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ABSTRACT
Strokes concerned more than 795,000 individuals annually in the United States as of 20211. Detecting thrombus
(blood clot) is crucial for aiding surgeons in diagnosis, a process heavily reliant on 3D models reconstructed
from medical imaging. While these models are very dense with information (many vertices, edges, faces in the
mesh, and noise), extracting the critical data is essential to produce an accurate analysis to support the work of
practitioners. Our research, conducted in collaboration with a consortium of surgeons, leverages generalized maps
(g-maps) to compute quality criteria on the cerebral vascular tree. According to medical professionals, artifacts
due to noise and thin topological changes are significant parameters among these criteria. These parameters can
be determined via the Reeb graph, a topological descriptor commonly used in topological data analysis (TDA).
In this article, we introduce a novel classification of saddle points, and a Reeb graph variant called the Local to
Global Reeb graph (LGRG). We present parallel computation methods for critical points and LGRG, relying only
on local information thanks to the homogeneity of the g-map formalism. We show that LGRG preserves the most
subtle topological changes while simplifying the input into a graph formalism that respects the global structure of
the mesh, allowing its use in future analyses.
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1 INTRODUCTION

Topological data analysis (TDA) comes from mathe-
matics, applying techniques from algebraic topology to
analyze the shape and structure of data. It focuses on
understanding the underlying geometric properties of
data sets, such as their connectivity, holes, and loops,
regardless of the specific metric used to represent the
data. TDA can reveal essential features and patterns
that may not be evident through traditional statistical or
geometric methods, proving particularly useful for an-
alyzing complex, high-dimensional, or noisy data sets.

TDA leverages topological descriptors, retrieving spe-
cific information from the data. Most of these descrip-
tors rely on the critical points of a function of inter-
est over the data, i.e., the points where the function’s
derivative is null or undefined. Therefore, computing
and classifying the critical points of a function is a cru-
cial subroutine for many TDA tasks. For instance, the
Reeb graph consists of nodes corresponding to the crit-
ical points and arcs describing the topological modifi-
cations between these points.

TDA being agnostic to the application domain, it has
been successfully applied across various areas, rang-
ing from medicine [16, 19, 26] to musicology [2] or
chemistry [20]. Recently, TDA has been used to ana-
lyze 3D medical imaging for assisting practitioners [29,
27], e.g., for discovery in preclinical spinal cord in-
jury and traumatic brain injury [19]. In particular, the
Reeb graph has been used for 3D micro-vascular mod-
eling [39] with non-invasive imaging modality to ana-
lyze important retina-associated diseases.

As an answer to the increasing data size, recent ap-
proaches propose parallel and massively parallel imple-
mentations of algorithms to build topological descrip-
tors [28, 30]. Moreover, the complexity of data also
presents challenges related to dimension and noise.

Objectives. We aim for a massively parallel implemen-
tation of a Reeb graph construction algorithm that pre-
serves the fine-grained topological information of the
data.

Contributions. We propose to compute a Reeb graph
variant called the Local to Global Reeb Graph (LGRG)
via a local information diffusion algorithm (examples
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Figure 1: Local to Global Reeb Graph of a tiger (a), and a cerebral vascular tree (b).

are given in Figure 1). Our LGRG construction algo-
rithm results in three main contributions.

• We present a refined classification of critical points.
• We offer an extended Reeb graph, which can be

computed using only local information provided by
a topological description of the structure, without re-
quiring a simplicial complex but only a mesh.

• We propose a massively parallel implementation of
an algorithm computing LGRG relying on the gen-
eralized maps data structure [10].

A key idea of our approach is to exploit topological
proximity rather than geometric one when building the
graph’s edge. We obtain a Reeb graph variant that also
considers degenerate critical points (more precisely, de-
generate saddle points), offering a robust and com-
prehensive solution for handling complex structures.
While the algorithm for computing the LGRG does not
depend on the topological data structure, we use gen-
eralized maps because their homogeneity offers paral-
lelizing possibilities.

Paper organization. The paper is organized as follows.
Section 2 reviews the various approaches to build (vari-
ants of) Reeb graphs and the existing parallelized al-
gorithms. Section 3 recalls the generalized map data
structure and the islet algorithm used for paralleliza-
tion. Section 4 presents our refined classification of the
critical points, while Section 5 describes our Local to
Global Reeb graph. Section 6 is dedicated to our exper-
imental results and comparison with other tools, with
emphasis on cerebral vascular trees. Finally, Section 7
gives concluding remarks and discusses possible exten-
sions of our work.

2 RELATED WORK
Given a Morse function [18] f : M → R on a mani-
fold M with distinct critical points, the Reeb graph [25]
is made of nodes associated with the critical points of
the function and arcs where the level sets ( f−1(c), for
some c in R) retain the same connectivity. Using dis-

crete Morse function in [5], Reeb graphs can be studied
for discrete structures [23, 8, 33, 12, 24, 35].

Most approaches to the computation of Reeb graphs
assume that data is represented as a simplicial com-
plex [12, 33] since it simplifies the algorithmic for-
mulation of several standard computations in algebraic
topology, such as homology groups. To this end, stan-
dard approaches usually triangulate manifolds before
computations. For instance, a polyhedron would be de-
composed into tetrahedra as a preprocessing step. We
propose to work directly on a manifold mesh represen-
tation without this preprocessing step.

Discrete Reeb graphs proved fruitful across several
areas of scientific visualization [13], such as shape
understanding [4], segmentation [38, 15], feature
detection [32], or data surface simplification [8].
Within medical applications, Makram et al. [17] used
Reeb graphs to automatically locate cephalometric
landmarks, Sun et al. [31] applied Reeb graphs to cap-
ture the clustering structure of brain white matter nerve
fibers. Here, we leverage the topological information
provided by Reeb graphs to analyze surface meshes
of cerebral vascular trees generated by MRI image
reconstruction.

Various generalizations of Reeb graphs have been pro-
posed. The Extended Reeb Graph (ERG) was intro-
duced in [7] as a conceptual model for surface represen-
tation. The ERG generalizes Reeb graphs by also con-
sidering degenerate critical points, a recurrent problem
in discrete surface models while respecting the seman-
tic representation of the Reeb graph. The Augmented
Reeb Graph (ARG) adds additional information to the
basic structure, such as shape, size, color, or texture. It
improves the Reeb graph’s accuracy and relevance in
understanding complex data [34, 14]. Our Reeb graph
variant is similar to the ERG but only accepts degen-
erated saddle points. Compared to the ARG, we do not
store information on the Reeb graph but consider it built
on top of the mesh. Thus, information can be directly
retrieved from the object.
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Figure 2: Recursive decomposition of an object to obtain its g-map representation: (a) geometric object, (b) face
split (α2), (c) edge split (α1), (d) vertex split (α0) and final graph.

Advances in medical imaging enabled the acquisition
of higher quality, multimodal MRI images, resulting
in larger, more complex yet more detailed and fine-
grained images. A direct consequence is an increase in
computation times needed to build Reeb graphs which
resulted from parallel implementations for algorithms
computing Reeb graphs. Hajij and Rosen [15] proposed
one of the first parallel algorithms for Reeb graphs
based on Doraiswamy and Natarajan’s algorithm [11].
Their method partition the manifold into submanifolds
computes Reeb graphs on the submanifolds, and glues
the different Reeb graphs to obtain the complete graph.
In particular, the partition stage assumes that the entire
object is split into connected parts with approximately
as many vertices in each part, without further consider-
ation of the partitioning. Gueunet et al. [14] proposed
a parallel algorithm for computing an ERG based on
the optimal algorithm of Parsa [21], i.e., scanning the
mesh along a given direction while maintaining the sub-
components of the level sets, incrementally building the
Reeb graph. Guenet et al.’s algorithm scans the mesh
in two directions but requires a post-processing step.
These (variants of) Reeb graph constructions highly fil-
ter the input mesh, resulting in a graph where details
are lost. This lost information can be essential for de-
termining the object’s structure with a more accurate
representation. Our approach exploits local informa-
tion of the vertices to categorize the critical points and
then construct a graph describing the data’s topology.
Both parts run in parallel without filtering the input.

3 GENERALIZED MAP
This section presents the formalism of generalized
maps (g-maps). In brief, a g-map is a compact view of
the simplicial set formalism [1].

3.1 Topological model
Generalized maps [10] correspond to a generalization
of edge-based models [37] in any dimension and belong
to the class of combinatorial models used in topology-
based geometric modeling. In this approach, the topol-
ogy of an object is described as a cellular subdivision.

Intuitively, an object’s representation can be recovered
by recursively splitting its topological cells by decreas-
ing dimension. For instance, Figure 2 shows the de-
composition of a low-poly torus in 2D. From the initial
object (Fig. 2a), we separate the adjacent faces, which
are linked by blue arcs depicting the α2-links, i.e., adja-
cency relations along dimension 2 (Fig. 2b). This pro-
cess is iterated by splitting edges within faces via α1-
links for dimension 1 (Fig. 2c) and finally the vertices
via α0-links for dimension 0 (Fig. 2d). This last subdi-
vision yields the darts of the g-map which we view as
nodes of a graph whose arcs are the links obtained in
the decomposition.

Formally, g-maps can be defined as undirected graphs
labeled on arcs by dimensions and subject to additional
constraints [22]. In this article, we consider g-maps of
dimension 2, or 2-g-maps that we will simply call g-
maps. We summarize here the properties that suffice to
appreciate the content of our contributions. (1) Any dart
admits a unique incident αi-link for each i ∈ {0,1,2}.
(2) When two darts share an αi-link (for i ∈ {0,1,2}),
they belong to the same k-cells for k ̸= i, but to dis-
tinct i-cells. (3) G-maps represent orientable and non-
orientable quasi-manifolds.

G-maps provide a combinatorial description of the ob-
ject’s decomposition into topological cells. These cells
correspond to subgraphs induced by dimensions, called
orbits. An orbit consists of all the darts reachable from
an initial dart through a subset of all possible dimen-
sions. For instance, the orbit ⟨α1,α2⟩ retrieves darts
by following links between cells of dimensions 1 and
2, thus always within the same cell of dimension 0. In
other words, an ⟨α1,α2⟩-orbit encodes a vertex. Adding
geometric positions to vertices then means that all darts
within an ⟨α1,α2⟩-orbit share the same position value.
Such information is called embedding [3], which pro-
vides geometric information to the topological cells.
This information is stored on the vertices of the graph,
extending the topological representation of g-maps. In
this article, we will manipulate 3D positions attached



to the vertices and orientation boolean attached to the
empty orbit, i.e., directly to the darts.

Working with an orientation boolean attached to each
dart means that the represented object is necessarily
orientable. In this case, whenever a dart has the value
true, its αi-neighbors (for i ∈ {0,1,2}) have false,
and vice-versa. This property can be seen in Figure 3a,
where the true darts are drawn in pink and the false
darts in black. This property can be used to prevent con-
current writing in parallel algorithms. Indeed, if only
true darts write information, no dart can write at the
same time as any of its neighbors. Additionally, we
use the orientation boolean to orient vertices (see Sec-
tion 4.1).

3.2 Refresher on the islet algorithm
The islet algorithm [9] resembles the leader election al-
gorithm of distributed systems over networks by choos-
ing a dart within an ⟨o⟩-orbit. It spreads information
on all αi-links given by ⟨o⟩, iterating once over each
dimension before starting another step. It was used to
partition orbits to speed up the computation time of spe-
cific topological transformations, namely the augment
and update operations. As shown in [9], the algorithm
can efficiently be parallelized.
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Figure 3: Steps of the islet algorithm 3.2 on the orbit
⟨α1,α2⟩. (a) The initial g-map with values associated
with the darts. (b) diffusion of minimal value inside the
islet produced by α1-links. (c) diffusion inside the islet
from α2-links. (d) Final state where the minimal value
has been diffused for the whole orbit.

In Figure 3, we illustrate the islet algorithm to find a
representative dart within each each vertex. We choose
the representative dart as the one with the minimal
ID (which is an integer). Since vertices correspond

to ⟨α1,α2⟩-orbits, the values will be alternately prop-
agated on α1-links and α2-links. The object used is a
subdivided square, whose g-map representation is given
in Figure 3a, along with the darts’ ID. Figure 3b shows
the propagation along the α1-links and Figure 3c along
the α2-links. For example, the ID 4 in Figure 3a has
been propagated to three new darts in Figure 3c, now
covering the two adjacent faces. Some darts received
new values at each propagation step, meaning that the
process should still be iterated. The algorithm stops
when no dart changes its value, which necessarily hap-
pens as each orbit contains only finitely many darts.
The result of the algorithm is given in Figure 3d, where
darts in each ⟨α1,α2⟩-orbit share the minimum ID of a
dart within the vertex.

4 CLASSIFICATION OF THE CRITI-
CAL POINTS

This section presents our refined categorization of criti-
cal points, how to compute them, and how to exploit the
topological structure to obtain a parallel computation.
Note that our computation method is axis-dependent
(like all standard methods).

4.1 Local elevations
Assuming an oriented data structure to encode a mesh,
we propose to classify the critical points of the mesh
based on elevation configurations of the topological
neighborhood of vertices. To compute the vertices ele-
vation configurations, we first compute edge elevations,
which yield face corner elevations along consecutive
edges within faces, from which we deduce the vertex
elevation configuration by aggregating the elevations of
all its incident face corners. We now detail each step of
the computation, assumed to be computed along a given
axis u for a given vertex v.

e1 e2

e3
e4

F1

F3

F4 F2

Face corner

v

Orientation
Figure 4: Computing the elevations.

Edge elevation Each edge e incident to v computes an
edge elevation relative to v by comparing the position of
v and that of its other endpoint v′, depending on u. For-
mally, the edge elevation is the sign of the dot product
vv′ · u. Intuitively, a positive edge elevation describes



an edge in the same direction as the selected axis, i.e.,
v′ is ‘above’ v along u. In Figure 4, the edge e1 has a
positive edge relative to v. Note that the edge elevation
might be null. Besides, the edge elevation is relative to
the vertex v, and the edge elevation of e relative to v′ is
the opposite of the one relative to v.

Face corner elevation A face corner is a region de-
limited by two consecutive edges incident to the same
vertex in a given face. Note that the orientation of the
object naturally orients the face corners. In Figure 4,
the face F1 together with the edges e1 and e2 define one
of the four face corners of the vertex v. The face cor-
ner elevation is the oriented pair of edge elevations for
the two edges defining the face corner. If both edges
have a positive or null edge elevation, the face corner
has a HIGH elevation. Similarly, if both edges have
a negative or null edge elevation, the face corner has
a LOW elevation. Note that, if both edges have a null
edge elevation, the face corner is flat. For instance,
(F3,e3,e4) has a LOW face corner elevation in Figure 4,
while (F1,e1,e2) has a HIGH one. The two remaining
cases correspond to non-null edge elevations with op-
posite signs. The face corner elevation then depends on
the orientation. If the first edge has a negative elevation
and the second a positive one, the face corner eleva-
tion is UP. Reversely, a positive elevation followed by
a negative one yields a DOWN face corner elevation. In
Figure 4, (F4,e4,e1) has a UP face corner elevation and
(F2,e2,e3) a DOWN one.

Vertex elevation sequence Finally, we derive a vertex
elevation sequence for v as an ordered sequence of
face corner elevations around a vertex. The sequence
is obtained from the natural ordering induced by
the object’s orientation. This sequence is defined
as up to one circular permutation. For instance,
one vertex elevation sequence for v in Figure 4 is
given by the sequence of face corner elevations of
(F1,e1,e2), (F2,e2,e3), (F3,e3,e4), (F4,e4,e1), i.e.,
HIGH, DOWN, LOW, UP. The vertex elevation sequence
is then used to classify the vertex and find the critical
points. Note that, if one of the face corner elevations is
flat, it is not considered when calculating the elevation
sequence.

4.2 Classification
We propose to retrieve and classify a mesh’s critical
points based on the elevation sequence of its vertices.
We distinguish four types of critical points. In contrast
with the usual maxima, minima, and saddle points, we
further differentiate between saddles of birth and death.

A (local) minimum is a vertex with only HIGHs in its el-
evation sequence, e.g., Figure 5a. A (local) maximum is
a vertex with only LOWs in its elevation sequence, e.g.,
Figure 5b. A saddle is a vertex with at least two, by def-
inition non-consecutive, UPs or DOWNs. The difference

between saddles of birth and saddles of death comes
from the direction of the vertex normal. The saddle is a
saddle of birth if its normal aligns with u (positive dot
product) and a saddle of death otherwise. Concretely, a
saddle of birth separates the inside of an object below
and the outside above along the axis u. Examples of
saddles of birth and death are respectively given in Fig-
ure 5c and in Figure 5d. Any other elevation sequence
corresponds to a regular, i.e., non-critical, point.

(a) (b)

(c) (d)

Figure 5: Classification of critical points (a) Local min-
imum. (b) Local maximum. (c) Saddle of birth. (d)
Saddle of death.

Our classification represents two minor contributions.
First, the classification only relies on topologically local
information around a vertex and can be computed with-
out first triangulating the manifold. Second, we further
distinguish between the saddle points using only local
information. A watchful reader will notice that stan-
dard approaches to Reeb graph computation build the
classification of critical points essentially from all edge
elevations around a vertex. We introduced the inter-
mediate step of face corner elevations as an additional
speed-up when extracting critical points in parallel. We
now detail this parallel computation.

4.3 Parallelization
The three steps from Section 4.1 for the detection and
classification of critical points only require local infor-
mation around the vertices and can therefore easily be
parallelized.

Edge elevation Within the g-map data structure, an
edge e and a reference vertex v are both encoded within
a single dart, while the α0-link allows accessing the
other endpoint of the edge (in constant time). While two
α2-linked darts encode a given edge e and a given vertex
v (they correspond to the two faces sharing the edge),
only one dart has true as the orientation boolean.
Since its α0-neighbor also has false for orientation
boolean, the edge elevation can be computed by com-
paring the position of each true-oriented dart with its



α0-neighbor. The subroutine can be realized simulta-
neously on all true-oriented darts without concurrent
read or write, i.e., in parallel.

Face corner elevation A face corner corresponds to
a ⟨α1⟩-orbit in a g-map and thus to two darts with dif-
ferent orientation boolean values. Thus, the face corner
elevation is obtained by running a parallel for loop on
all darts oriented true and comparing the dart’s edge
elevation with that of its α1-neighbor. The four cases,
HIGH, LOW, UP, and DOWN are respectively illustrated
in Figures 6a, 6b, 6c, and 6d.

C

HIGH
B

A
+

-

(a)

CLOWB

A
+

-

(b)

CUP

B

A
+

-

(c)

CDOWN

B

A
+

-

(d)
Figure 6: The different face corner elevations. (a)
HIGH: Both edges have a positive elevation (B and C
are “higher” than A). (b) LOW: Both edges have a neg-
ative elevation (B and C are “lower” than A). (c) UP:
The dart from the orbit of A with a true orientation
belongs to an edge with a negative elevation, and the
other edge has a positive elevation. B is lower than A,
which is lower than C. (d) DOWN: The dart from the
orbit of A with a true orientation value belongs to an
edge with a positive elevation, and the other edge has a
negative elevation. (B is higher than A, which is higher
than C).

Vertex elevation sequence Retrieving the vertex el-
evation sequence requires to elect one representative
dart per vertex, i.e., per ⟨α1,α2⟩-orbit. Choosing such
a dart can be performed in parallel via the islet algo-
rithm. By starting with the representative dart of a
vertex, its elevation sequence is obtained by cycling
through the α2 ◦α1-links around it and retrieving the
associated face corner elevation. This task can again
be performed in parallel within each vertex. In Fig-
ure 7, starting from any pink dart, we cycle through the
other three pink darts via α2 ◦α1-links to obtain either
UP, DOWN, UP, DOWN or DOWN, UP, DOWN, UP. Fi-
nally, each aggregated sequence is analyzed to classify
the vertex.

DOWN

UP

DOWN

UP

Figure 7: Elevation sequence around a vertex.

5 LOCAL TO GLOBAL REEB GRAPH
(LGRG)

Once the critical points have been identified, we use a
propagation algorithm that spreads information, simi-
lar to a gossip algorithm for distributed systems. The
motivation is to obtain a partition of the mesh into
sub-components created and ended by critical points.
We then build our LGRG by connecting critical points
(which are the nodes of the graph) with arcs encoding
how the sub-components link these critical points. Note
that a sub-component may correspond to several arcs in
our Reeb graph variant.

Before detailing the propagation algorithm and the con-
struction of the LGRG, we provide some insights via
the example of Figure 8. The shown torus contains four
critical points: a maximum in red, a minimum in blue,
a saddle of birth in light pink, and a saddle of death in
green (the elevations being computed along the vertical
axis). These critical points split the torus vertices into
four sub-components: green, red, purple, and yellow.
The yellow sub-component corresponds to the propaga-
tion area of the blue minimum, ended by the pink saddle
of birth, giving rise to the arc between the bottom two
nodes in the graph of Figure 8b. For this specific ob-
ject, each sub-component in Figure 8a results in an arc
in Figure 8b. Note that each node is associated with
a critical point drawn with the same color for ease of
visualization.

(a) (b)
Figure 8: Area propagation on a mesh of a torus (a)
the mesh and (b) the resulting graph, our Reeb graph
variant, based on area adjacency.



In the sequel, we use the terms “above”, “below”, and
“topmost” to be understood along u, i.e., as the sign of
the dot product with u.

5.1 Propagation and sub-components
The motivation for a propagation algorithm is to obtain
a construction fully given by the description of a behav-
ior for the mesh vertices. Each vertex propagates some
information related to a given critical point. Intuitively,
the vertex spreads information describing where the
last change in the connectivity of the level sets comes
from. In practice, this corresponds to the topmost criti-
cal points located below the vertex propagating this in-
formation. Since the computation on vertices exploits
locally retrieved information, it runs in parallel.

(a) (b)
Figure 9: On the left (a), a saddle of birth and its in-
cident edges elevation generates two sub-components.
On the right (b), the same saddle of birth with the ele-
vation of its incident edges grouped by equivalent edges
(using the same color) shows the beginning of red and
purple sub-components.

The information propagated and the propagation used
naturally follows from the semantics associated with
the (non-)critical vertices of the mesh. Let us recall
the meaning of mesh vertices concerning the changes
to the local connectivity of the level sets to clarify the
propagated labels. A regular point does not change the
local connectivity; therefore, it initially does not own
any label. A maximum ends a level set, meaning it
initially owns no label and does not propagate any. A
minimum creates a new level set, thus initially own-
ing a unique label spread upwards. Similarly, a saddle
of death merges several level sets into one, so it ini-
tially owns a unique label spread upwards. The more
complex case concerns the saddles of birth. Such crit-
ical points split a level set into several. Therefore, it
initially needs to own one label per created level set.
For instance, the saddle of birth given in Figure 9a is
incident to several edges with positive elevation. We
cluster them into connected sequences around the sad-
dle, as shown in Figure 9b. Thus, we create one label
per group of edges with positive elevation. All edges
within a group initially propagate its label.

The partitioning algorithm alternates the propagation of
labels along the edges with positive elevation and the

u

v

∅

∅ → ∅

(a)
u

v

X

∅ → X

(b)
u

X

w
Z

x
Y

v
X → Y

(c)
Figure 10: Diffusion pattern of a vertex v. (a) v is un-
labelled and does not receive any label: nothing occurs.
(b) v is unlabelled and receives some label X : v updates
its label to X . (c) v is already labeled by X and receives
the labels Y and Z from neighbors: it compares X , Y
and Z to find that Y is the highest, so v updates its label
to Y .

update of vertex labels. When receiving labels, a ver-
tex always keeps the topmost received label (note that
only regular vertices follow this process). The various
possible patterns are given in Figure 10. Note that the
values of interest correspond to critical points. The al-
gorithm stops when no vertex updates its label. A sub-
component corresponds to the set of vertices sharing the
same label when the algorithm stops. It corresponds to
all regular vertices immediately higher than the critical
point that gave them its label. By construction, a sub-
component is delimited by one critical point below and
at least one but possibly several critical points above.

The propagation in denser parts of the mesh is natu-
rally slower than in sparser parts. Thus, some vertices
may be first labeled by a critical point, which does not
correspond to their final sub-component. Indeed, the al-
gorithm later overwrites the label of these vertices (and
thus of the whole area it propagated to) with one from
a higher critical point, maybe even several times, until
the highest one is found. In practice, an area propagates
from a critical point upwards over a mesh until it can no
longer propagate because the vertices of its boundary
are either connected by edges with a negative elevation
or connected by edges with a positive elevation to ver-
tices labeled by a higher critical point (including critical
points themselves).

The g-map data structure simplifies the algorithm as la-
bels can be stored on darts and propagated along α0-
arcs. Reasoning on darts essentially means that (a) ver-
tices corresponding to saddles of birth store several la-
bels among the darts of their ⟨α1,α2⟩-orbit, and (b) ver-
tex update means choosing the topmost label within the
⟨α1,α2⟩-orbit of regular vertices. The vertex label is
updated via the islet algorithm (see Section 3.2), prop-
agating labels instead of dart IDs.

5.2 Local to Global Reeb graph construc-
tion

The propagation algorithm terminates when no vertex
updates its label, constructing a mesh partition into sub-
components. We then build the LGRG from the adja-
cency relationships between the subcomponents. If an



edge links two vertices in the mesh belonging to distinct
sub-components, we add an arc to the LGRG between
the associated critical points. Note that only one arc is
added to the LGRG even if several edges in the mesh
link vertices between the same two sub-components. In
the propagation algorithm, saddles of birth create sev-
eral sub-components (identified by a group of consec-
utive edges with positive elevation). Since these sub-
components arise from the same critical point, the in-
duced arcs in the LGRG are all linked to the same node
corresponding to the saddle of birth. This construction
also justifies propagating several identifiers from a sad-
dle of birth. Indeed, had we propagated only one identi-
fier, some arcs would have been missing in the LGRG.
For instance, the two arcs between the saddle of birth
and the saddle of death in the torus of Figure 8b would
have been merged whereas they should remain distinct.

Once again, this step can be parallelized by checking all
edges simultaneously and eliminating redundant pairs
of subcomponents. The islet algorithm directly enables
this computation by identifying a dart within each edge
(⟨α0,α2⟩-orbit) and comparing its label with the one of
its α0-neighbor.

6 RESULTS
Experiments were conducted on an 11th Gen Intel(R)
Core(TM) i7-11850H @2.50GHz with 8 hyper-
threaded cores (16 simultaneous threads) and 32GB
of RAM. We used the implementation of g-maps
provided by Jerboa [6] and Java streams (with JDK
17) for parallelization. We tested our method using the
height function as a scalar field on standard geometric
processing objects, e.g., a tiger, a dragon, etc. (see
Figure 12), and medical vascular trees (see Figure 13)
coming from the CROWN MICCAI challenge [36].

Table 1 provides statistics about the objects in our
dataset and the critical points found by the three
methods. Our approach finds a distribution of critical
points on the standard objects similar to TTK, while
ReCon produces many additional critical points. The
example of the pegasus highlights that TTK filters
the object and misses a lot of details. We find nearly
5 times more critical points on this object. These
additional critical points come from the base and the
wings, as shown in Figure 12e. Although it may not be
relevant for encoding the topology of the pegasus, such
a fine-grained description of the topological changes
corresponds to the data of interest for the medical staff
in our consortium. In the second half of the table,
statistics are given on twelve cerebrovascular trees
taken from various patients. Recon still finds many
more saddle points than our method and TTK. How-
ever, we detect more minima and maxima, highlighting
that we better capture subtle topological variations
filtered out by the other tools.

Figure 11: Comparison between sequential and parallel
runtimes for LGRG on cerebral trees.

We also compared sequential and parallel executions of
our method on the cerebral trees, i.e., where both the
critical points classification and LGRG construction are
performed as discussed in Sections 4 and 5. Computa-
tion times are given in Figure 11 and show an average
speed up by a factor 2.08.

7 CONCLUSION
We proposed a novel approach for categorizing criti-
cal points by exploiting local topological information
at each vertex and a variant of the Reeb graph built
from a topology-induced information propagation from
the critical points over the mesh. We then leveraged
this local approach to provide a parallel algorithm for
characterizing critical points and the computation of
LGRG on the g-map data structure, which we imple-
mented in Jerboa. In particular, using topological infor-
mation reduces the dependency on geometric features,
thus avoiding excessive filtering and maintaining data
integrity. We plan to apply our LGRG construction for
medical analysis to assist in the diagnosis of strokes. As
of now, we also hope to understand better the topolog-
ical features that need to be detected for the diagnosis
with the help of the medical staff on the one hand and by
exploiting machine learning approaches on our LGRG.
For instance, apart from the circle of Willis, the exis-
tence of a topological cycle in the cerebral vascular tree
is an indicator of a stroke. Still, whether this criterion is
sufficient or even necessary remains unclear. Out of the
medical field, our new LGRG also opens the way for
locally induced mesh segmentation and data compres-
sion.
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Figure 12: LGRG computed on a torus ((a), a tiger (b), a dragon called "XYZ RGB" (c), Garuda and Vishnu (d)),
and a pegasus (e).

(a) (b)
Figure 13: LGRG computed on the cerebral vascular trees of patient 1 (a), and patient 2 (b).

Object #faces #vert Minimum Maximum Saddles
(∗1000) (∗1000) TTK ReCon Ours TTK ReCon Ours TTK ReCon Ours

Torus 1.1 0.6 2 2 2 1 1 1 3 3 3
Tiger 116.7 58.4 26 191 29 16 230 23 40 419 30

XYZ RGB 199.8 99.9 648 7,768 659 519 14,330 508 1,102 20,875 1,168
G. & V. 222.9 111.4 120 3,903 120 120 7,814 121 307 11,576 308
Pegasus 667.5 333.7 287 3,169 1,164 229 6,605 3,556 517 9,723 584
Patient 1 129.4 65.7 198 385 509 210 685 1246 261 926 167
Patient 2 123.9 62.7 239 - 367 249 - 1,086 263 - 166
Patient 3 100.8 50.9 122 307 272 126 475 624 154 695 114
Patient 4 152.3 77.1 308 469 653 307 807 1,667 458 1127 310
Patient 5 106.3 54.0 155 418 430 163 733 990 194 1023 133
Patient 6 125.7 63.7 166 400 396 192 609 949 238 895 171
Patient 7 137.2 69.5 271 470 448 298 722 1,367 329 971 230
Patient 8 117.0 59.5 235 376 500 256 778 1,386 272 927 170
Patient 9 133.8 67.8 204 477 511 227 767 1,089 280 1097 189
Patient 10 160.0 80.9 212 490 462 231 778 908 279 1118 200
Patient 11 82.1 41.5 130 264 273 127 439 692 159 604 101
Patient 12 101.8 51.6 177 340 419 190 582 1,023 241 803 173

Table 1: Comparison of the critical points computed with TTK, ReCon, and our method.
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