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Abstract

 Loś’s theorem, also known as the fundamental result of ultraproducts,
states that the ultraproduct over a family of structures for the same lan-
guage satisfies a first-order formula if and only if the set of indices for
which the structures satisfy the formula belongs to the underlying ultra-
filter. The associated notion of satisfaction is the Tarskian one via the
elements of the set-theoretic structure that allow interpreting the formula.
In the context of topoi, Kripke-Joyal semantics extends Tarski’s notion to
categorical logic. In this article, we propose to extend  Loś’s theorem to
first-order structures on elementary topoi for Kripke-Joyal semantics. We
also show that the extension entails its set-theoretic version. As is cus-
tomary, we use the categorical version of  Loś’s theorem to obtain a proof
of the compactness theorem for Kripke-Joyal semantics.
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1 Introduction

 Loś’s theorem is a result in model theory, also known as the fundamental result of
ultraproducts. In its standard form,  Loś’s theorem states that the ultraproduct
on a family of structures for the same language satisfies a first-order formula
if and only if the set of indices for which the structures satisfy the formula
belongs to the underlying ultrafilter. In this article, we extend  Loś’s theorem
to categorical logic, more precisely to first-order structures on elementary topoi
for Kripke-Joyal semantics. We also show that the extension entails its set-
theoretic version. Finally, we use the categorical version of  Loś’s theorem to
obtain a categorical version of the compactness theorem.

In its set-based instance,  Loś’s Theorem can be formulated as follows:

Theorem 1.1 ( Loś’s Theorem [11]). Let (Mi)i∈I be an I-indexed family of
nonempty Σ-structures, and let F be an ultrafilter on I. Let ∏FM be the
ultraproduct of (Mi)i∈I with respect to F . Since each Mi is nonempty, the
ultraproduct ∏FM is the quotient of ∏i∈IMi by the equivalence relation ∼F
identifying I-sequences that coincide on a set of indices1 belonging to F . Let
(aki )i∈I be I-sequences for k ∈ {1, . . . , n}, with [ak]∼F denoting their equivalence
classes. Then for each Σ-formula φ,

∏

F

M ⊧ φ([a1]∼F , . . . [a
n
]∼F ) iff {j ∈ I ∣Mj ⊧ φ(a

1
j , . . . a

n
j )} ∈ F.

For instance, consider a family of structures (Mi)i∈N where each Mi is a
model of Peano’s arithmetic. If F is a non-principal ultrafilter on N, the ultra-
product ∏FM is a model of Peano’s arithmetic that provides a non-standard
model of arithmetic containing “infinite” natural numbers. More applications
to model theory, algebra, and non-standard analysis are discussed in the surveys
by J. Keisler’s [10] and S. Galbor [17]. In logic, and more precisely in model
theory, the standard corollary of  Loś’s theorem is the compactness theorem,
stating that a set of first-order sentences admits a model if and only if every
subset of it does.

1That is (ai)I ∼F (bi)i∈I if and only if {i ∈ I ∣ ai = bi} ∈ F
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The theorem considers a first-order signature Σ = (S,F,R), i.e., consisting
of a set of sorts, function symbols, and relation symbols, to be used to build
Σ-structures. In set theory, these Σ-structures consist of sets associated with
functions and relations characterized by the signature. Categorical logic [8, 14]
uses tools from category theory to extend the set-theoretic semantics of first-
order logic (FOL) to categories and, more specifically, to a family of categories
known as elementary topoi or to specific fragments thereof (Cartesian, regular,
coherent, Grothendieck’s). A first difficulty occurs: in this framework, we can
no longer talk about the elements of Σ-structure carriers as they are not sets
anymore. In particular, I-sequences do not exist. Then, how can the ultra-
product ∏FM be defined categorically? In the category of sets and functions,
ultraproducts correspond to filtered products where the underlying filter is an
ultrafilter. Thus, filtered products correspond to particular instances of the cat-
egorical concept of reduced products [2, 6, 7, 16], i.e., to colimits of directed
diagrams of projections between the (direct) products determined by the corre-
sponding filter.

The statement made in the theorem relies on the notion of satisfaction of a
formula by a Σ-structure, which unveils a second difficulty: we need a categorical
counterpart to this notion of satisfaction. In the set-theoretic framework, the
usual Tarskian notion of satisfaction for a formula φ over Σ in a Σ-structureM
is given by the subset of the elements of the structure in which one can interpret
the formula. More precisely, if φ has free variables among the sequence of typed
variables x⃗ = (x1 ∶ s1, . . . , xn ∶ sn), the interpretation of φ is a subset S of
Mx⃗ = Ms1 × . . . ×Msn of values a⃗ = (ai)i∈{1,...,n}, with ai ∈ Msi , satisfying φ.
The satisfaction of φ at the element a⃗ is written M ⊧a⃗ φ. Rephrasing the
construction categorically in the category Set of sets and functions, the subset
S is obtained via the following pullback:

S 1

Mx⃗ {0,1}

true

χS

where 1 = {∗} is the terminal object in the category Set and χS is the char-
acteristic function associated with the inclusion S ⊆ Mx⃗. The value a⃗ then
corresponds to a morphism 1 → Mx⃗, meaning that the satisfaction of φ at a⃗,
i.e., M ⊧a⃗ φ, is given by the commutativity of the following diagram:

S

1 Mx⃗.
a⃗

Kripke-Joyal semantics generalizes this pointwise interpretation to the categor-
ical framework by replacing the morphisms a⃗ ∶ 1 → Mx⃗ with the generalized
elements of Mx⃗, that is all morphisms U → Mx⃗ (see [14, Sect. VI.6] or [9,
Chap. 5, Sect. 4]). This interpretation leverages the fact that an object is de-
termined (up to isomorphism) by its collection of generalized objects, as stated
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by Yoneda’s lemma. Kripke-Joyal semantics also admits rules, sometimes called
semantic rules, explaining how connectives and quantifiers are to be interpreted
using the notion of generalized elements. These rules correspond to Def. 3.6.
In this paper, they will be the key ingredient to proving  Loś’s Theorem for
Kripke-Joyal semantics.

Finally, the set-theoretic definition of filtered products exploits that filters
are closed under finite intersections (see the definition of a filter in Section 2).
A third, more technical, difficulty then arises: we need some properties on the
domains U of the generalized elements U →Mx⃗ to perform the intersection as
we no longer define filtered products pointwise. A solution is to require that
the domains U are finitely presentable objects and satisfy the ascending chain
conditions, which entails that they have finitely many subobjects.

The ultraproducts method has already been studied abstractly in (restric-
tions of) FOL [2, 6, 7]. To our knowledge, this method has not been explored
within the framework of categorical logic that interprets formulae according
to Kripke-Joyal semantics. Additionally, Makkai showed in [12] that any small
pretopos C can be reconstructed from its category of models, Mod(C), using ad-
ditional structure provided by the ultraproduct construction (ultracategories).
From this construction, the classical set-theoretic version of  Loś’s theorem can
be recovered by replacing the pretopos with the syntactic category of the ap-
propriate first-order theory.

The paper is organized as follows. We introduce the notations used in the
paper in Sect. 2 and recall some theoretical backgrounds about topoi and filters.
In Sect. 3, we present Kripke-Joyal semantics, i.e., a categorical semantics for
FOL, while Sect. 4 is dedicated to the main result of the paper, namely  Loś’s
theorem, in the context of Kripke-Joyal semantics and its application to the
compactness theorem.

2 Preliminaries

We assume familiarity with the main notions from category theory, such as
categories, functors, natural transformations, limits, colimits, and Cartesian
closedness. We refer the interested reader to standard textbooks such as [4, 13].

2.1 Notations

Throughout the paper, we write C and D for generic categories, X and Y for
objects of categories, Ob(C) for the collection of objects of a category C, f , g,
and h for morphisms, HomC(X,Y ) for the hom-set from X to Y in C, F,G,H ∶

C → D for functors from a category C into a category D, and α,β ∶ F ⇒ G for
natural transformations. Given a morphism f ∶X → Y , we write dom(f) = X
for the domain of f , cod(f) = Y for its codomain, and f ∶ X ↣ Y if f is
a monomorphism. For an object X ∈ Ob(C), we write idX for the identity
morphisms on X. We write ∅ and 1 for the initial and terminal objects, X × Y
for the product of X and Y and X + Y for their coproduct. Given a functor
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F ∶ C → D, F op ∶ Cop → Dop is the opposite functor of F . Given two functors F ∶

C → D and G ∶D → C, F ⊣ G means that F is left adjoint to G. Finally, when a
category C is Cartesian closed, XY denotes the exponential object of X and Y .

2.2 Subobjects and Heyting Algebras

Elementary topoi generalize the category of sets and functions, allowing a more
abstract solution for logical reasoning. While many approaches can be taken to
present and define topoi [8], we view them as a structure of intuitionistic logic
where the notion of truth value is deeply linked with that of subobjects. We
first recall the notion subobject before presenting topoi.

In a category C, the set of subobjects Sub(X) of an object X consists of the
equivalence classes on the collections on mono into X, such that f ∶A↣X and
g ∶B ↣ X are equivalent if and only if A and B are isomorphic. We write [f]
for the equivalence class of f . For instance, the subobjects in Set of a set X are
the subsets of X (up to isomorphism). Additionally, Sub(X) admits a partial
order ⪯X such that [f] ⪯X [g] if f factors through g, i.e., there is h ∶A↣ B such
that f = g ○ h.

If C is a finitely complete category such that the poset Sub(X) is a small
category, the mapping S ∶ X ↦ Sub(X) yields a contravariant functor Sub ∶

C
op
→ Pos, with Pos being the category of posets. In addition to mapping

objects X of C to Sub(X), Sub maps morphisms f ∶ X → Y to base change
functors f∗ ∶ Sub(Y ) → Sub(X). Given f ∶X → Y , the base change functor f∗

maps each [Y ′ ↣ Y ] to [X ′ ↣X], making the following diagram

X ′ Y ′

X Y
f

a pullback.
For logical purposes, we want more structure than just posets for Sub(X).

Typically, we want Sub(X) to be at least a Heyting algebra, i.e., a distributive
bounded lattice that admits an implication → such that for any A in Sub(X),
the following adjunction holds ( ∧ A) ⊣ (A → ). The largest and smallest
objects of (Sub(X),⪯X) are respectively [idX] and [∅↣X].

When there is no ambiguity on the codomain X, we may write Y instead of
[Y ↣X] for a subobject.

2.3 Elementary Topoi

Elemantary topoi are categories that allow equipping the poset Sub(X) with
such a structure of Heyting algebra. Topoi are finitely complete Cartesian closed
category with a subobject classifier [8, Chap. A2]. A subobject classifier is a
monomorphism true ∶ 1 ↣ Ω out of the terminal object 1, such that for every
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monomorphism m ∶ Y ↣ X, there exists a unique morphism χm ∶X → Ω such
that the following diagram is a pullback:

Y 1

X Ω.

!

truem

χm

The morphism χm is called the characteristic or classifying morphism of
m. Hence, Ω represents the contravariant functor Sub, i.e., for every X ∈ Ob(C),
Sub(X) ≃HomC(X,Ω), and the universal object is true ∶ 1→ Ω.

A topos also fulfills the following properties [3, 8]:

• It is finitely cocomplete.

• It has an initial object ∅ and a terminal object 1, which are the colimit and
limit of the empty diagram (since it is finitely complete and cocomplete).

• Epimorphisms and monomorphisms form a factorization system, i.e., ev-
ery morphism f can be uniquely factorized as mf ○ ef where ef is an
epimorphism and mf is a monomorphism. The codomain of ef is called

the image of f and written Im(f). Then (A
f
→ B) = (A

ef
→ Im(f)

mf

↣ B).

• Every object X in Ob(C) has a power object PX defined as the ex-
ponential ΩX . Power objects generalize the notion of powerset from the
category Set. As a topos is Cartesian closed, a power object satisfies the
following adjunction:

HomC(X × Y,Ω) ≃ HomC(X,PY ).

Topoi encompass Set, i.e., the category of sets, Grothendieck topoi, i.e.,
categories equivalent to the category of sheaves over a site [5], categories of
presheaves, i.e., the categories Ĉ of functors F ∶Cop → Set, where C is required to
be small. Interestingly, presheaf topoi subsume most algebraic structures used
in computer science, like graphs, hypergraphs, and simplicial sets.

In a topos, the poset of subobjects Sub(X) is a Heyting algebra [8]. Addi-
tionally, each base change functor f∗ admits both left and right adjoints ∃f and
∀f , i.e., ∃f ⊣ f

∗
⊣ ∀f .

2.4 Filters, Filtered Products, and Filtered Colimits

2.4.1 Set-theoretic Filters and Ultrafilters

Given a nonempty set I, a filter F over I is a subset of ℘(I) such that:2

• I ∈ F ;

2
℘(I) denotes the powerset of I.
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• if A,B ∈ F , then A ∩B ∈ F , and

• if A ∈ F and A ⊆ B, then B ∈ F .

For instance, {I} and ℘(I) are filters on I. The filter generated by some
J ⊆ I is FJ = {A ∈ ℘(I) ∣ J ⊆ A}. It is called a principal filter. If I is finite, all
filters on I are principal.

A filter is an ultrafilter if it is maximal for inclusion. In particular, if U is
an ultrafilter, then every A ∈ ℘(I) is in U if and only if I ∖A is not in U . By
Zorn’s lemma, any filter is contained in an ultrafilter.

2.4.2 Filtered Products in Categories

In Set, filtered products correspond to directed colimits of products of sets,
which have then been extended to arbitrary categories [16], leading to colimits
of directed diagrams of projections between the (direct) products determined
by the corresponding filter [2, 6, 7].

Definition 2.1 (Filtered product). Let F be a filter over a set of indices I, and
let X = (Xi)i∈I be a I-indexed family of objects in C. Then, F and X induce a
functor AF ∶F

op
→ C, mapping each subset inclusion J ⊆ J ′ of F to the canonical

projection pJ ′,J ∶∏J ′Xj →∏J Xj.
The filtered product of X modulo F is the colimit µ ∶AF ⇒∏F X of the

functor AF . C have filtered products if any filter F and any I-indexed family
of objects X = (Xi)i∈I in C yield a filtered product of X modulo F .

Filtered products are unique up to isomorphisms since they are colimits, and
we can talk about the filtered product of X modulo F .

For instance, Set have filtered products, and, therefore, any presheaf topos B̂
for some small category B also have them. Indeed, presheaf limits and colimits
are computed componentwise, meaning that filtered products can be lifted from
sets to presheaves.

2.4.3 Locally Finitely Presentable Category

Filtered products correspond to colimits where the underlying diagram is a
filtered category.

Definition 2.2 (Filtered category). A filtered category is a category C in
which every finite diagram has a cocone.

Definition 2.3 (Filtered colimit). A filtered colimit is a colimit of a functor
D ∶J → C where the shape J of D is a filtered category.

Note that filtered products are filtered colimits rather than filtered limits (as
the name would suggest). We are interested in filtered colimits to define finitely
presentable objects, also called finitely presented [6] or compact.
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Definition 2.4 (Finitely presentable object). An object X of a category C is
finitely presentable if the hom-functor HomC(X, ) ∶C → Set preserves filtered
colimits.

The definition of finitely presentable objects means that, for any functor D ∶

J → C where J is a filtered category, a morphism µ ∶X → colim(D) factors
essentially uniquely through some νi ∶ D(i) → colim(D). More precisely, the
definition is equivalent to the following condition:

• for every morphism µ ∶ X → V to the vertex of a colimiting co-cone ν ∶
D → V of a directed diagram D ∶ (I,≤) → C, there exists i ∈ I and a
morphism µi ∶X →D(i) such that µ = νi ○ µi, and

• for any two morphisms µi and µj as above, there exists k such that k > i,
k > j, and Di,k ○ µi =Dj,k ○ µj .

Definition 2.5 (Locally finitely presentable category [1]). A locally small cat-
egory3 C is locally finitely presentable if

• it has all small limits (i.e., is complete),

• it has a set A of finitely presentable objects, called generators, such that
every object in C is a filtered colimit of objects in A.

Examples may be consulted in [1]. For our purposes, locally finitely pre-
sentable topoi encompass presheaves, atomic, and coherent topoi [8, Chap. D3,
Sect. 3].

Note that locally finitely presentable categories also have all small colimits
because any object is obtained as the filtered colimit of generators.

2.5 Noetherian Objects

While finitely presentable objects and locally finitely presentable categories en-
sure a controlled, finite generation process, Noetherian objects look at finiteness
via subobject chains, ensuring that ascending sequences stabilize.

Definition 2.6 (Noetherian object). An object X of a category C is Noethe-
rian if the set of its subobjects satisfies the ascending chain condition, i.e., if
every sequence X0 ⪯X X1 ⪯X . . . of subobjects of X eventually becomes station-
ary.

Noetherian objects are finitary (have finitely many subobjects) in cocomplete
categories. More precisely, the following result holds:

Proposition 2.7. Let X be an object in a category C such that X is Noetherian
and Sub(X) has arbitrary coproducts. Then Sub(X) is finite.

3A category whose hom-sets are sets.
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Proof. Let S0 = ∅ ⊆ S1 ⊆ S2 ⊆ . . . be an ascending chain in ℘(Sub(X)) where
each Si+1 is obtained from Si by adding to it a finite number of subobjects
(for i ≥ 0). Since Sub(X) has arbitrary coproducts, we can consider, for each
i ≥ 0, the subobject ⋁Si corresponding to the coproduct of the subobjects in
Si. By construction, we have an ascending chain ⋁S0 ⪯X ⋁S1 ⪯X ⋁S2 ⪯X . . ..
Because X is Noetherian, this ascending chain is stationary. Since the upper
limit of this chain is X, we conclude that Sub(X) is necessarily finite.

Restricting locally finitely presentable topoi such that finitely presentable
objects are Noetherian yields atomic topoi, some coherent topoi, such as sheaves
on a Noetherian topological space, and presheaf topoi on a small Noetherian
category, such as sets, graphs, and hypergraphs.

3 Categorical Semantics for First-Order Logic
(FOL)

Following the seminal work of Alfred Tarski [19, 18], it is well-established that
FOL can be interpreted with set-theoretic models where sorts are interpreted
as sets, function symbols as functions between sets, and relations symbols as
subsets of Cartesian products. Categorical logic builds on this construction,
interpreting sorts as objects, terms as morphisms, and formulae as subobjects.
In this section, we consider an elementary topos C.

3.1 The Category of Σ-Structures

In the sequel, we consider a FOL-signature Σ = (S,F,R), where S is the set of
sorts, F the set of function symbols, and R the set of relation symbols. We first
recall the notion of Σ-structures in a topos [8, Chap. D1].

Definition 3.1 (Σ-structure). A Σ-structure M in C is defined by:

• an object Ms ∈ Ob(C) for every sort s in S,

• a morphism fM ∶Ms1 × . . .×Msn →Ms ∈ C for every function symbol f in
F with profile s1 × . . .× sn → s, and fM ∶ 1→Ms if f is a constant symbol
and n = 0,

• a subobject rM ∈ Sub(Ms1 × . . . ×Msn) for every relation symbol r in R
with profile s1 × . . . × sn.

A Σ-structure morphism h ∶M → N in C is a family of morphisms (hs ∶
Ms → Ns)s∈S such that:

• the diagram

Ms1 × . . . ×Msn Ms

Ns1 × . . . ×Nsn Ns

fM

hshs1
×...×hsn

fN

9



commutes, for every function symbol f ∶ s1 × . . . × sn → s in F .

• there is a morphism O → O′ such that the diagram

O Ms1 × . . . ×Msn

O′ Ns1 × . . . ×Nsn

µs1
×...×µsn

rM

rN

commutes, for every relation symbol r ∶ s1 × . . . × sn in R.

Σ-structures and Σ-structure morphisms in C form a category written Σ-
Str(C).

Proposition 3.2. The category Σ-Str(C) has small products.

Proof. Let I be a set and (Mi)i∈I be an I-indexed family of models. Consider
the model ∏IMi defined by:

• for every s ∈ S, (∏IMi)s =∏I(Mi)s, with ∏I(Mi)s being the product in
C,

• for every f ∶s1 × . . .×sn → s ∈ F , f∏IMi is the unique morphism such that
the following diagram

(∏IMi)s1 × . . . × (∏IMi)sn (∏IMi)s

(Mi)s1 × . . . × (Mi)sn (Mi)s

f∏IMi

(pI,i)s1×...×(pI,i)sn (pI,i)s

fMi

commutes for all i ∈ I, which is well-defined by the universal property of
small products in C,

• for every r ∶ s1 × . . .× sn ∈ R, r∏IMi is the subobject ∏I Oi ↣ (∏IMi)s1 ×

. . . × (∏IMi)sn where rMi
∶Oi ↣ (Mi)s1 × . . . × (Mi)sn .

Since each (∏IMi)s for s ∈ S is obtained as a small product in C, it follows that

∏IMi is the small product of (Mi)i∈I .

If x is a Σ-variable of sort s, we write x ∶ s. We also write x⃗ for a sequence
of variables and x⃗1x⃗2, resp. x⃗1y, when concatenating such sequences, resp.
appending a new variable. These two notations naturally extend to terms. We
say that a sequence of variables x⃗ = (x1 ∶ s1, . . . , xn ∶ sn) is a suitable context
for a Σ-term, resp. a Σ-formula, if all free variables of this term, resp. formula,
belong to {x1, . . . , xn}. We write x⃗.t, resp. x⃗.φ, to denote that x⃗ is a suitable
context for t, resp. φ. Then x⃗.t, resp. x⃗.φ, is called a term-in-context, resp.
a formula-in-context. Additionally, we write Mx⃗ instead of Ms1 × . . . ×Msn

for a sequence of variables x⃗ = (x1 ∶ s1, . . . , xn ∶ sn).
Given a Σ-structureM, the interpretation of a term-in-context x⃗.t inM,

with t ∶ s, is a morphism [[x⃗.t]]M ∶Mx⃗ →Ms, defined inductively as follows:
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• if t is a variable, then it corresponds to an xj in x⃗, and [[x⃗.xj]]M is the
projection on the sort associated with xj ;

• if t is f(t1, . . . tn) for some function symbol f and t1 ∶ s
′
1, . . . tn ∶ s

′
m, then

[[x⃗.t]]M is the composite

Mx⃗
([[x⃗.t1]]M,...,[[x⃗.tn]]M)
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→Ms′1

× . . . ×Ms′m

fM

ÐÐ→Ms.

The interpretation of Σ-terms inM extends to the interpretation of formulae-
in-context x⃗.φ in M, written [[x⃗.φ]]M and defined inductively as follows:

• if φ is an equation t = t′, then [[x⃗.(t = t′)]]M is the equalizer of

Mx⃗ Ms
[[x⃗.t′]]M

[[x⃗.t]]M

where s is the common sort of t and t′;

• if φ is a relation r(t⃗) with r ∶s1× . . .×sn, then [[x⃗.r(t⃗)]]M is the subobject
O′ ↣Mx⃗ obtained from the following pullback:

O′ O

Mx⃗ Ms1 × . . . ×Msn

rM[[x⃗.r(t⃗)]]M

[[x⃗.t⃗]]M

• if φ is a formula of the form ψ ∧ χ, ψ ∨ χ, or ψ ⇒ χ, then [[x⃗.φ]]M is
interpreted via the operators ∧, ∨, and → of the Heyting algebra Sub(Mx⃗).

• if φ is a formula of the form ∃y.ψ, with y ∶ s, then [[x⃗.(∃y.ψ)]]M =

∃π[[x⃗y.ψ]]M with π being the projection ∶Mx⃗ ×Ms →Mx⃗ and ∃π ⊣ π
∗.

• if φ is a formula of the form ∀y.ψ then [[x⃗.(∀y.ψ)]]M = ∀π[[x⃗y.ψ]]M, with
π being the same projection and π∗ ⊣ ∀π.

Note that, by construction, the interpretation [[x⃗.φ]]M of the formula-in-
context x⃗.φ in M is a subobject of Mx⃗. We write {x⃗ ∣ φ(x⃗)}M for its domain,
i.e., [[x⃗.φ]]M ∶ {x⃗ ∣ φ(x⃗)}M ↣Mx⃗.

3.2 Kripke-Joyal Semantics

In most categories, the elements of an object do not correspond to a well-
defined notion. Therefore, the notion of elements of a Σ-structure needs to be
replaced to redefine the satisfaction of FOL formulae. A solution is to consider
the generalized elements of C, thus regarding C as its image under the Yoneda
embedding. Indeed, by Yoneda’s lemma, an object X is uniquely determined,
up to isomorphisms, by the functor HomC( ,X), i.e., the morphisms Y → X in
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C, also called generalized elements [5]. In topoi, the fundamental theorem,
or slice theorem, [15] ensures that the generalized elements of X in the topos C
correspond to ordinary points in the slice topos C/X.

In this subsection, we consider an object M of Σ-Str(C), i.e., a Σ-structure
in C, a Σ-formula φ with a suitable context x⃗ = (x1 ∶ s1, . . . , xn ∶ sn), and a
generalized element α ∶U →Mx⃗.

Kripke-Joyal semantics is thoroughly explained in [14, Sect. VI.6], with dif-
ferent notations and using the forcing relation U ⊩ φ(α) between the generalized
element and the formula, instead of a relation between the Σ-structure and the
formula. More compact explanations might be found in [9, Chap. 5, Sect. 4],
again using different notations.

Definition 3.3 (Kripke-Joyal semantics). The satisfaction of x⃗.φ inM by the
generalized element α, writtenM ⊧α x⃗.φ, is defined as:

M ⊧α x⃗.φ iff α factors through [[x⃗.φ]]M

i.e., the following diagram commutes:

{x⃗ ∣ φ(x⃗)}M 1

U Mx⃗ Ω.

[[x⃗.φ]]M true

α φ(x)

Equivalently, this means that Im(α) ⪯ {x⃗ ∣ φ(x⃗)}M.

As discussed in [14, Chap. VI, Sect. 6], Kripke-Joyal semantics satisfies the
following two properties, called monotonicity and local character.

Proposition 3.4 (Monotonicity [14, Chap.VI, Sect.6]). IfM ⊧α x⃗.φ, then, for
any morphism f ∶ V → U in C,M ⊧α○f x⃗.φ.

Proposition 3.5 (Local character [14, Chap.VI, Sect.6]). If f ∶ V → U is an
epimorphism andM ⊧α○f x⃗.φ, thenM ⊧α x⃗.φ.

These two properties are the key to proving the following theorem, allowing
for an inductive description of Kripke-Joyal semantics. This inductive descrip-
tion will later turn useful as the proof of  Loś’s theorem is conducted by induction.
This theorem is also known as the semantic rules of Kripke-Joyal semantics.

Theorem 3.6 (Theorem VI.6.1 in [14]). Let α∶U →Mx⃗ be a generalized element,
φ and ψ be Σ-formulae, then

• M ⊧α x⃗.φ ∧ ψ iffM ⊧α x⃗.φ andM ⊧α x⃗.φ;

• M ⊧α x⃗.φ ∨ ψ iff there are morphisms p ∶ V → U and q ∶W → U such
that p + q ∶ V +W → U is an epimorphism, and both M ⊧α○p x⃗.φ and
M ⊧α○q x⃗.ψ;

• M ⊧α x⃗.φ ⇒ ψ iff for any morphism p ∶ V → U such that M ⊧α○p x⃗.φ,
thenM ⊧α○p x⃗.ψ;

12



• M ⊧α x⃗.¬φ iff for any morphism p ∶ V → U such that M ⊧α○p x⃗.φ, then
V ≃ ∅;

For the quantifiers, we consider an additional variable y ∶ s. Then

• M ⊧α x⃗.(∃y.φ) iff there exists an epimorphism p ∶V → U and a generalized
element β ∶ V →Ms such thatM ⊧(α○p,β) x⃗y.φ;

• M ⊧α x⃗.(∀y.φ) iff for every morphism p ∶ V → U and every generalized
element β ∶ V →Ms, it holds thatM ⊧(α○p,β) x⃗y.φ;

Kripke-Joyal semantics provide a notion of satisfaction relative to a gener-
alized element, which can be aggregated into a global notion.

Definition 3.7 (Model). M is a model for x⃗.φ, written M ⊧ x⃗.φ, if for all
generalized elements α ∶U →Mx⃗,M ⊧α x⃗.φ.

Proposition 3.8. M is a model for x⃗.φ if and only ifM ⊧IdMx⃗
x⃗.φ.

Proof. The implication is obvious, and the converse follows from monotonicity
(Proposition 3.4.

When the topos is locally finitely presentable, we can restrict the study to
finitely presentable generalized objects.

Proposition 3.9. If C is a locally finitely presentable elementary topos, then
M ⊧ x⃗.φ if and only if for all generalized elements α ∶ U → Mx⃗ such that U is
finitely presentableM ⊧α x⃗.φ.

Proof. The direct implication is obvious. For the converse, consider a general-
ized element α ∶U →Mx⃗. Since C is a locally finitely presentable category, U is
a filtered colimit of finitely presentable objects (Ai)i∈I (see Definition 2.5). For
i ∈ I, we write νi ∶Ai → U for the coprojection of the filtered colimit. Then, α○νi ∶
Ai →Mx⃗ is a generalized elements and Ai is finitely presentable. By hypothesis,
M ⊧α○νi x⃗.φ, i.e., α ○ νi factors through [[x⃗.φ]]M (see Definition 3.3). By the
universal property of colimit, there is a unique morphism U → {x⃗ ∣ φ(x⃗)}M such
that the obvious diagram commutes. In particular, α factors through [[x⃗.φ]]M,
i.e., M ⊧α x⃗.φ. From Definition 3.7, we conclude that M ⊧ x⃗.φ.

Proposition 3.9 can be restricted to monomorphisms.

Corollary 3.10. If C is a locally finitely presentable elementary topos, then
M ⊧ x⃗.φ if and only if for all monomorphisms α ∶ U ↣ Mx⃗ such that U is
finitely presentableM ⊧α x⃗.φ.

Proof. This follows from epi-mono factorization, local character (see Proposi-
tion 3.5), and that X is a finitely presentable object and f ∶ X → Y is an
epimorphism, then Y is also finitely presentable.
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3.3 Internal Logic of a Topos

Kripke-Joyal semantics is often used in conjunction with the Mitchell-Bénabou
language, which considers, given a topos C, the signature ΣC having sorts ⌈X⌉ for
all objects X in C, function names ⌈f⌉ for all morphisms f in C, and relations
names ⌈r⌉ for all monomorphisms r in C. By mapping ⌈X⌉ to X, ⌈f⌉ to f
and ⌈r⌉ to r, we obtain a canonical ΣC-structure called the tautological ΣC-
structure [5, Chap. 1, Sect. 5.2.1]. More precisely, for every topos C, we can
define an internal language LC composed of types defined by the objects of C,
from which we can define terms as follows:

• true ∶X;

• x ∶X where x is a variable and X is a type;

• f(t) ∶ Y where f ∶X → Y is a morphism of C and t ∶X is a term;

• < t1, . . . , tn >∶X1 × . . . ×Xn if for every i, 1 ≤ i ≤ n, ti ∶Xi is a term;

• (t)i ∶Xi if t ∶X1 × . . . ×Xn is a term;

• {x ∶X ∣ α} ∶ PX if α ∶ Ω is a term;

• σ = τ ∶ Ω if σ and τ are terms of the same type;

• σ ∈X τ ∶ Ω if σ ∶X and τ ∶ PX are terms;

• σ ⪯X τ ∶ Ω if σ, τ ∶ PX are terms;

• φ @ ψ ∶ Ω if φ ∶ Ω and ψ ∶ Ω are terms with @ ∈ {∧,∨,⇒};

• ¬φ ∶ Ω if φ ∶ Ω is a term;

• Qx.φ ∶ Ω if x ∶X and φ ∶ Ω are terms and Q ∈ {∀,∃}.

Additionally, formulae correspond to terms of type Ω. This internal lan-
guage allows for reasoning about C as if it were a set, using simple term expres-
sions. We will use this internal language to demonstrate some results in this
paper.

4 Filtered Products in Σ-Str(C) and  Loś’s The-
orem

4.1 Filtered Products in Σ-Str(C)
We now impose the elementary topos C to have filtered products (such that we
can consider ultraproducts). Additionally, we consider a set I, a filter F over it
and a family of Σ-structures (Mi)i∈I . The filtered product of M modulo F is
the colimit µ ∶AF ⇒∏F M of the functor AF as defined in Definition 2.1. Under
some conditions discussed in Proposition 4.1, it corresponds to the Σ-structure

∏FM of (Mi)i∈I defined as follows:
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• for every s ∈ S, (∏F M)s is the filtered product of ((Mi)s)i∈I .

• for every function name f ∶s1× . . .×sn → s, f∏F M is the unique morphism
such that the following diagram commutes, according to the universal
property of colimits:

(∏IMi)s1 × . . . × (∏IMi)sn (∏IMi)s

(∏F M)s1 × . . . × (∏F M)sn (∏F M)s.

f∏IMi

(µI)s1×...×(µI)sn (µI)s

f(∏F M)

• for every relation name r ∶ s1 × . . . × sn, r∏F M is the filtered product of
the family (rMi

)i∈I .

We introduce two propositions about filtered products that will be useful for
proving  Loś’s theorem. The first proposition claims that the Σ-structure ∏FM
is indeed the filtered product if the projections associated with the functor AF
are epimorphisms.

Proposition 4.1. Under the condition that the projections pI,J ∶ ∏IMi →

∏JMj are epimorphisms for all subsets J of I in F , ∏FM is the filtered
product of (Mi)i∈I modulo F .

First, we introduce a lemma stating that under the condition of Proposi-
tion 4.1, the µJ are also epimorphisms.

Lemma 4.2. Under the condition that the projections pI,J ∶ ∏IMi → ∏JMj

are epimorphisms for all subsets J ∈ F , then so are all the µJ ∶ ∏JMj →∏FM

for all the subsets J ∈ F .

Proof. For J ∈ F , the set F∣J = {J ∩K ∣K ∈ F} is still a filter4. Moreover,

∏F∣J
M and ∏FM are isomorphic (see Proposition 6.3 in [6]). Since pJ,K is an

epimorphism for every K ∈ F∣J and (µK)K∈F∣J is a jointly epic family (because

∏F∣J
M is a filtered product), µJ is an epimorphism.

We can now prove Proposition 4.1.

Proof. The family µ = (µJ)J∈F forms a cocone AF ⇒∏FM where the functor
AF ∶F → Σ-Str(C)maps indices J of the filter F to models∏JMj and inclusions
J ⊆ J ′ to projections pJ ′,J .

Let ν ∶AF ⇒ N be another cocone. Since the category C has filtered products,
there is a unique morphism θs ∶ (∏F M)s → Ns, for every sort s in S.

We now verify that the family θ = (θs)s∈S of morphisms in C form a valid
morphism in Σ-Str(C). In other words, we need to show that θ○f∏F M = fN ○θ,
resp. θ ○ r∏F M = rN ○ θ for all function symbols, resp. relation symbols, in Σ.

4Note that J ≠ ∅ as F is an ultrafilter is necessary to ensure that F∣J is still a filter.
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We recall that for every J ∈ F , and every x ∶ ∏J(Mj)s1 × . . . ×∏J(Mj)sn , we
have that θ(µJ(x)) = νJ(x).

First, consider a function name f ∶ s1 × . . . × sn → s in F . We aim to prove
that θ ○ f∏F M = fN ○ θ, which amounts to showing that the following diagram
commutes.

(∏IMi)s1 × . . . × (∏IMi)sn (∏IMi)s

(∏F M)s1 × . . . × (∏F M)sn (∏F M)s

Ns1 × . . . ×Nsn Ns

f∏IMi

((µI)s1 ,...,(µI)sn)

((νI)s1 ,...,(νI)sn)

(µI)s

(νI)s
f∏F M

((θI)s1 ,...,(θI)sn) (θI)s

fN

The top square and the square with the curved arrows commute because µ and
ν are morphisms in Σ-Str(C), providing the following equalities:

θ(f∏F M(µI(x))) = θ(µI(f∏IMi
(x)))

= νI(f∏IMi
(x))

= fN (νI(x))
= fN (θ(µI(x))).

From this, we derive that θ ○ f∏F M ○ µI = f
N
○ θ ○ µI . Lemma 4.2 ensures that

µI is an epimorphism, meaning that θ ○ f∏F M = fN ○ θ.

Second, consider a relation name r ∶ s1 × . . . × sn in R. The relation name
r induces two subobjects r∏IMi

∶OI ↣ (∏IMi)s1 × . . . × (∏IMi)sn and rN ∶

ON ↣ Ns1 × . . .×Nsn . Since ν is a morphism, we describe ON using the internal
logic of C:

ON = {θ(µI(xI)) ∣ xI ∈ R
∏IMI

} .

Thus, the following statement holds in the internal language of C:

∀xI ∈∏
I

Mi, µI(xi) ∈ r
∏F M ⇒ θ(µI(xI)) ∈ r

N .

which proves that there exists a morphism OF → ON such that the diagram

OF ∏F Ms1 × . . . ×∏F Msn

ON Ns1 × . . . ×Nsn

r∏F M

(θs1 ,...,θsn)

rN

commutes.

The second proposition relates filtered products of subobjects and subobjects
of filtered products for atomic formulae.
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Proposition 4.3. Let r(t⃗) be a Σ-atomic formula and x⃗ a suitable context for
it. Then, {x⃗ ∣ r(t⃗)(x⃗)}

∏F M
is the filtered product of ({x⃗ ∣ r(t⃗)(x⃗)}

Mi
)i∈I in C.

Proof. This is a direct application that filtered colimits commute with finite
limits in cocomplete categories [13, Theorem 1 (p. 215), Sect. 2, Chap. IX].

4.2 Fundamental Theorem

In Set,  Loś’s theorem (see Def. 1.1 in the introduction) associates each I-
sequence (ai)i∈I with an index J of the filter. Therefore, an index for a set
of I-sequences corresponds to the intersection of all associated indices. This
correspondence is only valid when the set of associated indices remains finite,
as filters are only stable by finite intersections. To address this finiteness con-
straint in our categorical context, we consider generalized elements of the form
α ∶U ↣ (∏IMi)x⃗, such that U is both finitely presentable and Noetherian.

Theorem 4.4 ( Loś’s theorem). Let C be a locally finitely presentable elementary
topos with filtered products such that all finitely presentable objects are Noethe-
rian. Let I be a set and (Mi)i∈I be a family of Σ-structures in C. Let F be
an ultrafilter on I such that for every J ∈ F , the canonical projection pI,J ∶

∏IMi → ∏JMj is an epimorphism. Let φ be a Σ-formula with a suitable
context x⃗ and α ∶ U ↣ (∏IMi)x⃗ be a monomorphism such that U is a finitely
presentable object. Then,

∏

F

M ⊧(µI)x⃗○α x⃗.φ iff {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.φ} ∈ F

The proof of Theorem 4.4 rests on the following lemmas.

Lemma 4.5. Assuming the context of Def. 4.4, any morphism g ∶A→ B, such
that A /≅ ∅, can be factorized through any epimorphism f ∶X → B.

Proof. We recall that in a topos C, the epimorphism f ∶ X → B is regular,
meaning it is the coequalizer of some parallel pair of morphisms. In particular,
a regular epimorphism satisfies ∀b ∶ B,∃x ∶ X,f(x) = b in a topos. Consider a
morphism g ∶A → B and a subobject S of the pullback A ×B X satisfying the
two following properties, expressed using the internal language of C:

∀a ∶ A, ∃x ∶X, (a, x) ∈A×X S,

∀a ∶ A, ∀x ∶X, ∀x′ ∶X, (a, x) ∈A×X S ∧ (a, x′) ∈A×X S Ô⇒ a = a′.

As f is an epimorphism, such a S exists. By construction of the pullback, for
all (a, x) ∈ S, g(a) = f(x). By definition of S, for all a ∶ A, there is a unique
x ∶ X such that g(a) = f(x). Thus, we can consider the morphism h ∶ A → X
such that for all (a, x) ∶ A ×X, if (a, x) ∈A×X S, then h(a) = x.

As in Set, several S satisfying the given property might exist, meaning that
h is intrinsically not unique, but its existence suffices for our needs.
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Lemma 4.6. Assuming the context of Def. 4.4, for any J ⊆ I,

{x⃗ ∣ φ(x⃗)}
∏J Mj

=∏

J

{x⃗ ∣ φ(x⃗)}Mj
.

Proof. By inversion of product and pullback.

We can now prove Def. 4.4.

Proof. The proof is done by structural induction on φ.

• φ is of the form r(t⃗).

(⇒) We suppose that ∏FM ⊧(µI)x⃗○α x⃗.r(t⃗), meaning that there exists

a morphism m ∶ U → {x⃗ ∣ r(t⃗)(x⃗)}
∏F M

such that [[x⃗.r(t⃗)]]∏F M
○ m =

(µI)x⃗ ○ α. By proposition 4.3, it follows that {x⃗ ∣ r(t⃗)(x⃗)}
∏F M

is the

filtered product of ({x⃗ ∣ r(t⃗)(x⃗)}
Mi
)i∈I modulo F in C. Let ν be the col-

imit associated with the filtered product of ({x⃗ ∣ r(t⃗)(x⃗)}
Mi
)i∈I . Since U

is a finitely presentable object (Definition 2.4), the morphism m ∶ U →

{x⃗ ∣ r(t⃗)(x⃗)}
∏F M

factors (essentially uniquely) through some morphism

νJ ∶ ∏J {x⃗ ∣ r(t⃗)(x⃗)}Mj
→ {x⃗ ∣ r(t⃗)(x⃗)}

∏F M
. By Lemma 4.6, νJ is a mor-

phism {x⃗ ∣ r(t⃗)(x⃗)}
∏J Mj

→ {x⃗ ∣ r(t⃗)(x⃗)}
∏F M

. Thus, there exists J ∈ F

and a morphism δ ∶ U → {x⃗ ∣ r(t⃗)(x⃗)}
∏J Mj

such that the following dia-

gram commutes:

{x⃗ ∣ r(t⃗)(x⃗)}
∏J Mj

{x⃗ ∣ r(t⃗)(x⃗)}
∏F M

1

U (∏IMi)x⃗ (∏JMj)x⃗ (∏F M)x⃗ Ω.

νJ

[[x⃗.r(t⃗)]]∏J Mj [[x⃗.r(t⃗)]]∏F M
trueδ

m

α (pI,J)x⃗ (µJ)x⃗

Thus, ∏JMj ⊧(pI,J)x⃗○α x⃗.r(t⃗), meaning that for all j in J , Mj ⊧(pI,j)x⃗○α

x⃗.r(t⃗), i.e., J ⊆ {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.r(t⃗)}. Since F is a filter, we can

conclude that {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.r(t⃗)} ∈ F .

(⇐) By Proposition 4.3, for every J ∈ F , the following diagram

{x⃗ ∣ r(t⃗)(x⃗)}
∏J Mj

{x⃗ ∣ r(t⃗)(x⃗)}
∏F M

(∏JMj)x⃗ (∏F M)x⃗

νJ

[[x⃗.r(t⃗)]]∏J Mj [[x⃗.r(t⃗)]]∏F M

(µJ)x⃗

commutes, where ν is the colimit associated with the filtered product of
({x⃗ ∣ r(t⃗)(x⃗)}

Mi
)i∈I . Thus, it follows that Im((µI)x⃗○α) ⪯ {x⃗ ∣ r(t⃗)(x⃗)}

∏F M
.
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• φ is of the form ψ ∧ χ.

(⇒) By Def. 3.6, ∏FM ⊧(µI)x⃗○α x⃗.ψ ∧χ implies that ∏FM ⊧(µI)x⃗○α x⃗.ψ
and ∏FM ⊧(µI)x⃗○α x⃗.χ. By the induction hypothesis, it follows that

{i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.ψ} and {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.χ} are in F . Since

filters are closed under intersection, {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.ψ ∧ χ} is also
in F .

(⇐) Since {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.ψ ∧ χ} ⊆ {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.ψ}, F is

a filter, and {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.ψ ∧ χ} is in F , it follows that the set

{i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.ψ} is in F . Similarly, {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.χ} is
also in F . By the induction hypothesis, it holds that ∏FM ⊧(µI)x⃗○α

x⃗.ψ and ∏FM ⊧(µI)x⃗○α x⃗.ψ. According to Def. 3.6, we conclude that

∏FM ⊧(µI)x⃗○α x⃗.ψ ∧ χ.

• φ is of the form ψ ∨ χ.

(⇒) By Def. 3.6, there are two morphisms p∶V → U and q∶W → U such that
p+ q is an epimorphism, ∏FM ⊧(µI)x⃗○α○p x⃗.ψ, and ∏FM ⊧(µI)x⃗○α○q x⃗.χ.

By the induction hypothesis, it follows that Jψ = {i ∈ I ∣Mi ⊧(pI,i)x⃗○α○p x⃗.ψ}

and Jχ = {i ∈ I ∣Mi ⊧(pI,i)x⃗○α○p x⃗.χ} are in F . Thus Jψ ∪ Jχ is in F , i.e.,

{i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.ψ ∨ χ} is in F .

(⇐) Let us suppose that the set J = {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.(ψ ∨ χ)} is in
F . Then, for all j ∈ J , Mj ⊧(pI,j)x⃗○α x⃗.(ψ ∨ χ). By Lemma 4.6, it holds
that ∏JMj ⊧(pI,J)x⃗○α x⃗.(ψ ∨ χ). By Def. 3.6, there are morphisms p ∶
V → U and q ∶W → U such that p + q ∶ V +W → U is an epimorphism,
and both ∏JMj ⊧(pI,J)x⃗○α○p x⃗.ψ and ∏JMj ⊧(pI,J)x⃗○α○q x⃗.χ. By def-
inition of products, for any j ∈ J it holds that Mj ⊧(pI,j)x⃗○α○p x⃗.ψ and
Mj ⊧(pI,j)x⃗○α○q x⃗.χ. In particular, it follows that

– J ⊆ Jψ = {i ∈ I ∣Mi ⊧(pI,i)x⃗○α○p x⃗.ψ} and

– J ⊆ Jχ = {i ∈ I ∣Mi ⊧(pI,i)x⃗○α○q x⃗.χ}.

Since F is an ultrafilter, we deduce that the sets Jψ and Jχ are in F .
By the induction hypothesis, it holds that ∏FM ⊧(µI)x⃗○α○p x⃗.ψ and

∏FM ⊧(µI)x⃗○α○q x⃗.χ, p ∶V → U and q ∶W → U such that p+ q ∶V +W → U
is an epimorphism. By Def. 3.6, we can conclude that ∏FM ⊧(µI)x⃗○α

x⃗.(ψ ∨ χ).

• φ is of the form ψ⇒ χ.

(⇒) Let us suppose that ∏FM ⊧(µI)x⃗○α x⃗.(ψ ⇒ χ). By Def. 3.6, it
follows that for every morphism p ∶ V → U , if ∏FM ⊧(µI)x⃗○α○p x⃗.ψ, then

∏FM ⊧(µI)x⃗○α○p x⃗.χ. By the same argument as in Corollary 3.10, we can
restrict to monomorphisms p ∶V ↣ U . In particular, if we consider the two
following sets:
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– Γ = {V ∈ Sub(U) ∣∏FM /⊧(µI)x⃗○α○(V↣U) x⃗.ψ} and

– ∆ = {V ∈ Sub(U) ∣∏FM ⊧(µI)x⃗○α○(V↣U) x⃗.χ},

then ∏FM ⊧(µI)x⃗○α x⃗.(ψ ⇒ χ) means that Sub(U) = Γ ∪∆. For V in Γ,

the induction hypothesis implies that {i ∈ I ∣Mi ⊧(pI,i)x⃗○α○(V↣U) x⃗.ψ} is

not in F . Since F is an ultrafilter, JV = {i ∈ I ∣Mi /⊧(pI,i)x⃗○α○(V↣U) x⃗.ψ}
is in F . As U is Noetherian, Proposition 2.7 ensures that Γ is finite, and
then JΓ = ⋂V ∈Γ JV is also in F . With similar arguments, it follows that
J∆ = {i ∈ I ∣Mi ⊧(pI,i)x⃗○α○(V∆↣U) x⃗.χ} is in F , where V∆ is the union of
all subobjects in ∆. By the monotonicity property (see Proposition 3.4),
for every j ∈ J∆ and every V ∈ ∆ it holds that Mj ⊧(pI,j)x⃗○α○(V↣U)

x⃗.χ. Let us consider J = JΓ ∩ J∆, j ∈ J and V ∈ Sub(U). If V is in
Γ, then Mj /⊧(pI,j)x⃗○α○(V↣U)

x⃗.ψ. Otherwise, V is in ∆, meaning that

Mj ⊧(pI,j)x⃗○α○(V↣U) x⃗.ψ and Mj /⊧(pI,j)x⃗○α○(V↣U) x⃗.ψ. By Def. 3.6, we
can then deduce that for every j ∈ J , Mj ⊧(pI,j)x⃗○α x⃗.(ψ⇒ χ). Since J is

in F and F is a filter, we can conclude that {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.(ψ⇒ χ)} ∈
F .

(⇐) Suppose that J = {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.(ψ⇒ χ)} is in F . Let p ∶
V → U be a morphism such that ∏FM ⊧(µI)x⃗○α○p x⃗.ψ. By induction

hypothesis, this means that the set Jψ = {i ∈ I ∣Mi ⊧(pI,i)x⃗○α○p x⃗.ψ} is in
F . Since F is a filter, it follows that L = J ∩ Jψ is in F . In particular,
for j ∈ L, it holds that Mj ⊧(pI,j)x⃗○α x⃗.(ψ ⇒ χ) and Mj ⊧(pI,j)x⃗○α○p

x⃗.ψ. By Def. 3.6, it follows that Mj ⊧(pI,j)x⃗○α○p x⃗.χ. Thus, L is a

subset of {i ∈ I ∣Mi ⊧(pI,i)x⃗○α○p x⃗.χ}. Since F is a filter, it holds that

{i ∈ I ∣Mi ⊧(pI,i)x⃗○α○p x⃗.χ} is in F . By induction hypothesis, it follows
that∏FM ⊧(µI)x⃗○α○p x⃗.χ. By Def. 3.6, we can conclude that∏FM ⊧(µI)x⃗○α

x⃗.(ψ⇒ χ).

• φ is of the form ¬ψ. The result follows from the fact that ¬ψ ≡ ψ⇒ � and
that the only generalized element for which any Σ-structure M satisfied
x⃗.� is ∅→Mx⃗.

• φ is of the form ∃y.ψ.

(⇒) Suppose that ∏FM ⊧(µI)x⃗○α x⃗.(∃y.ψ). By Def. 3.6, there exists
an epimorphism p ∶ V → U and a generalized element β ∶ V → (∏F M)s
such that ∏FM ⊧((µI)x⃗○α○p,β) x⃗y.ψ. From Lemma 4.5, β factorizes
through (µI)s, i.e., there exists δ ∶V → (∏IMi)s such that β = (µI)s ○ δ).
Then, ∏FM ⊧(µI)x⃗y○(α○p,δ) x⃗y.ψ. By the induction hypothesis, J =

{i ∈ I ∣Mi ⊧(pI,i)x⃗y○(α○p,δ) x⃗y.ψ} is in F . Consider j in J . Then, we have
thatMj ⊧(pI,j)x⃗y○(α○p,δ) x⃗y.ψ, with p ∶V → U epimorphism and (pI,j)s ○δ ∶
V → (Mj)s generalized element. By Def. 3.6, it follows thatMj ⊧(pI,j)x⃗○α

x⃗.(∃y.ψ). Thus, it holds that J ⊆ {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.(∃y.ψ)}. Since F

is a filter, we can conclude that {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.(∃y.ψ)} ∈ F .
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(⇐) Suppose that J = {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.(∃y.ψ)} ∈ F . Then, for all j ∈
J ,Mj ⊧(pI,j)x⃗○α x⃗.(∃y.ψ). By Lemma 4.6, it holds that ∏JMj ⊧(pI,J)x⃗○α

x⃗.(∃y.ψ). By Def. 3.6, there exists an epimorphism p ∶ V → U and a
generalized element β ∶ V → (∏JMj)s such that ∏JMj ⊧((pI,J)x⃗○α○p,β)

x⃗y.ψ. From Lemma 4.5, β factorizes through (pI,J)s, i.e., there ex-
ists δ ∶ V → (∏IMi)s such that β = (pI,J)s ○ δ. Thus, it holds that

∏JMj ⊧(pI,J)x⃗y○(α○p,δ) x⃗y.ψ. By definition of products, it follows that
for every j ∈ J , Mj ⊧(pI,j)x⃗y○(α○p,δ) x⃗.ψ. In particular, J is a sub-

set of {i ∈ I ∣Mi ⊧(pI,i)x⃗y○(α○p,δ) x⃗.ψ}. Since F is a filter, it holds that

{i ∈ I ∣Mi ⊧(pI,i)x⃗y○(α○p,δ) x⃗.ψ} ∈ F . By the induction hypothesis, we ob-
tain ∏FM ⊧(µI)x⃗y○(α○p,δ) x⃗.ψ, with p epimorphism V → U and (µI)s ○ δ
generalized element V → (∏F M)s. By Def. 3.6, we can conclude that

∏FM ⊧(µI)x⃗○α x⃗.(∃y.ψ).

• φ is of the form ∀y.ψ.

(⇒) By contraposition we suppose that the set {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.(∀y.ψ)}

is not in F . As F is an ultrafilter, J = {i ∈ I ∣Mi /⊧(pI,i)x⃗○α x⃗.(∀y.ψ)} is
in F . Then, for all j ∈ J , Mj /⊧(pI,j)x⃗○α x⃗.(∀y.ψ). By Def. 3.6, we
have for every j ∈ J that there exists a morphism pj ∶ Vj → U and a
generalized element βj ∶ Vj → (Mj)s such that Mj /⊧((pI,j)x⃗○α○pj ,βj) x⃗y.ψ.
From Lemma 4.5, βj factorizes through (pI,j)y, i.e., there exists a mor-
phism δj ∶ Vj → (∏IMi)y such that βj = (pI,j)y ○ δj . By factoriza-
tion, it holds that Mj /⊧(pI,j)x⃗y○(α○pj ,δj) x⃗y.ψ. Let V be the colimit of
{Vj ∣ j ∈ J} and ij ∶ Vj → V the canonical injections. Then, by the univer-
sal property of colimit, there is a unique morphism q ∶ V → U such that
pj = q ○ ij . Likewise, there is a unique morphism δ ∶ V → (∏IMi)y such
that δj = δ ○ ij . Hence, we have that Mj /⊧(pI,j)x⃗y○(α○q○ij ,δ○ij) x⃗y.ψ, and
then Mj /⊧(pI,j)x⃗y○(α○q,δ) x⃗y.ψ. By the induction hypothesis, we then
deduce that ∏FM /⊧(µI)x⃗y○(α○q,δ) x⃗y.ψ, from which we conclude that

∏FM /⊧(µI)x⃗○α x⃗.∀y.ψ.

(⇐) By contraposition, we suppose that ∏FM /⊧(µI)x⃗○α x⃗.(∀y.ψ). By
Def. 3.6, there exists a morphism p ∶ V → U and a generalized element β ∶
V → (∏F M)s such that ∏FM /⊧((µI)x⃗○α○p,β) x⃗y.ψ. From Lemma 4.5, β
factorizes through (µI)y, i.e., there exists a morphism δ ∶ V → (∏IMi)s

such that β = (µI)y ○ δ. By factorization and product, it holds that

∏FM /⊧(µI)x⃗y○(α○p,δ) x⃗y.ψ. By the induction hypothesis, it follows that

the set {i ∈ I ∣Mi ⊧(pI,i)x⃗y○(α○p,δ) x⃗y.ψ} is not in F . Since F is an ul-

trafilter, the set J = {i ∈ I ∣Mi /⊧(pI,i)x⃗y○(α○p,δ) x⃗y.ψ} is in F . Thus, for
any j ∈ J , it holds thatMj /⊧(pI,j)x⃗y○(α○p,δ) x⃗y.ψ, with p morphism V → U
and (pI,j)s○δ generalized element V → (Mj)s. By Def. 3.6, we obtain that
Mj /⊧(pI,j)x⃗○α x⃗.(∀y.ψ). In particular, J ⊆ {i ∈ I ∣Mi /⊧(pI,i)x⃗○α x⃗.(∀y.ψ)}.

As F is an ultrafilter, we deduce that the set {i ∈ I ∣Mi /⊧(pI,i)x⃗○α x⃗.(∀y.ψ)}
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is in F and conclude that the set {i ∈ I ∣Mi ⊧(pI,i)x⃗○α x⃗.(∀y.ψ)} is not in
F .

Upon reading the proof of Def. 4.4, the reader will realize that the condition
imposed on the domain U of the generalized element to be Noetherian is no
longer necessary when restricting the study to

• Cartesian formulae (closed under finite conjunction),

• regular formulae (closed under finite conjunction and existential quanti-
fier),

• coherent formulae (closed under finite conjunction, finite disjunction, and
existential quantifier).

Def. 4.4 generalizes  Loś’s theorem to Kripke-Joyal semantics for the internal
language of topoi. It implies its set-theoretic version, i.e., Def. 1.1. Indeed Set
is a locally finitely presentable elementary topos with filtered products in which
the canonical projections from any products are epimorphism. Besides, an I-
sequence (ai)i∈I in Set corresponds to a generalized element α ∶ 1 → (∏IMi)x⃗.
Applying Def. 4.4 to such generalized elements α yields Def. 1.1.

4.3 Compactness Theorem

The compactness theorem deals with a set of sentences, which, in FOL, corre-
sponds to formulae without free variables. In other words, a FOL formula is a
sentence if [ ] is a suitable context for it, meaning that its interpretation in a
Σ-structure M is a morphism with codomain M

[⃗ ]
, that is the terminal object

1 of C. Given a sentence φ, the generalized elements of interests for φ are α ∶
U → (∏IMi)[ ], i.e., α ∶U → 1.

Definition 4.7 (Sentence). A formula φ is a sentence if [ ] is a suitable context
for φ.

When φ is a sentence, we write M ⊧ φ instead of M ⊧ [ ].φ.

Proposition 4.8. If φ is a sentence, then:

∏

F

M ⊧ φ iff {i ∈ I ∣Mi ⊧ φ} ∈ F.

Proof. The proof is a direct application of Def. 4.4, exploiting the fact that the
diagrams

{x⃗ ∣ φ(x⃗)}
∏I Mi

{x⃗ ∣ φ(x⃗)}
∏F M

1

U (∏IMi)x⃗ (∏F M)x⃗ Ω

[[x⃗.φ]]∏IMi
[[x⃗.φ]]∏F M

true

α (µI)x⃗
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and
{x⃗ ∣ φ(x⃗)}

∏I Mi
{x⃗ ∣ φ(x⃗)}Mi

1

U (∏IMi)x⃗ (Mi)x⃗ Ω

[[x⃗.φ]]∏IMi
[[x⃗.φ]]Mi

true

α (pI,i)x⃗

both become

1 1 1

U 1 1 Ω

id1

id1

id1

id1 true

α id1

true

when φ is a sentence.

We can deduce the compactness theorem from Proposition 4.8

Theorem 4.9 (Compactness). A set of sentences T has a model if and only if
every finite subset of T has a model.

Proof. The proof is a pastiche of its set-theoretic variant as a corollary from
 Loś’s theorem. The implication is obvious: a model of T is a model of all
subsets of T , in particular the finite ones.

For the converse, we suppose that T is infinite and that every finite subset
i of T admits a model Mi and write I for the set of all finite subsets of T . For
i ∈ I, we write i∗ for superset closure of i, {j ∈ I ∣ i ⊆ i}. Let F be the subset of
℘(I) defined as F = {X ⊆ I ∣ ∃i ∈ I, i∗ ⊆X}. Then F is a filter of I different from
℘(I), leveraging that i∗ ∩ j∗ = (i ∪ j)∗ for the closure under finite intersections.
By Zorn’s lemma, F can be extended into an ultrafilter U over I. Let φ be
a sentence in T , then {φ} is an element of I. Thus, for all i ∈ {φ}

∗
, Mi is a

model for φ. Thus {φ}
∗
⊆ {i ∈ I ∣Mi ⊧ φ}, i.e., {i ∈ I ∣Mi ⊧ φ} ∈ F , meaning

that {i ∈ I ∣Mi ⊧ φ} ∈ U . From Proposition 4.8, it follows that ∏UM ⊧ φ.
Thereafter, ∏UM ⊧ T , i.e., T has a model.

5 Conclusion

In this paper, we explored ultraproducts of first-order logic (FOL) structures
categorically, extending  Loś’s theorem from set-theoretic models to Kripke-Joyal
semantics for the internal logic of topoi. Although topoi allow for reasoning akin
to sets, their inherent abstract nature required some additional conditions for
the theorem to hold: (1) the topos must be locally finitely presentable as fil-
ters are only closed under finite intersections ; (2) the topos must have filtered
products to ensure the existence of ultraproducts ; (3) the canonical projections
between model products should be epimorphisms to use the semantic rules for
the disjunctions and existential quantifiers ; (4) the generators must have finitely
many subobjects, which is needed for proving the case of the implication. We
showed that our extension of  Loś’s theorem naturally implies that in Set. As
an immediate application, we demonstrated how this extension yields the com-
pactness theorem for Kripke-Joyal semantics in topoi.
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[2] H. Andréka and I. Németi. “Lòs Lemma Holds in Every Category”. In:
Studia Scientiarum Mathematicarum Hungarica 13 (1978), pp. 361–376.

[3] M. Barr and C. Wells. Toposes, triples and theories. Springer-Verlag, 1985.

[4] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-
Hall, 1990.

[5] O. Caramello. Theories, Sites, Toposes: Relating and studying mathemat-
ical theories through topos-theoretic ’bridges’. Oxford University Press,
2017.

[6] R. Diaconescu. Institution-independent Model Theory. Universal Logic.
Birkauser, 2008.

[7] R. Diaconescu. “Implicit Kripke semantics and ultraproducts in stratified
institutions”. In: Journal of Logic and Computation 27.5 (2017), pp. 1577–
1606.

[8] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium.
Vol.1 and Vol.2. Oxford University Press, 2002.

[9] P. T. Johnstone. Topos Theory. London ; New York : Academic Press,
1977. isbn: 978-0-12-387850-2.

[10] H. J. Keisler. “The ultraproduct construction”. In: Ultrafilters across math-
ematics. Vol. 530. Contemp. Math. American Mathematical Society, 2010,
pp. 163–179. isbn: 978-0-8218-4833-3. doi: 10.1090/conm/530/10444.
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nissables d’algèbres”. In: Studies in Logic and the Foundations of Mathe-
matics. Vol. 16. Mathematical Interpretation of Formal Systems. Elsevier,
1955, pp. 98–113. doi: 10.1016/S0049-237X(09)70306-4.

[12] M.Makkai. “Stone duality for first-order logic”. In: Advances in Math. 65
(1987), pp. 97–170. doi: 10.1016/0001-8708(87)90020-X.

[13] S. MacLane. Categories for the Working Mathematician. Springer-Verlag,
1971.

24

https://doi.org/10.1017/CBO9780511600579.004
https://doi.org/10.1090/conm/530/10444
https://doi.org/10.1016/S0049-237X(09)70306-4
https://doi.org/10.1016/0001-8708(87)90020-X


[14] S. MacLane and I. Moerdijk. Sheaves in geometry and logic: A first intro-
duction to topos theory. Springer Science & Business Media, 2012.

[15] C. McLarty. Elementary Categories, Elementary Toposes. Oxford Logic
Guides. Oxford University Press, 1992. isbn: 978-0-19-158949-2. doi: 10.
1093/oso/9780198533924.001.0001.

[16] T. Okhuma. “Ultrapowers in categories”. In: Yokohama Mathematics Jour-
nal 14 (1966), pp. 17–37.
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