted Qf , used to construct formulas.

Definition 3.12 (Basic formulas). Let Ctx be a category of contexts. A set of
basic formulas is a ∣Ctx∣-indexed family of sets (Bcσ)σ∈∣Ctx∣.
Bc is said interpretable in a semantical system S = (C,Ctx,Mod, ∣ ∣) if it is
equipped for every modelM ∈ ∣Mod∣ and every context σ ∈ ∣Ctx∣ with a mapping
[[M]]σ( ) ∶ Bcσ → PropC(∣M∣(σ)) satisfying the following property: for every
family of models (Mi)i∈I , and for every δI ∈ PropC(∣∏IMi∣(σ)),

δI ⪯∣∏IMi∣(σ) [[∏IMi]](σ.bc) iff for all i ∈ I,
δI ⪯∣∏IMi∣(σ) ∣pI,i∣∗σ([[Mi]](σ.bc))

The careful reader will have noticed that we are surcharging the notation
[[M]][x⃗]( ) used in Section 3.1.1 for the interpretation of terms. Indeed, the
mapping [[M]]σ( ) ∶ Bcσ → PropC(∣M∣(σ)) will later be extended to interpret
formulas. In FOL, this extension will build up on the interpretation of terms
already introduced.

Example 3.13 (Basic formulas in first-order categorical logic). Let Σ = (S,F,R)
be a signature. The set of basic formulas for the first-order logic is the standard
set of atomic formulas. More formally, we define, for every context [x⃗], the set
Bc[x⃗] by:

Bc[x⃗] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{r(t1, . . . , tn) ∣ x⃗ suitable context for ti}
∪

{t = t′ ∣ x⃗ suitable context for t and t′}
where a context x⃗ is suitable for a term or a formula if each free variable of this
term or this formula occurs in x⃗.

Let S = (C,Ctx,Mod, ∣ ∣) be the semantical system of Section 3.1.1. Given a
modelM, we define the satisfaction mapping as [[M]][x⃗]( ) ∶ Bc[x⃗] → Sub(∣M∣([x⃗]))
such that

• for any equation t = t′, [[M]][x⃗](t = t′) is the equalizer of

∣M∣([x⃗]) Ms
[[M]][x⃗](t′)

[[M]][x⃗](t)

where s is the common sort of t and t′;

• for any relation r(t⃗), [[M]][x⃗](r(t⃗)) is the subobject O′ ↣ ∣M∣([x⃗]) given
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by the pullback:

O′ O

∣M∣([x⃗]) Ms1 × . . . ×Msn

rM[[M]][x⃗](r(t⃗))

[[M]][x⃗](t⃗)

if r ∶ s1 × . . . × sn.

The condition is obviously satisfied because, by the definition of model prod-
ucts, we have that

[[∏
I

Mi]][x⃗](bc) =∏
I

[[Mi]][x⃗](bc)

Example 3.14 (Basic formulas in higher-order categorical logic). Let Σ =
(S,F,R) be a signature. The set of basic formulas for the higher-order logic
is the set of atomic formulas defined for every context [x⃗] by:

Bc[x⃗] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{r(t1, . . . , tn) ∣ x⃗ suitable context for ti}
∪

{t = t′ ∣ x⃗ suitable context for t and t′}
∪

{t ∈A t′ ∣ t ∶ A, t′ ∶ PA, x⃗ suitable context for t and t′}

Given a modelM, equations and predicates are satisfied as in FOL. [[M]][x⃗](t ∈A
t′) is the subobject O ↣ ∣M∣([x⃗]) such that O is the pullback of the diagram

O ∈A

∣M∣([x⃗]) MA × PMA

[[M]][x⃗](t∈At′)

([[M]][x⃗](t),[[M]][x⃗](t′))

Hence, for every A ∈ Σ-Typ, ∈A can be seen as a new relation name with
profile A × PA. Then, the property of Definition 3.12 follows from the same
arguments as in Example 3.13.

Example 3.15 (Basic formulas in institutions). In institutions, formulas being
simple elements of a set, the notion of atomic formulas can only be semantically
approximated. Hence, in institutions, atomic formulas are not explicitly consid-
ered as such but rather implicitly from their model-theoretic properties. Hence,
given a signature Σ ∈ ∣Sig∣, a subset of formulas E ⊆ Sen(Σ) is said basic [20,
Chap. 5, p. 108] if there exists a model ME ∈ ∣Mod(Σ)∣ such that for each
modelM ∈ ∣Mod(Σ)∣

M ⊧Σ E iff there exists a morphism µ ∶ME →M

Let SI(Σ) be the semantical system defined in Section 3.1.3. For a signature
Σ′ and an object χ ∶ Σ→ Σ′ in ∣Ctx∣, we consider a subset Bcχ of Sen(Σ′) to be
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basic whenever each formula bc ∈ Bcχ is basic in the previous meaning, i.e., if
there exists a modelMbc ∈ ∣Mod(Σ′)∣ such that for each modelM′ ∈ ∣Mod(Σ′)∣

M′ ⊧Σ′ bc iff there exists a morphism µ ∶Mbc →M′

Then, forM ∈Mod(Σ) and bc ∈ Bcχ

[[M]]χ(bc) = {M′ ∈ ∣M∣(χ) ∣M′ ⊧Σ′ bc}

Let us show that (Bcχ)χ∈∣Ctx∣ is interpretable in the semantical system of
institution (see Section 3.1.3). Let (Mi)i∈I be a family of models in Mod(Σ).
Let χ ∶ Σ → Σ′ ∈ ∣Ctx∣. As Mod(χ) creates small products, for every basic
formula bc ∈ Bcχ, we can write:

[[∏
I

Mi]]χ(bc) = {∏
I

M′
i ∈ ∣∏

I

Mi∣(χ) ∣∏
I

M′
i ⊧Σ′ bc}

Let S be a subset of [[∏IMi]]χ(bc). If we have for every i ∈ I that there
exists a subset Si of [[Mi]]χ(bc) such that S ⊆ ∣pI,i∣∗χ(Si), then this means that
for every ∏IM′

i ∈ S, M′
i ∈ Si for all i ∈ I. Hence, there exists a model Mbc

and a morphism µi ∶ Mbc → M′
i for all i ∈ I. By the universal property of

small products, there is unique morphism µ ∶Mbc →∏IM′
i from which we can

conclude that ∏IM′
i ⊧Σ′ bc.

Example 3.16 (Basic formulas in modal logic). In Section 3.1.4, coalgebras
have been defined over the empty propositional signature. Hence, the set of
basic formulas is empty. Within the set framework, predicate liftings generalize
atomic propositions. Indeed, for PV a set of propositional variables, we can
consider the functor

F ∶ Set→ Set;S ↦ ℘(S) × ℘(PV )

Clearly, F -coalgebras (S,α) give rise to Kripke models. Then, given a proposi-
tional variable p ∈ PV , by considering the predicate lifting

λp ∶ S ↦ {α(s) ∣ s ∈ S, p ∈ π2(α(s))}

where π2 ∶ F (S)→ ℘(PV ) is the second projection, we have that p is the formula
[λp](⊺) = α−1p (λp(⊺)).

In a more general framework (i.e., when the category C of the functor F is
not necessarily Set), given a set of propositional variables PV , models have to be
defined as pairs ((X,αX), ν) where (X,αX) is a coalgebra and ν ∶ PV → Sub(X)
is a mapping. Morphisms between co-algebras are extended by imposing that
ν(p) ⪯X ∣µ∣∗(ν′(p)) for µ ∶ ((X,αX), ν) → ((Y,αY ), ν′). In this case, we have
that [[((X,αX), ν)]]●(p) = ν(p).

The property of Definition 3.12 is even more easily demonstrated from the
same arguments as in Example 3.13.

We now have all the ingredients to formally define our notion of abstract
logic.
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Definition 3.17 (Abstract categorical logic). A logic is given by a tuple L =
(S,Q,Bc) where

• S is semantical system;

• Q = (Qn)n∈N is a N-indexed family of sets of quantifiers, i.e., for every
n ∈ N, Qn is a set of n-ary quantifiers;

• Bc is a set of basic formulas interpretable in S.

Example 3.18 (Intuitionistic propositional logic (IPL)). Let PV be a set of
propositional variables. Since intuitionistic propositional logic is sound with
respect to Kripke semantics, where the relation is a preorder, it is natural to
define the logic for intuitionistic reasoning as:

• the semantical system (C,Ctx,Mod, ∣ ∣) where:

– Ctx is the trivial category where the unique object is ●;
– C is a topos to which we associate the contravariant functor Sub;

– Mod is the category of pairs (α, ν) where α = (X, b ∶ X → PX) is
a coalgebra and ν ∶ PV → Sub(X) is a mapping (see Example 3.16)
such that the underlying relation Rb is a preorder, i.e., the morphism
b satisfies the two following formulas expressed in the internal lan-
guage of the topos C:

∀x,x ∈X b(x)
∀x,∀y,∀z, y ∈X b(x) ∧ z ∈X b(y)⇒ z ∈X b(x)

– ∣ ∣ is the functor defined in Section 3.1.4.

• for every n ∈ N, Qn = ∅;

• Bc = PV .

Example 3.19 (Fist-order logic (FOL)). Let Σ be a multi-sorted FOL signature.
Let V be a set of sorted variables. The logic for FOL is defined by:

• SΣ is the semantical system presented in Section 3.1.1;

• for every n ≠ 1, Qn = ∅, and Q1 = {∀γ,∃γ ∣ γ is a morphism in Ctx};

• Bc is the set of basic formulas presented in Example 3.13.

Example 3.20 (Higher-order logic (HOL)). Let Σ be a multi-sorted FOL sig-
nature. Let V be a set of typed variables. The logic for HOL is defined by:

• SΣ is the semantical system presented in Section 3.1.2;

• for every n ≠ 1, Qn = ∅, and Q1 = {∀γ,∃γ ∣ γ is a morphism in Ctx};

• Bc is the set of basic formulas presented in Example 3.14.
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Example 3.21 (Institutional FOL). Let I = (Sig, Sen,Mod,⊧) be an institu-
tion such that the functor Sen has a subfunctor Bc ∶ Sig → Set such that for
every Σ ∈ ∣Sig∣, every bc ∈ Bc(Σ) is basic. Let Σ ∈ ∣Sig∣ be a signature. The
institutional FOL for Σ is defined by:

• SI(Σ) is the semantical system presented in Section 3.1.3;

• for every n ≠ 1, Qn = ∅ and Q1 = {∀θ,∃θ ∣ θ ∶ χ→ χ′ ∈ Ctx};

• for every signature morphism χ ∶ Σ→ Σ′, Bcχ = Bc(Σ′).

Example 3.22 (Coagebraic modal logic). Let Λ = (Λn)n∈ω be a family of sets
of n-ary predicate liftings. Let F ∶ C → C be a functor where C is a topos.
Coalgebraic modal logic is then defined by:

• SF is the semantical system presented in Section 3.1.4;

• For every n ∈ N, Qn = {[λ] ∣ λ ∈ Λn};

• Bc = PV where PV is a set of propositional variables and then models are
tuples of the form (α, ν) where α = (X,αX) is a coalgebra and ν ∶ PV →
Sub(X) is a mapping.

Example 3.23 (Moss’ colagebraic logic). Let F ∶ C → C where C is a topos.
Moss’ coalgebraic modal logic is defined by:

• SF is the semantical system presented in Section 3.1.4;

• For every n ∈ N, Qn = {∇n} (assuming a natural transformation β ∶ F → P
as in Section 3.2.3);

• Bc = PV with PV a set of propositional variables.

The general set of formulas can now be defined inductively over the logical
connectives and quantifiers.

Definition 3.24 (Formulas). Let L = (S,Q,Bc) be a logic. The set FL of
formulas for L is defined inductively as follows:

• for every bc ∈ Bcσ, σ.bc ∈ FL;

• for every σ ∈ ∣Ctx∣, σ.� ∈ FL, σ.⊺ ∈ FL;

• if σ.φ ∈ FL and σ.ψ ∈ FL, then σ.(φ∧ψ) ∈ FL, σ.(φ∨ψ) ∈ FL, σ.(φ⇒ ψ) ∈
FL;

• if σ.φ ∈ FL, then σ.¬φ ∈ FL;

• for every f ∶ σ → τ ∈ Ctx:

– if σ.φ1 ∈ FL,. . ., σ.φn ∈ FL, then τ.Qf(φ1, . . . , φn) ∈ FL, where Qf
is a n-ary quantifier name whose semantics is defined by an isotone
mapping Qf as introduced in Definition 3.4;

– if τ.φ ∈ FL, then σ.f(φ) ∈ FL.
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3.3.2 Semantics

The internal logic is defined as an extension of PL by adding quantifiers.

Definition 3.25 (Formula interpretation). Let L = (S,Q,Bc) be a logic. Let
M ∈ ∣Mod∣ be a model. We define the mapping

[[M]] ∶ FL → ⋃
σ∈∣Ctx∣

PropC(∣M∣(σ))

such that for every σ.φ ∈ FL, [[M]](σ.φ) ∈ PropC(∣M∣(σ)), as the canonical
extension of ([[M]]σ( ))σ∈∣Ctx∣ to formulas in FL as follows:

• [[M]](σ.�) = �∣M∣(σ) and [[M]](σ.⊺) = ⊺∣M∣(σ);

• for every bc ∈ Bcσ, [[M]](σ.bc) = [[M]]σ(bc);

• [[M]](σ.(φ ∧ ψ)) = [[M]](σ.φ) ∧ [[M]](σ.ψ);

• [[M]](σ.(φ ∨ ψ)) = [[M]](σ.φ) ∨ [[M]](σ.ψ);

• [[M]](σ.¬φ) = [[M]](σ.φ)→ [[M]](σ.�);15

• [[M]](σ.φ⇒ ψ) = [[M]](σ.φ)→ [[M]](σ.ψ);

• [[M]](τ.Qf(φ1, . . . , φn)) = QfM([[M]](σ.φ1), . . . , [[M]](σ.φn)) with f ∶
σ → τ ∈ Ctx.

• [[M]](σ.f(φ)) = ∣M∣(f)∗([[M]](τ.φ)) with f ∶ σ → τ ∈ Ctx.

In first-order and higher-order logics, formulas of the σ.f(φ) are the coun-
terpart of variable substitutions.

Proposition 3.26 ([5]). In FOL and HOL, for every morphism γ = [t1 ∶
s1, . . . , tn ∶ sn] ∶ [x⃗] → [y⃗] with y⃗ = (y1 ∶ s1, . . . , yn ∶ sn), every formula φ such
that the variables of φ occurs in y⃗, and every model M ∈ ∣Mod∣, the following
equality holds:

[[M]]([x⃗].γ(φ)) = [[M]]([x⃗].φ(y1/t1, . . . , yn/tn))

where φ(y1/t1, . . . , yn/tn) is the formula ψ obtained from φ by substituting all
free occurrences of yi by ti.

We recall here the main steps of the proof given in [5] for the sake of com-
pleteness.

15The arrow symbol for the interpretation of [[M]](σ.¬φ) and [[M]](σ.φ ⇒ ψ) is the im-
plication in the Heyting algebra PropC(∣M∣(σ)).
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Proof. The proof is done by structural induction on φ. The proof is straightfor-
ward for general cases. The only difficulties may come from basic cases. So let
us prove the statement for formulas of the form t = t′ and r(t⃗) (the case t ∈A t′
is treated in a similar way to r(t⃗)).

Let φ be of the form t = t′ with t, t′ ∶ [y⃗] → [z⃗]. From Example 3.13,
[[M]]([y⃗].t = t′) equalizes [[M]][y⃗](t) and [[M]][y⃗](t′).

By structural induction on terms, we have

[[M]][x⃗](t(y⃗/γ)) = [[M]][y⃗](t) ○ ([[M]][x⃗](t1), . . . , [[M]][x⃗](tn))

where [[M]][x⃗](t(y⃗/γ)) is a shorter notation for [[M]][x⃗](y1/t1, . . . , yn/tn).
Thus, [[M]]([x⃗].t(y⃗/γ) = t′(y⃗/γ)) equalizes [[M]][x⃗](t(y⃗/γ)) and [[M]][x⃗](t′(y⃗/γ)).

Hence, by definition of the pullback functor ∣M∣(γ)∗ and the universal property
of equalizers, we necessarily have that

∣M∣(γ)∗([[[M]]([y⃗].t = t′)↣ ∣M∣([y⃗])]) = [[[M]]([x⃗].t(y⃗/γ) = t′(y⃗/γ))↣ ∣M∣([x⃗])]

Let φ be of the form r(t⃗). Then, by the definition of both semantics of r(t⃗)
and of pullback functor, the following diagram

O′ O rM

∣M∣([x⃗]) ∣M∣([y⃗]) Mr

∣M∣(γ)∗(ι)

[[M]][x⃗](γ) [[M]][y⃗](t)

ι

commutes.

Definition 3.27 (Validation). Let L = (S,Q,Bc) be a logic. Given a modelM ∈
∣Mod∣ and a formula σ.φ ∈ FL, we writeM ⊧ σ.φ if [[M]](σ.φ) = ⊺∣M∣(σ). More-
over, for every ι ∈ PropC(∣M∣(σ)), we writeM ⊧ι σ.φ if ι ⪯∣M∣(σ) [[M]](σ.φ).

4 Ultraproducts and  Loś’s theorem

In this section, we prove our main contribution, namely the ultraproduct method
and its fundamental theorem in abstract categorical logic. To obtain Theo-
rem 4.21, we need filtered products (see Section 2.3.2) along with some further
requirements on the various categories. More precisely, we introduce additional
requirements on the semantical system to handle intersections in the filter (sets
of generators and the finiteness condition) and disjunctions of formulas (coverage
condition) in Subsection 4.1. Similar conditions are added to handle quantifiers
in Subsection 4.2 and pullback functors in Subsection 4.3. The main result
( Loś’s theorem) is proved in Subsection 4.4. We finally discuss dual quanti-
fiers in Subsection 4.5 and the standard corollary of  Loś’s theorem, namely the
compactness theorem, in Subsection 4.6.

In the following, we consider a logic L = (S,Q,Bc) with the semantical
system S = (C,Ctx,Mod, ∣ ∣) and the interpretation of formulas given by the
mapping [[ ]] as in Definition 3.25.
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4.1 Filtered semantical systems

So far, our abstract categorical logic has been presented as generically as possi-
ble. Indeed, our semantical systems link a prop-category - expected to provide
the needed structure - and a category of models. Still, we need conditions to
retrieve the structure in the model category from the prop-category. Here, the
structure is to have filtered products and thus ultraproducts on families of mod-
els, which is needed to obtain an abstract version of  Loś’s theorem. We now
provide conditions to be able to properly consider ultraproducts on families
of models when dealing with our abstract categorical logic. We first discuss
assumptions on the semantical systems.

4.1.1 Sup-generation

In the context of presheaves, Proposition 2.4 highlights that filtered products (as
would any colimit) are computed componentwise. However, this construction
does not hold in arbitrary prop-categories. Locally finitely presentable cate-
gories (see Definition 2.10) are intrinsically endowed with such a construction
by considering a set of generators; similarly, the functor Sub in toposes simplifies
the reasoning about intersections. In an arbitrary prop-category, we can only
impose additional conditions on the structure carrying the ingredients for build-
ing the formulas, i.e., the Heyting algebra. In a sense, we solve the difficulty
of obtaining filtered products the same way as in locally finitely presentable
categories: via a set of generators.

Definition 4.1 (Sup-generator [43]). Let L be a lattice. A subset X ⊆ L is a
sup-generator of L when any element a ∈ L is the supremum of the elements
of X that it majorates:

∀a ∈ L,a =⋁ ↓a
where ↓a = {x ∈ X ∣ x ⪯L a} for a ∈ L. Then L is said to be sup-generated by
X.

We always consider downward closed sup-generators, i.e., that for any ele-
ment a of a lattice L sup-generated by X, if there exists x ∈X such that a ⪯L x,
then a ∈ X. Note that if L is sup-generated by X, then L is sup-generated by
the downward closure of X in L.

Definition 4.2 (Sup-generated prop-category). A prop-category C is sup-generated
if PropC(X) is sup-generated for each X in ∣C∣ by a set lX ∖ {�X} such that for
all f ∶X → Y in C, for all δX in lX , and for all ι in PropC(Y ), if δX ⪯X f∗(ι),
then there exists δY in lY such that δY ⪯Y ι and δX ⪯X f∗(δY ).

Remark 4.3. In the context of topos, this notion of generators refines that of
global elements. In classical terms, a global element in a category C endowed with
a terminal object 1 is a morphism 1→X, thereby extending the familiar idea of
points in the category of sets. Yet, this notion of global elements does not allow
identifying an object ‘points’ in an arbitrary category. For instance, consider
the category of graphs, where the terminal object is a graph containing a single
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vertex with a loop (an edge connecting the vertex to itself). Then, the global
elements of a graph are restricted to vertices with a loop. A more permissive
viewpoint classifies the elements of a graph as isolated vertices, vertices with
loops, and pairs of vertices connected by an edge.

From now on, lX denotes the set of generators of X.

Example 4.4 (Atomic toposes [16]). Let C be a topos. An object X ∈ ∣C∣ is an
atom if its only subobjects are IdX and ∅ → X (up to isomorphism), and they
are distinct from each other. C is an atomic topos if it is an elementary topos
that possesses an atomic geometric morphism C → Set (i.e., its inverse image
functor is logical). If C is further a Grothendick topos,16 the subobject lattice of
every object of X ∈ ∣C∣ is a complete atomic Boolean algebra. Then, every object
can be written as disjoint unions of atoms.

Example 4.5 (Locally finitely presentable categories). Not all toposes are
atomic. For instance, it is easy to see that the subobject lattice of a graph
is only a Heyting algebra and not a Boolean algebra and that, in particular,
a graph is not a disjoint union of vertices without arcs (which are the atomic
objects in the category of graphs). Recall that in the case of locally finitely pre-
sentable categories (see Definition 2.10), any object is a filtered colimit of the
canonical diagram of finitely presentable objects mapping into it. Thus, the ‘good
properties’ of the functor Sub ensure that any locally finitely presentable topos
is a sup-generated prop-category. Locally finitely presentable toposes encompass
presheaves and coherent toposes [27, Section D.3.3].

Example 4.6 (Institutions). Let M ∈ ∣Mod(Σ)∣ be a model and χ ∶ Σ → Σ′ a
context in an institution, i.e., for the semantical system of Section 3.1.3. Then
Prop(∣M∣(χ)) is a power set, meaning that it is sup-generated by singletons,
i.e., any set {M′} such thatM′ ∈ ∣Mod(Σ′)∣ and Mod(χ)(M′) =M.

Proposition 4.7. If C is sup-generated, then for all modelsM ∈ ∣Mod∣, for all
formulas σ.φ ∈ FL, for all ι ∈ PropC(∣M∣(σ)), M ⊧ι σ.φ if and only if for all
ι′ ∈ l∣M∣(σ), ι′ ⪯∣M∣(σ) ι impliesM ⊧ι′ σ.φ.

Proof. Let C be a sup-generated prop-category, M ∈ ∣Mod∣ be a model, σ.φ be
a formula, and ι in PropC(∣M∣(σ)). Since C is sup-generated, ι = ⋁ ↓ι.

IfM ⊧ι σ.φ, then ι ⪯∣M∣(σ) [[M]](σ.φ). In particular, for all ι′ ∈ l∣M∣(σ) such
that ι′ ⪯∣M∣(σ) ι, it holds that ι′ ⪯∣M∣(σ) [[M]](σ.φ), i.e.,M ⊧ι′ σ.φ. The reverse
implication holds similarly by unfolding the definition of ι as a supremum.

4.1.2 Coverage

Sup-generation ensures that we can deal with intersections by reasoning on
generators. Similarly, we introduce a notion of coverage to handle disjunctions.

16i.e., C is equivalent to the category of sheaves on a site [15].
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Definition 4.8 (Covered prop-category). A prop-category C is covered if for
every ι ∈ PropC(X) and every δ1, δ2 ∈ PropC(X), if ι ⪯X δ1 ∨ δ2, then there
exists ι1, ι2 ∈ PropC(X) such that ι = ι1 ∨ ι2 and ιi ⪯X δi for i = 1,2.

Proposition 4.9. Elementary toposes are covered.

Proof. If Z ⪯Y X1 ∨X2, then it is sufficient to define each Zi as Zi = Z ∧Xi for
i = 1,2.

4.1.3 Filtered semantical systems

Definition 4.10 (Filtered semantical systems). A semantical system S = (C,Ctx,Mod, ∣ ∣)
is said to be filtered if it satisfies the following properties:

Sup-generation: C is sup-generated.

Covering property: C is covered;

Filtered models: Mod has filtered products.

Projection: for every context σ ∈ ∣Ctx∣, every family of models (Mi)i∈I and
every family (ιi)i∈I where for every i ∈ I, ιi ∈ PropC(∣Mi∣(σ)), there
exists ιI ∈ PropC(∣∏IMi∣(σ)) such that ↓ιI = ⋂i∈I ↓ ∣pI,i∣∗σ(ιi).

Finiteness: for every model M ∈ ∣Mod∣, every context σ ∈ ∣Ctx∣, every basic
formula bc ∈ Bcσ, and every δM ∈ l∣M∣(σ), there exists a finitely presentable
model (see Definition 2.8)Mbc such that

1. for every morphism µ ∶ N → M, N ⊧∣µ∣∗σ(δM) σ.bc if and only if
there exists a morphism µbc ∶ Mbc → N such that [[Mbc]](σ.bc) =
∣µ ○ µbc∣∗σ(δM).

2. for every morphism µ ∶M → N , there exists δN ∈ l∣N ∣(σ) such that
δM ⪯∣M∣(σ) ∣µ∣∗σ(δN ) and satisfying the following property: N ⊧δN
σ.bc if and only if there exists a morphism µbc ∶Mbc → N such that
[[Mbc]](σ.bc) ⪯∣Mbc∣(σ) ∣µbc∣∗σ(δN ).

Definition 4.10 calls for some comments.

• To illustrate the projection condition, let us assume that C is Set and
PropC is the functor Sub. Then, each ιi is some element ai, and ιI is the
tuple (a1, . . . , an). For each i ∈ I, ∣pI,i∣∗σ(ιi) contains all tuples of the form
(x1, . . . xi−1, ai, xi+1, . . . , xn). Taking the intersection over I, we retrieve
exactly (a1, . . . , an). The projection condition generalizes this property to
arbitrary semantical systems.

• The last condition will prove helpful in dealing with filtered products.
Indeed, filtered products are defined componentwise and are closed only
under finite intersections. Together with the condition of sup-generation,
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the finiteness condition essentially means that we consider objects as being
generated by finite generators (in a loose sense). For example, in the case
of FOL over presheaves (see Example 4.12 below), the two conditions en-
sure that the generators are functors G ∶ Bop → Set such that for all b ∈ ∣B∣,
G(b) is a finite set. The finiteness condition will enable the proof of  Loś’s
theorem in the case of basic formulas. This condition is an adaptation of
conditions given by R. Diaconescu for institutions [20].

Proposition 4.11. In the semantical systems of Sections 3.1.1, 3.1.2, and 3.1.4
for FOL, HOL, and ML, filtered models exist if the elementary topos C has
filtered products and projections of model products are epimorphisms.

Proof. We show the property for the semantical system for FOL given in Sec-
tion 3.1.1. The proofs for the other semantical systems are substantially similar.

Let I be a set and F be a filter over I. Let (Mi)i∈I be a family of models
in Mod. We define the filtered product ∏FM of (Mi)i∈I as follows:

• for every s ∈ S, (∏F M)s is the filtered product of (Mis)i∈I .

• for every function name f ∶ s1 × . . . × sn → s, by the universal property of
colimit, f∏F M is the unique morphism such that the following diagram:

∏IMis1
× . . . ×∏IMisn ∏IMisn

∏F Ms1 × . . . ×∏F Msn ∏F Ms

f∏IMi

µIs(µIs1
,...,µIsn

)

f∏F M

commutes.

• for every relation name r ∶ s1 × . . . × sn, r∏F M is the subobject OF ↣
∏F Ms1 × . . . ×∏F Msn where OF = ∏F O is the filtered product of the
family (dom(rMi))i∈I .

Hence, the family µ = (µJ)J∈F forms a cocone AF ⇒ ∏FM where AF ∶
F → Mod;J ↦ ∏JMi, J ⊆ J ′ ↦ pJ ′,J . Let ν ∶ AF ⇒ N be another cocone.
As C has filtered products, there is a unique morphism θ ∶ ∏F M → N . Let us
show that θ is a morphism in Mod. By definition, for every J ∈ F and for all
x ∶∏JMjs1

× . . . ×∏JMjsn , θ satisfies θ(µJ(x)) = νJ(x).
Let f ∶ s1 × . . . × sn → s be a function name. We want to show that θ ○

f∏F M = fN ○θ, which essentially amounts to showing that the following diagram
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commutes.

∏IMis1
× . . . ×∏IMisn ∏IMisn

∏F Ms1 × . . . ×∏F Msn ∏F Ms

Ns1 × . . . ×Nsn Ns

f∏IMi

µIs(µIs1
,...,µIsn

)

(θIs1 ,...,θIsn ) θIs

fN

f∏F M

(νIs1 ,...,νIsn )
νIs

Note that we already know that the top square commutes from the definition
of f∏F M and we have the following equalities:

θ(f∏F M(µI(x))) = θ(µI(f∏IMi(x)))
= νI(f∏IMi(x))
= fN (νI(x))
= fN (θ(µI(x)))

Hence, we have that θ ○ f∏F M ○ µI = fN ○ θ ○ µI . Let us show that µI is an
epimorphism. So let us suppose f, g ∶ ∏FM → X such that f ○ µI = g ○ µI .
Because for every J ∈ F , pI,J is an epimorphism, we deduce that f ○µJ = g ○µJ .
Now, as ∏FM is a filtered product, (µJ)J∈F is a jointly epic family, and then
f = g. From this, we can then conclude that θ ○ f∏F M = fN ○ θ.

Let r ∶ s1 × . . . × sn ∈ R. Let r∏IMi ∶ OI ↣ ∏IMis1
× . . . ×Misn , and

rN ∶ ON ↣ Ns1 × . . . ×Nsn . By the fact that ν is a morphism, we can write:

ON = {θ(µI(xI)) ∣ xI ∈ r∏IMI}

Hence, the following formula in the internal language of C is satisfied:

∀xI ∈∏
I

Mi, µI(xi) ∈ r∏F M ⇒ θ(µI(xI)) ∈ rN

which proves that there exists a morphism OF → ON such that the diagram

OF ∏F Ms1 × . . . ×∏F Msn

ON Ns1 × . . . ×Nsn

r∏F M

(θs1 ,...,θsn)

rN

commutes.

4.1.4 Finiteness condition

The finiteness condition is satisfied in many situations, such as in the context
of FOL over presheaves.

37



Example 4.12 (Finiteness condition in FOL/HOL over presheaves). We con-
sider the semantical system of Section 3.1.1 over the FOL signature Σ = (S,F,R),
with the additional condition that the elementary topos is a category of presheaves
B̂. From Example 4.5, B̂ is sup-generated, meaning that the finiteness condition
is well-defined.

LetM be a Σ-model, [x⃗] a context with x⃗ = (x1 ∶ s1, . . . , xn ∶ sn), and [x⃗].r(t⃗)
an atomic formula.

For the sake of simplicity, we consider a sup-generator G ∶ Bop → Set
where for all b ∈ ∣B∣, G(b) is either a singleton or the empty set. Iterating
the process (i.e., adding recursively all the needed constants) yields the com-
plete construction where each G(b) is a finite set. Hence, let G be a generator
of Sub(Ms1 × . . . ×Msn) such that for every b ∈ ∣B∣, G(b) = {(ab1, . . . , abn)} or
G(b) = ∅. Let Σ′ = (S,F ′,R) be the FOL signature obtained from Σ by adding
to F the constants absi ∶ si for b ∈ ∣B∣ when G(b) ≠ ∅. Let us define the Σ′-model
∅ as follows:

• for every s ∈ S, ∅s ∶ Bop → Set is the presheaf that maps

– b ∈ ∣B∣ to {t ∶ s ∣ t is a Σ′-ground term of sort s} and,
– morphisms in B to the identify on {t ∶ s ∣ t is a Σ′-ground term of sort s};

• for every f ∶ s1 × . . . × sn → s ∈ F , f∅ ∶ ∅s1 × . . . × ∅sn ⇒ ∅s is the
natural transformation which for every b ∈ ∣B∣, we have the mapping f∅b ∶
∅s1(b) × . . . × ∅sn(b)→ ∅s(b); (t1, . . . , tn)↦ f(t1, . . . , tn);

• r∅ ∶ Bop → Set is the presheaf such for every b ∈ ∣B∣, r∅(b) is the set

{(abs1 , . . . , a
b
sn)}∪{(t1, . . . , tn) ∣ ∀j,1 ≤ j ≤ n, tj ∶ Σ-ground term, [[M]][](tj)b(1) = abj}

if G(b) ≠ ∅, and r∅(b) = ∅ otherwise (with [] being the empty context);

• for all r′ ≠ r ∈ R, r′∅ = b↦ ∅.

We defineM[x⃗].r(t⃗) as the Σ-model obtained from ∅ by forgetting the inter-

pretation of constants absi .
First, we show thatM[x⃗].r(t⃗) is finitely presentable. Consider a morphism µ ∶

M[x⃗].r(t⃗) → N where the (νi)i∈I is a colimit of a directed diagram (fi,j)(i<j)∈(I,≤)
of models in Mod:

Ni Nj

M[x⃗].r(t⃗) N

fi,j

νjνi

µ

We consider the presheaf H ∶ Bop → Set; b ↦ µb(r∅(b)) and the associated sub-
object ι ∶ H ⇒ Ns1 × . . . × Nsn . By construction, we have that N ⊧ι [x⃗].r(t⃗),
and then for at least one i ∈ I we have that Ni ⊧δ [x⃗].r(t⃗) where δ ∶ K ⇒
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Nis1 × . . . ×Nisn is the subobject such that for every b ∈ ∣B∣, K(b) = ν−1ib (H(b)).
This gives the desired model morphismM[x⃗].r(t⃗) → Ni.

Subcondition 1 of the finiteness condition. Let us consider a morphism µ ∶
N →M and define the morphism ν ∶M[x⃗].r(t⃗) → N as the mapping (νs)b ∶ t ↦
[[N ]][x⃗](t), for every s ∈ S and for every b ∈ ∣B∣. The mapping is constructed

with the convention that if s ∈ {s1, . . . , sn} and t is absi , then [[N ]][x⃗](t) is chosen
in µ−1b (abi). Then, the desired equivalence holds by construction.

Subcondition 2 of the finiteness condition. Let us consider a morphism
µ ∶ M → N and define the presheaf G′ ∶ Bop → Set which for every b ∈ ∣B∣
associates {(µ(ab1), . . . , µ(abn))} if G(b) ≠ ∅, and ∅ otherwise. By construction,
G ⊆ ∣µ∣∗[x⃗](G′). First, we suppose that N ⊧G′ [x⃗].r(t⃗). We define the mor-

phism µbc ∶M[x⃗].r(t⃗) → N as the mapping (µbcs)b ∶ t ↦ [[N ]][x⃗](t), for every
s ∈ S and for every b ∈ ∣B∣. The mapping is constructed with the convention
that if s ∈ {s1, . . . , sn} and t is absi , then [[N ]][x⃗](t) = µb(abi). The definition

yields [[Mbc]]([x⃗]).r(t⃗)) ⊆ ∣µ ○µbc∣∗[x⃗](G′), i.e., the first direction of the subcon-
dition 2. Secondly, we suppose that there exists a morphism µbc ∶ Mbc → N
such that [[Mbc]]([x⃗]).r(t⃗) ⊆ ∣µ ○ µbc∣∗[x⃗](G′). By definition of the morphism,

this means that G′ ⊆ [[N ]]([x⃗]).r(t⃗), and then N ⊧G′ [x⃗].r(t⃗).
In HOL, the construction for atomic formulas of the form t ∈A t′ is identical.

This construction could have also been extended to any semantical system for
FOL/HOL over a locally finitely presentable topos.

Example 4.13 (Finiteness condition for ML over presheaves). Here, we con-
sider the semantical system of Section 3.1.4 over a functor F ∶ C → C and a
category of presheaves B̂. Let ((X,α), ν) be a F -model (with ν being a mapping
PV → Sub(X) as in Example 3.16) and let p ∈ PV be a propositional vari-
able. Let G ∶ Bop → Set be a sup-generator in lX . We consider the F -model
Mp = ((G,αG), νG) where:

• αGb
∶ G(b)→ F (G)(b);x↦ αb(x)

• νG ∶ PV → Sub(X);p′ ↦ { G if p′ = p
(b↦ ∅) if p′ ≠ p

The two equivalences in the conditions of the finiteness definition are easy to
prove.

Example 4.14 (Finiteness condition in institutions). We consider the seman-
tical system SI(Σ) of Section 3.1.3 for a signature Σ ∈ ∣Sig∣ of an institu-
tion I satisfying all the expected hypotheses (i.e., existence of small products
in Mod(Σ), and the forgetful functor Mod(χ) for any quasi-representable sig-
nature morphism χ creates small products). Here, we consider that the basic
sentences are finitary, similar to [20]. This means that there exists a finitely
presentable Σ-modelMbc such that:

M ⊧Σ bc iff there exists µbc ∶Mbc →M
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LetM ∈ ∣Mod∣ be a model, bc ∈ Bcχ a finitary basic formula with χ ∶ Σ→ Σ′, and
M′ ∈ ∣Mod(Σ′)∣ such that Mod(χ)(M′) =M.17 In the following, we assume
that Mod(χ) preserves finitely presentable models. As bc is finitary, there exists
a finitely presentable modelM′

bc ∈ ∣Mod(Σ′)∣ such thatM′ ⊧Σ′ bc.
Let us setMbc =Mod(χ)(M′

bc).
Subcondition 1 of the finiteness condition. Let us consider a morphism µ ∶

N →M, and suppose that for every N ′ ∈ (µ, IdΣ′)−1({M′}), N ′ ⊧Σ′ bc. As bc
is basic (within the meaning of institutons [20]), there is a morphismM′

bc → N ′,
which yields a morphism µbc ∶Mbc → N . Then, it follows from the definition of
basic formulas in institutions (in the sense of Example 3.15) that:

[[Mbc]](χ.bc) = {M′′
bc ∈ ∣Mod(Σ′)∣ ∣M′′

bc ⊧Σ′ bc andMod(χ)(M′′
bc) =Mbc}

Hence,M′
bc → N ′ is the same unique extension of

µbc ∶Mod(χ)(M′
bc) =Mod(χ)(M′′

bc)→ N

which leads to M′
bc = M′′

bc. We obtain that [[Mbc]](χ.bc) = {M′
bc}. By the

same arguments, we can also show that ∣µ ○Mbc → N ∣∗χ({M′}) = {M′
bc}.

For the opposite implication, if we suppose that for every N ′ ∈ (µ, IdΣ′)−1({M′}),
we have a morphism M′

bc → N ′, then as bc is basic, we have that N ′ ⊧Σ′ bc,
and then N ⊧{M′} bc.

Subcondition 2 of the finiteness condition. Let us consider a morphism µ ∶
M → N . Let µ′ ∶M′ → N ′ be the unique χ-extension of µ, and set δ = {N ′}.
By construction, it holds that M′ ∈ (µ, IdΣ′)−1(δ). If N ′ ⊧Σ′ bc, then there is
a morphism µ′bc ∶M′

bc → N ′, and then a morphism Mbc → N . For the same
reason as previously, we have that [[Mbc]](χ.bc) = {M′

bc} = ∣µbc∣∗χ(δ).
Similarly, if we suppose that there is a morphism Mbc → N , then it yields a
morphismM′

bc → N ′. We can deduce that N ′ ⊧Σ′ bc and conclude that N ⊧δ bc.

4.2 Filterable quantifiers

We required a filtered semantical system to have the covering property, i.e., that
C is covered. This covering property ensures that we can properly interpret
disjunctive formulas. It naturally translates into a similar condition on the
quantifiers.

Definition 4.15 (Filterable quantifier). Let µ ∶M→M′ be a model morphism.
Let Qf be a n-ary quantifier where f ∶ σ → τ is a context morphism. Qf is
filterable when for every δ ∈ l∣M∣(τ) and ι1, . . . , ιn ∈ PropC(∣M∣(σ)), if δ ⪯∣M∣(τ)
QfM(ι1, . . . , ιn), then there exist δ1, . . . , δn ∈ l∣M∣(σ) such that for every j, 1 ≤
j ≤ n,

• δj ⪯∣M∣(σ) ιj, and

• δ = QfM(δ1, . . . , δn).
17Sup-generators for Prop(∣M∣(χ)) are singletons.
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Proposition 4.16. Let C be a sup-generated topos. FOL and HOL existential
quantifiers are filterable if generators are preserved by isomorphisms.

Proof. Let γ ∶ [x⃗]→ [y⃗] be a morphism in Ctx, δy ∈ l∣M∣([y⃗]) and ιx ∈ Sub(∣M∣([x⃗]))
such that δy ⪯∣M∣([y⃗]) ∃γM(ιx). For a variable vx ∶ ∣M∣([x⃗]), we consider

[vx] = {v ∶ ∣M∣([x⃗]) ∣ [[M]][x⃗](γ)(v) = [[M]][x⃗](γ)(vx)}

using the definition of [[M]][x⃗](γ) from Section 3.3. Now, we consider δx =
{[vx] ∣ vx ∈ ιx and [[M]][x⃗](γ)(vx) ∈ δy}. By construction, δx ⪯∣M∣([x⃗]) ιx, δy =
∃γM(δx), and δx is a generator. Indeed, it holds that for all vy ∶ ∣M∣([y⃗]), if vy ∈
δy, then there exists a unique [vx] ∈ δx such that for all v ∈ [vx], [[M]](γ)(v) = y.
The existence is given by the fact that δy ⪯∣M∣([y⃗]) ∃γM(ιx) and the uniqueness
by the construction of [vx]. Therefore δx ≃ δy, as an isomorphism of their
domain in C.

Proposition 4.17. Institution existential quantifiers are filterable.

Proof. Let (Mi)i∈I be a family of models. Let θ ∶ χ2 → χ1 be a context mor-
phism. Let us suppose that S ⊆ ∃θM(S′) with S = {M1} ⊆ ∣M∣(χ1) and
S′ ⊆ ∣M∣(χ2). Let us define the set T ⊆ ∣M∣(χ2) as follows:

T = {M2}

where M2 is any Σ2-model of S′ such that Mod(θ)(M2) =M1. By construc-
tion, we directly have that T ⊆ S′. Likewise, the fact that S = ∃θM(T ) is obvious
by hypothesis.

4.3 Filterable pullback functors

Definition 4.18 (Filterable pullback functors). f is said filterable when for
all δσ ∈ l∣M∣(σ) and all ι ∈ PropC(∣M∣(τ)), if δσ ⪯∣M∣(σ) ∣M∣(f)∗(ι), then there
exists δτ ∈ l∣M∣(τ) such that

• δτ ⪯∣M∣(τ) ι

• δσ = ∣M∣∗(f)(δτ)

Proposition 4.19. Let C be a sup-generated topos. FOL and HOL context
morphisms are filterable for any model morphism.

Proof. The proof is similar to the proofs of Propositions 4.16, replacing ∃γM
by ∣M∣(γ).
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4.4  Loś’s theorem for abstract categorical logics

For comparison, we recall the standard (set-theoretic) version of  Loś’s theorem.

Theorem 4.20 ( Loś’s Theorem [33]). Let (Mi)i∈I be an I-indexed family of
nonempty Σ-structures, and let F be an ultrafilter on I. Let ∏FM be the
ultraproduct of (Mi)i∈I with respect to F . Since each Mi is nonempty, the
ultraproduct ∏FM is the quotient of ∏i∈IMi by the equivalence relation iden-
tifying I-sequences that coincide on a set of indices belonging to F . Let (aki )i∈I
be I-sequences for k ∈ {1, . . . , n}, with [ak] denoting their equivalence classes.
Then for each Σ-formula φ,

∏
F

M ⊧ φ([a1], . . . [an]) iff {j ∈ I ∣Mj ⊧ φ(a1j , . . . anj )} ∈ F.

We now state and prove our main result: an extension of  Loś’s theorem
for abstract categorical logics. In our abstract framework, the right part of
the equivalence is essentially the same, i.e., the set of indices i such that the
formula holds in Mi is an element of the ultrafilter F . However, considering
the set of equivalence classes can no longer be achieved pointwise, leading to a
reformulation of the left part of the equivalence.

Theorem 4.21 (Abstract  Loś’s Theorem). Let L = (S,Q,Bc) be a logic such
that

• S = (C,Ctx,Mod, ∣ ∣) is a filtered semantical system, and

• for all ultrafilters F over a set I, and all families of models (Mi)i∈I , quan-
tifiers and pullback functors are filterable and distributing over morphisms
µJ and pK,J such that J ⊆K, for all K,J ∈ F .

Let F be an ultrafilter over a set I. Let (Mi)i∈I be a family of models. For
all formulas σ.φ ∈ FL, and all δI ∈ l∣∏IMi∣(σ), we have:

δI ⪯∣∏IMi∣(σ) ∣µI ∣∗σ([[∏
F

M]](σ.φ)) iff {i ∈ I ∣ δI ⪯∣∏IMi∣(σ) ∣pI,i∣∗σ([[Mi]](σ.φ))} ∈ F

Proof. The proof is done by structural induction on φ. We will not subscript
the order of the Heyting algebra by the object of the prop-category to simplify
the expressions; it can be deduced from the context.

• The case of ⊺ is obvious, and the case of � is a consequence of the fact that
∅ ∉ F , and generators cannot be the lowest bound of Heyting algebra.

• φ is bc ∈ Bcσ.

(⇒) Suppose that δI ⪯ ∣µI ∣∗σ([[∏FM]](σ.bc)). By the condition of Def-
inition 4.2, there exists δF ∈ l∣∏F M∣(σ) such that δI ⪯ ∣µI ∣∗σ(δF ) and
δF ⪯ [[∏FM]](σ.bc). Since ∏FM ⊧δF σ.bc, subcondition 1 of the finite-
ness condition (see Definition 4.10) with Id∏F M ensures that there exists
a finitely presentable model Mbc ∈ ∣Mod∣ and a morphism µbc ∶ Mbc →
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∏FM such that [[Mbc]](σ.bc) = ∣µbc∣∗σ(δF ). As Mbc is finitely pre-
sentable (see Definition 2.8), there exists a non-empty set J ∈ F and a
morphism µ ∶ Mbc → ∏JMj such that µbc = µJ ○ µ. Hence, we have
that [[Mbc]](σ.bc) = ∣µJ ○ µ∣∗σ(δF ). From the subcondition 1 (reverse
implication) of the finiteness condition (see Definition 4.10) with µJ , it
follows that ∣µJ ∣∗σ(δF ) ⪯ [[∏j∈JMj]](σ.bc). By the condition of Defini-
tion 3.12 on basic formulas, we obtain that, for all j in J , ∣µJ ∣∗σ(δF ) ⪯
∣pJ,j ∣∗σ([[Mj]](σ.bc)). Since ∣pI,J ∣∗σ is a morphism of Heything algebras,
for all j in J , ∣pI,J ∣∗σ ○ ∣µJ ∣∗σ(δF ) ⪯ ∣pI,j ∣∗σ([[Mj]](σ.bc)). Now, because
µI = µJ○pI,J , we have that ∣µI ∣∗σ = ∣pI,J ∣∗σ○∣µJ ∣∗σ and, therefore, δI ⪯ ∣pI,J ∣∗σ○
∣µJ ∣∗σ(δF ). Thus, for all for all j in J , δI ⪯ ∣pI,j ∣∗σ([[Mj]](σ.bc)). In partic-
ular, since F is a filter, the set {i ∈ I ∣ δI ⪯∣∏IMi∣(σ) ∣pI,i∣∗σ([[Mi]](σ.bc))}
containing J is in F .

(⇐) Suppose that J = {i ∈ I ∣ δI ⪯ ∣pI,i∣∗σ([[Mi]](σ.bc))} ∈ F . Then J
is not empty and for each j ∈ J , δI ⪯ ∣pI,j ∣∗σ([[Mj]](σ.bc)). By the con-
dition of Definition 4.2 (since C is sup-generated), for every j ∈ J , there
exists δj ∈ l∣Mj ∣(σ) such that δI ⪯ ∣pI,j ∣∗σ(δj) and δj ⪯ [[Mj]](σ.bc). By the
projection condition of Definition 4.10 on the J-indexed family (δj)j∈J ,
there exists ιJ ∈ PropC(∣∏JMj ∣(σ)) such that ↓ ιJ = ⋂j∈J ↓ ∣pJ,j ∣∗σ(δj).
From Definition 4.1, it follows that ιJ = ⋁ ↓ ιJ and then for all j in J ,
ιJ ⪯ ∣pJ,j ∣∗σ(δj) ⪯ ∣pJ,j ∣∗σ([[Mj]](σ.bc)). By the condition of interpretabil-
ity in Definition 3.12, we then have that ιJ ⪯ [[∏JMj]](σ.bc). Addition-
ally, for all j ∈ J , δI ⪯ ∣pI,j ∣∗σ(δj), meaning that δI ∈ {δ ∈ l∣∏IMi∣(σ) ∣
∀j ∈ J, δ ⪯ ∣pI,J ∣∗σ ○ ∣pJ,j ∣∗σ(δj)}. Since ∣pI,J ∣∗σ is a morphism of Hey-
thing algebras and ιJ = ⋁{δ ∈ l∣∏JMj ∣(σ) ∣ ∀j ∈ J, δ ⪯ ∣pJ,j ∣∗σ(δj)}, it
follows that δI ⪯ ∣pI,J ∣∗σ(ιJ) Therefore, by the condition of Definition 4.2,
there exists δJ ∈ l∣∏JMj ∣(σ) such that δI ⪯ ∣pI,J ∣∗σ(δJ) and δJ ⪯ ιJ . In
particular, ∏JMj ⊧δJ σ.bc. By the subcondition 1 of the finiteness condi-
tion (see Definition 4.10) with Id∏JMj , there exists a finitely presentable
model Mbc ∈ ∣Mod∣ and a morphism µbc ∶ Mbc → ∏JMj such that
[[Mbc]](σ.bc) = ∣µbc∣∗σ(δJ). Now, µJ is a morphism ∏JMj → ∏FM,
and the subcondition 2 of the finiteness condition yields a generator δF ∈
l∣∏F M∣(σ) such that δJ ⪯ ∣µJ ∣∗σ(δF ). The morphism µJ ○ µbc ∶ Mbc →
∏FM ensures that [[Mbc]](σ.bc) = ∣µbc∣∗σ(δJ) ⪯ ∣µJ ○ µbc∣∗σ(δF ), and
then ∏FM ⊧δF σ.bc. From δF ⪯ [[∏FM]](σ.bc), δJ ⪯ ∣µJ ∣∗σ(δF ), and
δI ⪯ ∣pI,J ∣∗σ(δJ), we conclude that δI ⪯ ∣µI ∣∗σ([[∏FM]](σ.bc)).

• The case of conjunctions is obvious.

• φ is ψ ∨ χ.

(⇒) Suppose that δI ⪯ ∣µI ∣∗σ([[∏FM]](σ.ψ∨χ)). By the covering property,

this means that there exists δψI , δ
χ
I ∈ l∣∏IMi∣(σ) such that δI = δψI ∨δ

χ
I , δψI ⪯

∣µI ∣∗σ([[∏FM]](σ.ψ)), and δI ⪯ ∣µI ∣∗σ([[∏FM]](σ.χ)). By the induction
hypothesis, we have that
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– J = {i ∈ I ∣ δψI ⪯ ∣pI,i∣∗σ([[Mi]](σ.ψ))} ∈ F
– K = {i ∈ I ∣ δχI ⪯ ∣pI,i∣∗σ([[Mi]](σ.χ))} ∈ F

Let us set L = J∪K. Then, we have for every l ∈ L that δI ⪯ ∣pI,l∣∗σ([[Ml]](σ.ψ∨
χ).

(⇐) Suppose that J = {i ∈ I ∣ δI ⪯ ∣pI,i∣∗σ([[Mi]](σ.ψ ∨ χ))} ∈ F . By the

projection condition, there exists δψJ , δ
χ
J ∈ PropC(∣∏JMj ∣(σ)) such that

↓ δψJ = ⋂j∈J ↓ ∣pJ,j ∣∗σ([[Mj]](σ.ψ)) and ↓ δχJ = ⋂j∈J ↓ ∣pJ,j ∣∗σ([[Mj]](σ.χ)),
from which we can deduce that δI ⪯ ∣pI,J ∣∗σ(δψJ ) ∨ ∣pI,J ∣∗σ(δ

χ
J ). By the cov-

ering property, there exists δψI , δ
χ
I ∈ l∏IMi∣(σ) such that δψI ⪯ ∣pI,J ∣∗σ(δ

ψ
J ),

δχI ⪯ ∣pI,J ∣∗σ(δ
χ
J ), and δI = δχI ∨ δ

ψ
I . By construction, for all j in J , δχI ⪯

∣pI,j ∣∗σ([[M]]j(σ.χ) and δψI ⪯ ∣pI,j ∣∗σ([[M]]j(σ.ψ), meaning that the sets {i ∈
I ∣ δψI ⪯ ∣pI,i∣∗σ([[Mi]](σ.ψ))} and {i ∈ I ∣ δχI ⪯ ∣pI,i∣∗σ([[Mi]](σ.χ))} are in

F . By the induction hypothesis, we then have that δψI ⪯ ∣µI ∣∗σ([[∏FM]](σ.ψ))
and δχI ⪯ ∣µI ∣∗σ([[∏FM]](σ.χ)), and then δI ⪯ ∣µI ∣∗σ([[∏FM]](σ.ψ ∨ χ)).

• φ is ψ⇒ χ.

(⇒) Suppose that {i ∈ I ∣ δI ⪯ ∣pI,i∣∗σ([[Mi]](σ.ψ ⇒ χ))} ∉ F . This means
that the set J = {i ∈ I ∣ δI ⪯ ∣pI,i∣∗σ(σ.ψ)), δI /⪯ ∣pI,i∣∗σ(σ.χ))} ∈ F . By
the induction hypothesis, we then have that δI ⪯ ∣µI ∣∗σ([[∏FM]](σ.ψ)).
By contradiction, let us suppose that δI ⪯ ∣µI ∣∗σ([[∏FM]](σ.χ)). By
the induction hypothesis, this means that the set K = {i ∈ I ∣ δI ⪯
∣pI,i∣∗σ(σ.χ))} ∈ F . Let us set L = J ∩K. Then, we have that L ⊆ {i ∈
I ∣ δI ⪯ ∣pI,i∣∗σ([[Mi]](σ.ψ ⇒ χ))} which is a contradiction, and then
δI /⪯ ∣µI ∣∗σ([[∏FM]](σ.ψ⇒ χ)).

(⇐) Suppose that δI /⪯ ∣µI ∣∗σ([[∏FM]](σ.ψ⇒ χ)). Then, δI /⪯ ∣µI ∣∗σ([[∏FM]](σ.χ))
and, by the induction hypothesis, it follows that {i ∈ I ∣ δI ⪯ ∣pI,i∣∗σ([[Mi]](σ.χ))} ∉
F . Thus, we obtain that {i ∈ I ∣ δI ⪯ ∣pI,i∣∗σ([[Mi]](σ.ψ⇒ χ))} ∉ F .

• φ is Qf(φ1, . . . , φn).

(⇒) Suppose that δI ⪯ ∣µI ∣∗τ([[∏FM]](τ.Qf(φ1, . . . , φn)). As Qf is dis-
tributing over µI , we have that

δI ⪯ Qf∏IMi(∣µI ∣∗σ([[∏
F

M]](σ.φ1)), . . . , ∣µI ∣∗σ([[∏
F

M]](φn)))

Because Qf is directly filterable, there exists generators δ1I , . . . , δ
n
I in

l∣∏IMi∣(σ) such that δI = Qf∏IMi(δ1I , . . . , δnI ) and for every j, 1 ≤ j ≤ n,

δjI ⪯ ∣µI ∣∗σ([[∏FM]](σ.φj)). By the induction hypothesis, for every j,

1 ≤ j ≤ n, the set Jj = {i ∈ I ∣ δjI ⪯ ∣pI,i∣∗σ([[Mi]](σ.φj))} is in F . Let L
be ⋂j Jj . Then L is in F and, for every l ∈ L, for every j, 1 ≤ j ≤ n, it

holds that δjI ⪯ ∣pI,l∣∗σ([[Ml]](σ.φj)). We can conclude that for all l ∈ L,
δI ⪯ ∣pI,l∣∗τ([[Ml]](τ.Qf(φ1, . . . , φn)).
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(⇐) Suppose that J = {i ∈ I ∣ δI ⪯ ∣pI,i∣∗σ([[Mi]](τ.Qf(φ1, . . . , φn)))} ∈
F . By the projection condition, for every k, 1 ≤ i ≤ k, for the family
(∣pI,i∣∗σ([[Mi]](σ.φk)))j∈J , there exists δkJ ∈ PropC(∣∏JMj ∣(σ)) such that

↓ δkJ = ⋂j∈J ↓ ∣pJ,j ∣∗σ([[Mj]](σ.φk)), and then δkJ ⪯ ∣pJ,j ∣∗σ([[Mj]](σ.φk)),
from which we have that ∣pI,J ∣∗σ(δkJ) ⪯ ∣pI,j ∣∗σ([[Mj]](σ.φk)). As Qf is
filterable, there exists a generator δkI for every k, 1 ≤ k ≤ n, such that δkI ⪯
∣pI,J ∣∗σ(δkJ) and δI = Qf∏IMi(δ1I , . . . , δnI ). By the induction hypothesis, we
have for every k, 1 ≤ k ≤ n, that δkI ⪯ ∣µI ∣∗σ([[∏FM]](σ.φk)). As quanti-
fiers are distributing over µI , we can conclude that δI ⪯ ∣µI ∣∗([[∏FM]](τ.Qf(φ1, . . . , φn))).

• φ is f(ψ). The proof is similar to the proof for quantifiers.

4.5 Dual quantifiers

FOL universal quantifiers are not filterable following Definition 4.15. For in-

stance, for FOL over Set, given a generator defined by a singleton {[(a[y⃗]i )i∈I]≡F } ∈
l∣∏F M∣([y⃗]) such that18 ∏FM ⊧[(a[y⃗]i )i∈I]

∀π.φ with π ∶ [x⃗] → [y⃗] a projection

morphism in Ctx (i.e., with x⃗ = y⃗.z⃗ for some z⃗), we can define δ = {[(a[y⃗]i , a
[z⃗]
i )i∈I] ∣

(a[z⃗]i )i∈I ∈ ∣∏IMi∣([z⃗])}. This satisfies that δ ⪯∣∏F M∣([x⃗]) [[∏FM]]([x⃗].φ) and

(a[y⃗]i )i∈I = ∀π(δ). The problem is that δ is not a generator, i.e., δ ∉ l∣∏F M∣([x⃗]).
Hence, to apply the induction hypothesis, we have to consider all the generators
δ′ ∈ l∣∏F M∣([x⃗]) such that δ′ ⪯ δ. By applying the induction hypothesis on δ′,
we obtain a set Kδ′ ∈ F . The problem is that the set {δ′ ∈ l∣∏F M∣ ∣ δ

′ ⪯ δ}
is very likely to be infinite, and filters are not closed under infinite intersec-
tions. Now, we know that [y⃗].∃π¬φ⇒ ¬∀πφ. Let us extend this implication to
non-filterable quantifiers.

In the following, we will say that a quantifier is globally filterable when it
is filterable following Definition 4.15, but the subobjects δi are not necessarily
generators.

Definition 4.22 (Dual quantifier). Let Qf be a globally filterable quantifier
with f ∶ σ → τ ∈ Ctx. Qf is said dual if there exists a quantifier Qf satisfy-
ing the duality condition: for every model M, and every ι ∈ l∣M∣(τ), ι /⪯∣M∣(τ)
[[M]](τ.Qf(φ1, . . . , φn)) iff ι ⪯∣M∣(τ) [[M]](τ.Qf(φ1, . . . , φn)) where there ex-
ists a subset S ⊆ {1, . . . , n} such that for every j, 1 ≤ j ≤ n, if j ∈ S then
φj = ¬φj, else φj = φj.

We can extend  Loś’s theorem to dual quantifiers. Indeed, we have:

• (⇒) Let us suppose that {i ∈ I ∣ δI ⪯ ∣pI,i∣∗τ([[Mi]](τ.Qf(φ1, . . . , φn))} ∉
F . As F is an ultrafilter, this means that

{i ∈ I ∣ δI /⪯ ∣pI,i∣∗τ([[Mi]](τ.Qf(φ1, . . . , φn))} ∈ F
18
[(ai)i∈I]≡F is the equivalence class of all sequences of values (bi)i∈I equivalent to (ai)i∈I

for the equivalence relation ≃F associated to the filter F on I.
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By duality, this means that there is S ⊆ {1, . . . , n} such that

δI ⪯ ∣pI,i∣∗τ([[Mi]](τ.Qf(φ1, . . . , φn)))

By the same proof steps as for filterable quantifiers, we have that δI ⪯
∣µI ∣∗τ([[∏FM]](τ.Qf(φ1, . . . , φn))), and then δI /⪯ ∣µI ∣∗τ([[∏FM]](τ.Qf(φ1, . . . , φn))).

• (⇐) Let us suppose that δI /⪯ ∣µI ∣∗τ([[∏FM]](τ.Qf(φ1, . . . , φn))). By
duality, there is S ⊆ {1, . . . , n} such that

δI ⪯ ∣µI ∣∗τ([[∏
F

M]](τ.Qf(φ1, . . . , φn)))

Therefore, we have that

{i ∈ I ∣ δI /⪯ ∣pI,i∣∗τ([[Mi]](τ.Qf(φ1, . . . , φn))} ∈ F

and then

{i ∈ I ∣ δI ⪯ ∣pI,i∣∗τ([[Mi]](τ.Qf(φ1, . . . , φn))} ∉ F

4.6 Compactness theorem

In standard model theory, a direct application of  Loś’s result is the compactness
theorem. However, this application only holds for a subset of formulas, namely,
sentences. In FOL, sentences are formulas without free variables, i.e., formulas
over the empty context []. For FOL in an elementary topos C (see Section 3.1.1),
for a given Σ-model M, Sub(∣M∣([])) is the Heyting algebra with only two
elements the upper and lower bounds (where [] is the empty context ensuring
that ∣M∣([]) is the terminal object of C). This characterization naturally leads
to the following definition of sentences.

Definition 4.23 (Sentence). A formula σ.φ ∈ FL is a sentence if for all models
M ∈ ∣Mod∣, [[M]](σ.φ) is either �∣M∣(σ) or ⊺∣M∣(σ).

Proposition 4.24. If σ.φ ∈ FL is a sentence, then:

∏
F

M ⊧ σ.φ iff {i ∈ I ∣Mi ⊧ σ.φ} ∈ F.

Proof. Let us suppose that ∏FM ⊧ σ.φ. This means that for all generators
δI in l∣∏IMi∣(σ), δI ⪯ ∣µI ∣∗σ(∏FM ⊧ι σ.φ)). By Theorem 4.21, this means that
J = {i ∈ I ∣ δI ⪯ ∣pI,i∣∗σ([[Mi]](σ.φ))} ∈ F , from which we can conclude for every
j ∈ J that Mj ⊧ σ.φ.

Let us suppose that J = {i ∈ I ∣Mi ⊧ σ.φ} ∈ F . This means that for every
j ∈ J , and every δI ∈ l∣∏IMi∣(σ) that δI ⪯ ∣pI,j ∣∗σ([[Mj]](σ.φ)). By Theorem 4.21,
we have that δI ⪯ ∣µI ∣∗σ([[∏FM]](σ.φ)), and then ∏FM ⊧ σ.φ.

The compactness result follows via this definition and the classical proof
using ultraproducts and  Loś’s theorem.
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Theorem 4.25 (Compactness). A set of sentences T has a model if and only
if every finite subset of T has a model.

Proof. (⇒) LetM be a model of T . SinceM ⊧ T , thenM satisfies every finite
subset of T .

(⇐) Suppose that every finite subset of T admits a model. Let I denote the
collection of all finite subsets of T . For each i ∈ I, let Mi be a model such that
Mi ⊧ i. Define i∗ = {j ∈ I ∣ i ⊆ j} for every i ∈ I, and I∗ = {i∗ ∣ i ∈ I}. It is
straightforward to show that I∗ has the finite intersection property. By Zorn’s
lemma, there exists an ultrafilter F such that I∗ ⊆ F . Consider the filtered
product ∏FM of the family of models (Mi)i∈I . Choose a sentence σ.φ ∈ T .
Since {σ.φ} ∈ I, it follows that Mi ⊧ σ.φ for all i ∈ I with σ.φ ∈ i. Hence, we
obtain that

{σ.φ}∗ ⊆ {j ∈ I ∣Mj ⊧ σ.φ}
As {σ.φ}∗ ∈ F , we have that J = {j ∈ I ∣Mj ⊧ σ.φ} ∈ F . Since σ.φ is a sentence,
according to Proposition 4.24, we deduce that ∏FM ⊧ σ.φ.

5 Conclusion

We studied the mathematical construction of ultraproducts within the frame-
work of an abstraction of categorical logic. Ultraproducts have proven their
significance in universal algebra and mathematical logic, particularly in model
theory. We explored how to adapt  Loś’s theorem, also known as the fundamen-
tal theorem of ultraproducts, which was initially established for first-order logic
with set models, to our abstract categorical logic, thereby making it independent
of any specific quantifier.

Due to the intrinsic abstract nature of our logical formalism, we have imposed
some technical yet natural conditions on our logical system. These conditions
are the following:

• First, the underlying Heyting algebras of the prop-categories should be
sup-generated in a finite way (first and last condition of Definition 4.10).
This first condition can be related to the construction of locally finitely
presented categories and solve the difficulty of filters only being closed
under finite intersections.

• Secondly, the prop-categories should be covered to preserve disjunctive
formulas along model ultraproducts.

• Obviously, the category of models should have filtered products.

• Finally, quantifiers should be filterable (which can be interpreted as the
inverse implication of isotonicity) to be able to consider the result inde-
pendently of the quantifiers. This condition has been extended to pullback
functors to deal with formulas of the form f(φ).
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While explaining the motivation behind each condition, we have also shown
their relevance through a series of examples from various logical formalisms.
As a direct application, we have also derived an abstract compactness result,
leveraging a semantical definition of sentences.

For future work, we plan to study the generalization of other model theoret-
ical results within the framework of abstract categorical results. Additionally,
we defined a complete formal system akin to sequent calculus in [5] for which we
plan to explore its proof-theoretic aspects, for instance, to obtain equivalents of
theorems such as Barr’s theorem [11] which states that within the framework
of geometric logic, if a geometric sentence is deducible from a geometric theory
in classical logic, with the axiom of choice, then it is also deducible from it
intuitionistically [47]. To get around the fact that the proof of Barr’s theorem
is non-constructive, we could also see how to adapt the different methods de-
veloped within FOL and HOL, which typically consist of transforming classical
proofs into intuitionistic ones by adding double negations in suitable places.
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in arbitrary logics based on satisfaction systems, cutting and retraction”.
In: International Journal of Approximate Reasoning 102 (2018), pp. 1–20.

[4] M. Aiguier and I. Bloch. “Logical Dual Concepts based on Mathematical
Morphology in Stratified Institutions: Applications to Spatial Reasoning”.
In: Journal of Applied Non-Classical Logics 29.4 (2019), pp. 392–429.

48

https://doi.org/10.1017/CBO9780511600579.004


[5] M. Aiguier and I. Bloch. “Abstract Categorical Logic”. In: Logica Univer-
salis 17 (2023).

[6] M. Aiguier and R. Diaconescu. “Stratified institutions and elementary
homomorphisms”. In: Information Processing Letters 103.5-13 (2007).
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A Logic and internal language in topos

An interesting feature of toposes is that we can reason on objects and morphisms
of a topos “as if they were sets and functions” [27, 31]. The reason is that we
can do logic in toposes. Indeed, we can define logical connectives in toposes.
Here, we recall the definition of propositional connectives {∧,∨,¬,⇒} and of
constants true, false.

• By definition of subobject classifiers, we have a monomorphism true ∶ 1↣
Ω, and then we also have a morphism (true, true) ∶ 1↣ Ω×Ω which is also
a monomorphism. So, by the subobject classifier definition, ∧ ∶ Ω×Ω→ Ω
is its characteristic morphism.

• ∨ ∶ Ω×Ω→ Ω classifies the image of the morphism [(true, IdΩ), (IdΩ, true)] ∶
Ω +Ω→ Ω ×Ω, where + denotes the co-product.

• the morphism ⇒∶ Ω × Ω → Ω is the characteristic morphism of ⪯↣ Ω × Ω
where ⪯ is the equalizer of ∧ and the projection on the first argument
p1 ∶ Ω ×Ω→ Ω.
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• Finally, the unique morphism ∅ ↣ 1 is a monomorphism. Let us denote
by false ∶ 1 → Ω its characteristic morphism. Then, ¬ ∶ Ω → Ω is defined
as the composite ⇒ ○ (IdΩ × false).

Consequently the power object Ω = P 1 is an internal Heyting algebra19 and
then the logic is intuitionistic. Actually, through the bijection Sub(X × Y ) ≃
HomC(X,PY ), for every object X in a topos C, PX is an internal Heyting
algebra. We can then define a partial order ⪯X as an object of C such that ⪯X
is the equalizer of ∧ ∶ PX ×PX → PX and p1 ∶ PX ×PX → PX where p1 is the
projection on the first argument of couples.

For every topos C, we can define an internal language LC composed of types
defined by the objects of C, from which we can define terms as follows:

• true ∶X;

• x ∶X where x is a variable and X is a type;

• f(t) ∶ Y where f ∶X → Y is a morphism of C and t ∶X is a term;

• < t1, . . . , tn >∶X1 × . . . ×Xn if for every i, 1 ≤ i ≤ n, ti ∶Xi is a term;

• (t)i ∶Xi if t ∶X1 × . . . ×Xn is a term;

• {x ∶X ∣ α} ∶ PX if α ∶ Ω is a term;

• σ = τ ∶ Ω if σ and τ are terms of the same type;

• σ ∈X τ ∶ Ω if σ ∶X and τ ∶ PX are terms;

• σ ⪯X τ ∶ Ω if σ, τ ∶ PX are terms;

• φ @ ψ ∶ Ω if φ ∶ Ω and ψ ∶ Ω are terms with @ ∈ {∧,∨,⇒};

• ¬φ ∶ Ω if φ ∶ Ω is a term;

• Qx.φ ∶ Ω if x ∶X and φ ∶ Ω are terms and Q ∈ {∀,∃}.

Terms of type Ω are called formulas.
Semantics of terms will depend on their type. Hence, semantics of terms

of type X ≠ Ω will be defined by morphisms, and terms of type Ω will be
interpreted as subobjects.

19An internal Heyting algebra in a topos is an internal lattice L, that is equipped with
two morphisms ∧,∨ ∶ L × L → L such that the diagrams expressing the standard laws for
∧ and ∨ commute, and with top and bottom which are morphisms �,⊺ ∶ 1 → L such that
∧○(IdL×⊺) = IdL and ∨○(IdL×�) = IdL, together with an additional morphism⇒∶ L×L→ L
which satisfies the diagrams given by the identities:

• x⇒ x = ⊺

• x ∧ (x⇒ y) = x ∧ y and y ∧ (x⇒ y) = y

• x⇒ (y ∧ z) = (x⇒ y) ∧ (x⇒ z)
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We say that a sequence of variables x⃗ = (x1, . . . , xn) is a suitable context for
a term or a formula if each free variable of this term or this formula occurs in
x⃗. Let us denote by Xx⃗ the product X1 × . . . ×Xn when x⃗ = (x1, . . . , xn) and
each xi ∶ Xi. Then the semantics of t ∶ X in the context x⃗, denoted by [[t]]x⃗,
is a morphism from Xx⃗ to X. It is defined recursively on the structure of t as
follows:

• [[xi ∶ Xi]]x⃗ = pi where pi ∶ Xx⃗ → Xi is the obvious projection on the ith

argument;

• [[f(t)]]x⃗ = f ○ [[t]]x⃗;

• [[< t1, . . . , tn >]]x⃗ = ([[t1]]x⃗, . . . , [[tn]]x⃗);

• [[(t)i]]x⃗ = pi ○ [[t]]x⃗ where pi is the projection on the ith argument of the
tuple;

• [[{x ∶X ∣ α}]]x⃗ is the unique morphism r ∶Xx⃗ → PX making the diagram
below a pullback square

R ∈X

X ×Xx⃗ X × PX

[[α]](x,x⃗)

IdX×r

The semantics of a formula φ ∶ Ω in the context x⃗, denoted by [[φ]]x⃗, is
interpreted as a subobject of Sub(Xx⃗) and is recursively defined as follows:

• [[true]]x⃗ = IdXx⃗ ;

• when φ = σ = τ , then [[φ]]x⃗ equalizes [[σ]]x⃗ and [[τ]]x⃗;

• when φ = σ ∈X τ , then [[φ]]x⃗ ∶ R ↣ Xx⃗ where R is the pullback of the
diagram

R ∈X

Xx⃗ X × PX

[[φ]]x⃗

[[σ]]x⃗×[[τ]]x⃗

• if φ = σ ⪯X τ , then [[φ]]x⃗ ∶ R ↣Xx⃗ where R is the pullback of the diagram

R ⪯X

Xx⃗ PX × PX

[[φ]]x⃗

[[σ]]x⃗×[[τ]]x⃗

• if φ = φ1 @ φ2, then [[φ]]x⃗ = [[φ1]]x⃗ @ [[φ2]]xt where @ is the operator in
{∧,∨,⇒} in the Heyting algebra Sub(Xx⃗);
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• [[¬φ]]x⃗ = ¬Xx⃗([[φ]]x⃗) where ¬Xx⃗([[φ]]x⃗) is the pseudo-complement of
[[φ]]x⃗ in Sub(Xx⃗);

• [[∀x.φ]]x⃗ = ∀p([[φ]](x⃗,x)) where p ∶Xx⃗ ×X →Xx⃗ is the projection, and ∀p
is the right adjoint to the pullback functor p∗ ∶ Sub(Xx⃗) → Sub(Xx⃗ ×X)
when the Heyting algebras Sub(Xx⃗) and Sub(Xx⃗ × X) are regarded as
categories.

• [[∃x.φ]]x⃗ is the image of p ○ [[φ]](x⃗,x) where p is the same projection as
above.

Equivalently, semantics of any formula φ ∶ Ω could be defined by a morphism
from Xx⃗ to Ω, by interpreting φ as the classifying morphism of [[φ]]x⃗.

We write C ⊧x⃗ φ if [[φ]]x⃗ = IdXx⃗ (IdXx⃗ is the top element in Sub(Xx⃗)).
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