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Abstract
This report presents a set-theoretic framework for the instantiation of rule schemes in the

Jerboa platform, a tool for developing domain-specific geometric modelers. Jerboa enables the
design of geometric modeling operations as graph transformation rules generalized to rule schemes
for genericity over the topological content of the operations. Current approaches to algebraic
graph transformations are typically described within a finitary M-adhesive category (where M is
a suitable system of monomorphisms), employing compositional double-pushout (DPO) semantics
for rewriting. In this report, we propose a lightweight, set-theoretic description that exploits
the proximity between presheaf topoi and sets to provide an explanation that does not rely
on extensive theoretical background. The proposed method simplifies the formal description of
modeling operations to bridge the gap between abstract concepts and their practical application in
geometric modeling. The framework offers a complementary perspective to categorical approaches
at the foundation of Jerboa.

Keywords. Graph rewriting ; Rule instantiation ; Topology-based geometric modeling ; General-
ized maps ; Set-based explanation.

1 Introduction
This technical report provides a concise, set-theoretic explanation of the instantiation of Jerboa rule
schemes. Jerboa [3] is a platform for creating domain-specific geometric modelers for applications such
as mechanical engineering, CAD/CAM, medical imaging, and entertainment. Geometric modelers
support creating and editing geometric shapes through modeling operations tailored to the specific
domain. Jerboa enables the conception of dedicated modelers by (1) defining topological and geometric
properties of the objects, and (2) designing a collection of modeling operations to modify them. Jerboa
includes a rule editor where modeling operations are defined as rules in a Domain-Specific Language
(DSL) based on graph transformations [6, 7]. A graph transformation applies a rule L → R to G,
where L and R are graphs respectively representing the pattern to match and remove and the pattern
to insert. For instance, L might represent a face and R its subdivision. The standard approach to
graph transformation, known as DPO for double pushout, includes an interface I, describing the parts
preserved within the rule – essentially, the intersection of L and R. Typically, L specifies an exact match
in G, like a specific triangle or quad. To bypass this over-specification, rules have been generalized to
rule schemes that abstract the exact topology by an orbit type that essentially describes the topological
cell on which the operation can be applied [11]. Applying a rule scheme to a geometric object encoded
by a graph G then requires an instantiation step, where an explicit rule is derived from the rule scheme.
While [11] offers a categorical framework for rule scheme instantiation, the intrinsic proximity between
presheaf topoi and sets naturally allows for a set-theoretic explanation of the construction, which is
presented here. This report draws on explanations from [10] and [9].

2 Representing Objects as Generalized Maps
Topology-based geometric modeling deals with an object’s outer and complete internal structure,
represented by subdividing the object into topological cells. In 2D, objects contain three kinds of cells.
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(a) (b) (c)

Figure 1: Variations of topology and geometry: (a) an cube, (b) same topology as (a) but with a
different geometry, and (c) same geometry as (a) but with a different topology.

Vertices correspond to 0-dimensional cells, edges link vertices and form 1-dimensional cells, and faces
are 2-dimensional cells bordered by edges. In higher dimensions, i-dimensional cells are enclosed by
(i − 1)-dimensional cells. For short, i-dimensional cells are called i-cells.

In topology-based geometric modeling, the focus is on the topological relations between these cells,
which include adjacency and incidence relations. An i-cell is incident to an (i + 1)-cell if it belongs to
its boundary. In this case, the (i + 1)-cell is also said to be incident to the i-cell. For instance, an edge
is incident to a vertex if the vertex is one of its endpoints, while a face is incident to an edge if the edge
lies on its boundary. Two i-cells are adjacent if they share a common cell in their boundary, i.e., if they
are incident to the same (i+ 1)-cell (or (i− 1)-cell). For example, two edges are adjacent if they share a
vertex or belong to the same face.

The object’s topology is completed with geometric information to visualize the object. At the
minimum, vertex positions are required to display the object. Additional values such as colors, textures,
normals, physical properties, or semantical information may be added based on the application domain.
This non-topological information is encapsulated via embedding values added to the topological cells of
the object and forms its geometry. The distinction between topology and geometry is illustrated in
Fig. 1. Fig. 1a depicts a cube with faces split into two triangles. Fig. 1b shows the same topology as
Fig. 1a but with a stretched geometry. Conversely, Fig. 1c maintains the same vertex positions as in
Fig. 1a but flips an edge (on the cube’s right side), resulting in a different topology.

2.1 Topological Representation
Among the various data structures used to represent geometric objects, edge-based data structures [12]
encode the exact internal representation of the object. These structures are formally defined as
various models of combinatorial maps [8], which define topology through permutations over a set of
elements called darts, essentially describing simplicial sets. Among combinatorial maps, generalized
maps (Gmaps) allow representing arbitrary cells (e.g., faces with any number of vertices) as explicit
substructures, facilitating formal reasoning on subdivided objects. Gmaps have been used for formal
verification in Coq [5]. A Gmap describes the topology of an object through its cellular decomposition
and can be interpreted as a graph with arcs labeled by topological dimensions [11].

The combinatorial definition of Gmaps [4] uses a set of involutions I1, . . . , In over a set of darts D,
where each Ii is a symmetric relation over D, i.e., a subset of D ×D. Thus, the structure ⟨D,I1, . . . , In⟩
can be interpreted as a graph (D,I1 ∪ . . . ∪ In), where each dart corresponds to a node, and each
involution Ii defines a set of i-labeled undirected arcs. The final set of edges is the union of the Ii’s,
with each arc labeled by its dimension, representing adjacency relations between the object’s sub-parts.

In this report, a graph is an undirected graph, potentially with parallel arcs and loops. Formally, a
graph G is defined as a triple (NG,AG, λG) where NG is the set of nodes, AG is the set of arcs, and
λG ∶AG → ℘(1,2)(NG) is the incidence function. The incidence function maps each arc a to a subset of
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nodes λG(a) ⊆ NG with the condition that λG(a) has cardinality 1 or 2. In the former case, the arc is
a loop; in the latter, it connects two nodes. In the algebraic approach to graph rewriting, the different
dimensions are encoded through typing, where a type graph specifies the allowed types of nodes and
arcs. For our needs, the typing of the arcs can be seen as a labeling function αG ∶AG → Σ, where Σ is a
labeling alphabet. An arc a ∈ AG with αG(a) = k is called a k-arc, and if nodes u and v are connected
by an k-arc, we write u ●

k
−● v. The subscript G will be omitted.

Definition 2.1 (Generalized map – adapted from [11]). A generalized map of dimension n, n-Gmap,
or simply Gmap, is a tuple (D,L,λ,α) such that (D,L,λ) is a graph and α ∶L → 0..n is a labeling
function,1 satisfying the two following topological constraints:

Incidence constraint for every dimension i, every dart d admits a unique incident i-arc , i.e.,

∀i ∈ 0..n, ∀d ∈D, ∃!l ∈ L, λ(l) = d ∧ α(l) = i.

Cycle constraint for dimensions i and j such that i + 2 ≤ j, any path of length 4 labeled by ijij is a
cycle, meaning that the source u and the target v are equal in any path u ●

i
−●

j
−●

i
−●

j
−● v, i.e.,

∀i ∈ 0..n,∀j ∈ 0..n, ∀l0 ∈ L, ∀l1 ∈ L, ∀l2 ∈ L, ∀l3 ∈ L,

⎛
⎝
(i + 2 ≤ j) ∧ ⋀

k=0,2
(α(lk) = i) ∧ ⋀

k=1,3
(α(lk) = j) ∧ ⋀

k∈0..2
(λ(lk) ∩ λ(lk+1) ≠ ∅)

⎞
⎠
Ô⇒ λ(l0)∩λ(l3) ≠ ∅.

Def. 2.1 translates the combinatorial definition of Gmaps [4] into graphs. To avoid vocabulary
clashes between communities (graph rewriting, combinatorics, and geometric modeling), we use the
combinatorial terms darts and links for the constitutive elements of a Gmap. The constraints of Def. 2.1
are derived from involution properties and ensure that an (i − 1)-cell separates at most two i-cells and
that any two i-cells can only be connected along an (i − 1)-cell. For example, in a 2D structure, three
faces cannot share an edge, and faces cannot be connected along a vertex.

The semantics of the constituent elements of a Gmap allow reconstructing the Gmap corresponding
to a given object through a process called dimensional unification [9]. Specifically, the semantics of a
dart is defined as a tuple of incident cells, and an i-link encodes the adjacency of two i-cells sharing a
common cell in all other dimensions. For instance, in a 2-Gmap:

• A dart is a tuple (v, e, f), where v is a vertex, e is an edge, and f is a face. The tuple satisfies
the constraints that v is an endpoint of e and e lies on the boundary of f .

• A 0-link connects two darts, d = (v, e, f) and d′ = (v′, e, f), which share the same edge e and face
f .

An example is illustrated in Fig. 2, showing how a tree is represented as a 2-Gmap through dimensional
unification. Beginning with the geometric object in Fig. 2a, we enumerate all valid dart tuples
(vertex, edge, face), as shown in Fig. 2b. These darts are positioned near their corresponding topological
cells for ease of visualization. Subsequently, links are incrementally added for each dimension:

• 0-links (● ● in black – Fig. 2c) connect darts sharing an edge and face but not the same vertex.

• 1-links (● ● in red – Fig. 2d) connect darts sharing a vertex and face but not the same edge.

• 2-links (● ● in blue – Fig. 2e) connect darts sharing a vertex and edge but not the same face.

If some dart lacks a sibling for a given i-link due to their i-cell lying on the boundary of the object,
an i-loop is added. For simplicity, we consider objects where only the maximal dimension (n of an
n-Gmap) may have boundaries, resulting in n-loops. Loops may be omitted from figures for clarity.
The graph in Fig. 2e corresponds to the Gmap derived from the object in Fig. 2a.

1Where 0..n is the set of integers between 0 and n (included)
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 2: Gmap construction: (a) 2D object, (b) darts (●), (c) 0-arcs (● ●), (d) 1-arcs (● ●), (e) 2-arcs
(● ●). Cells: (f) ⟨1,2⟩-orbit (vertices), (g) ⟨0,2⟩-orbit (edges), (d) ⟨0,1⟩-orbit (faces).

2.2 Topological Cells and Orbits
We consider an n-Gmap G. The topological cells (vertices, edges, faces, . . . ) of the associated
geometric object are extracted by graph traversal using links of specific dimensions. These subgraphs,
parameterized by subsets of dimensions called orbit types, are called orbits.

Definition 2.2 (Orbit – adapted from [11]). An orbit of G is a subgraph formed by all darts reachable
from an initial dart through links in a subset o ⊆ 0..n. For a dart d, the orbit is denoted as G⟨o⟩(d),
or simply ⟨o⟩(d) when G is clear from the context. The orbit is called an ⟨o⟩-orbit or said to be of
type ⟨o⟩.

Intuitively, an orbit groups darts corresponding to a shared topological element. For example,
an ⟨1,2⟩-orbit includes all darts reachable from an initial dart via 1- and 2-links. The semantics of
darts and links imply that traversing an 1-link changes the edge while preserving the vertex and
face, whereas traversing an 2-link changes the face while preserving the vertex and edge. Recursively
traversing all 1- and 2-links from a dart thus allows visiting all darts that belong to the associated
vertex, effectively defining the vertex. Orbits describe all topological cells, such as vertices (⟨0,1⟩-orbits),
edges (⟨0,2⟩-orbits), and faces (⟨1,2⟩-orbits), as shown in Fig. 2f, 2d, and 2g, respectively.

2.3 Geometric Information and Embedding
Gmaps describe the object’s topology, describing the decomposition into cells and their connectivity.
Although this report emphasizes the topological aspects of modeling operations, we briefly mention
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Figure 3: Embeddings: (a) embedded Gmap, (b) position ∶ ⟨1,2⟩ → Point3, (c) color ∶ ⟨0,1⟩ →
ColorRGB.

how geometric information can be added using embedding functions. These functions assign data such
as positions or colors to topological cells, akin to the geometric buffers of a mesh. For instance, vertex
positions (on 0-cells) or face colors (on 2-cells) provide enough information for the visualization of
polyhedral objects.

Formally, an embedding is a function π ∶ ⟨oπ⟩ → τπ, where π is the embedding name, τπ is the data
type, and ⟨oπ⟩ is the domain of the embedding [1]. For example, in a 2-Gmap:

• color ∶ ⟨0,1⟩ → ColorRGB assigns colors to faces.

• position ∶ ⟨1,2⟩ → Point2 maps vertices to 2D coordinates.

The associated categorical construction is called graph attribution [6], but only allows values to be
added to nodes or arcs of a graph. Embedded Gmaps are obtained by storing a single value for each
embedding function on each dart, together with an embedding condition [1] requiring that all darts
within the same ⟨oπ⟩-orbit share the same τπ-value. A portion of the Gmap in Fig. 2a, representing the
tree’s top, is shown with embedded positions and colors in Fig. 3a, while the data values are separately
illustrated in Figs. 3b and 3c.

3 A Folded Representation of Modeling Operations
From the graph-based definition of Gmaps, modeling operations can be expressed as graph rewriting
rules. Rules simplify the design of operations and alleviate their implementation, provided that a
suitable rule application engine is available.

Consider the operation of inserting a vertex into an edge. In a 2-Gmap, this operation varies
depending on the edge’s freedom (i.e., whether it is on the boundary). A free edge forms a ⟨0,2⟩-orbit
with 2-links as loops, while a sewn edge has 2-links as non-loop arcs. This distinction yields two
configurations for vertex insertion: one for a free edge (see Fig. 4a for the rule and Fig. 4c for an
example application) and one for a sewn edge (see Figs. 4b and 4d). These figures zoom in on the
modified part, showing both the Gmap and the object for clarity. The object’s vertices are marked
with dots to highlight the added ones, while darts are annotated with identifiers for readability.

The incidence constraint of Gmaps ensures that specifying a single dart is enough to apply these
rules. The complete mapping is then built through a joint traversal of the left-hand side (LHS) and the
rewritten graph.

We illustrate this process using the rule application from Fig. 4c. The match maps node x to node
a. To preserve the node adjacency and the arc labels, the only valid match maps arcs incident to x
onto those incident to a. Thus, x ● ● x is mapped to a ● ● a, and x ● ● y to a ● ● b. Mapping these
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Figure 4: Graph transformation rules for the vertex insertion. Graph transformation rule for the vertex
insertion in a free edge (a) and its application on a 2-Gmap on an outer edge (c) via the match deduced
from x↦ a. Graph transformation rule for the vertex insertion in a sewn edge (b) and its application
on a 2-Gmap on an inner edge (d) via the match deduced from x↦ e.

arcs further constrains the match, such that y must map to b. By recursively exploring incident arcs
of each newly mapped node, we can reconstruct the full match starting from the mapping of x to a.
The incidence constraint allows deriving the complete match from an initial mapping of one node per
connected component of L.

A rule scheme provides a compact, folded representation of a transformation, which is unfolded to
obtain the specific graph transformation applicable to an object. For example, the two configurations
for vertex insertion can be unified by folding the edge along its 2-links, yielding the rule scheme shown
in Fig. 5a and parameterized by the orbit type ⟨2⟩. To create a graph-level rule, we start with a graph
consisting of an ⟨2⟩-orbit, using it to unfold node decorations. If unfolded as a 2-loop, the rule scheme
yields the rule in Fig. 4a; unfolding it with two darts sharing a 2-link gives the rule in Fig. 4b. Further
folding produces the rule scheme shown in Fig. 5b. These folding and unfolding processes are defined
using relabeling functions.

4 Relabeling Function
Definition 4.1 (Relabeling function – from [10]). A relabeling function of dimension n, or relabeling
function, is a partial function f ∶0..n → 0..n ∪ {_}, injective on 0..n. Here, ‘_’ is a special symbol
called the removing symbol.

Applying a relabeling function to an orbit type involves applying it to each dimension within the
orbit. For example, {0↦ 1,2↦ 2}(⟨0,2⟩) = ⟨1,2⟩. The positions of dimensions in the orbit type fully
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Figure 5: rule schemes for the vertex insertion: (a) by folding the 2-links and (b) both the 0- and
2-links.
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(a)

a1 b1

(b)

a0 b0

(c)

c d
e f

(d)

c1 d1
e1 f1

(e)

c0 d0
e0 f0

(f)

Figure 6: Relabeling functions applied to orbit graphs: orbits (a) and (d) of type ⟨0,2⟩, label mod-
ification (b) and (e) via the relabeling function ⟨0,2⟩ ↦ ⟨1,2⟩, and label deletion (c) and (f) via the
relabeling function ⟨0,2⟩ ↦ ⟨_,2⟩.

describe the relabeling function, which can then be recovered from reference orbit type ⟨o⟩ and its
relabeled version ⟨o′⟩. For instance, given ⟨0,2⟩ ↦ ⟨1,2⟩, the relabeling function {0 ↦ 1,2 ↦ 2} can
be reconstructed unambiguously. More precisely, the motivation behind relabeling functions is to
encode orbit rewriting, so we often denote them as relabelings of orbit types. Let ⟨o⟩ = (oi)i≤k be
the set of dimensions on which f is defined (ordered by increasing values); then f is expressed as
⟨o⟩ ↦ ⟨(f(oi))i≤k⟩. The injectivity constraint ensures that no dimension d appears more than once in
⟨o′⟩ = ⟨(f(oi))i≤k⟩. Note that ⟨o′⟩ is not strictly an orbit type, as it may contain the symbol ‘_’ and
thus is referred to as a generalized orbit type, which we will call simply an orbit type for convenience.
The relabeling function’s domain ⟨o⟩ must not include the removing symbol. A relabeling function
naturally extends from orbit type rewriting to orbit rewriting. Given a relabeling function ⟨o⟩ ↦ ⟨o′⟩
and an orbit ⟨o⟩(v), the orbit ⟨o′⟩(v) is obtained by relabeling all links according to the function.

Fig. 6 illustrates the application of relabeling functions to orbit graphs. Applying the relabeling
function {0 ↦ 1,2 ↦ 2} to the graph in Fig. 6a yields the graph in Fig. 6b. The highlighted parts in
Fig. 6 will be exploited later; for now, we focus on the relabeling of links, i.e., the modifications of
link colors. The 2-loops incident to nodes a and b become 2-loops incident to nodes a1 and b1, via
the relabeling 2 ↦ 2. Similarly, the relabeling 0 ↦ 1 transforms a ● ● b into a1 ● ● b1. Applying this
relabeling function to the graphs in Fig. 6d yields the graphs in Fig. 6e.

As the name suggests, the removing symbol ‘_’ signifies the deletion of the relabeled dimension,
extending the definition of relabeling functions and their application to orbits. For instance, the
relabeling function {0↦ _,2↦ 2} indicates the removal of 0 while preserving 2. The removing symbol
may appear in node decorations, such as ⟨_,2⟩. Given the reference orbit type ⟨0,2⟩, one can reconstruct
the relabeling function {0↦ _,2↦ 2} without ambiguity. When applied to an orbit, links relabeled
with ‘_’ are deleted. Figures Fig. 6c and Fig. 6f illustrate the deletion with the graphs from Fig. 6a
and 6d. In these examples, the links a ● ● b, c ● ● d, and e ● ● f are removed.

Formally, given a labeled graph H = (D,L,λ,α), and a relabeling function f , the application of the
relabeling function f to H, written f(H), yields the graph (D,A′, λ′, α′) such that
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c0 d0
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Figure 7: Instantiating the nodes of a graph scheme: (a) discrete graph scheme, (b) instantiation with
the orbit graph of Fig. 6a, and (c) instantiation with the orbit graph of Fig. 6d.

• L′ = {l ∈ L ∣ f ○ α(l) ≠ _},

• λ′ is the restriction of λ to L′,

• α′ ∶L′ → 0..n is the function l ↦ f ○ α(l) for any l in L′.

Relabeling functions allow encoding folded representation of graphs and rules as graph and rule
schemes.

Definition 4.2 (Graph scheme, rule scheme – from [10]). Let ⟨o⟩ be an orbit type on 0..n.
A graph scheme of dimension n on ⟨o⟩, (n, ⟨o⟩)-graph scheme, or simply graph scheme, is a graph G

whose arcs are labeled on 0..n and nodes are decorated with generalized orbit types of the same size
as ⟨o⟩. For each node µ in G, we denote the orbit type decorating µ by ⟨oµ⟩.

A rule scheme on ⟨o⟩, or simply rule scheme, is a rule L
⟨o⟩
Ð→R where L and R are graph schemes

on ⟨o⟩.

The orbit type of a rule scheme is also referred to as its parameter and may be omitted when the
context is clear. Both graph schemes in a rule scheme must share the same orbit type. The node
decorations of a graph scheme are placeholders to represent any orbit of the given orbit type. More
specifically, each node in a graph scheme is intended to be substituted by an orbit whose type matches
its decoration. A graph scheme reduced to a single node decorated with the orbit type ⟨0,2⟩ describes
both a free or sewn edge, as shown in Fig. 6a and 6d. Other examples of graph schemes are found in
Figs. 7a and 8a. An additional condition applies when the graph scheme G contains multiple nodes.
The size condition on the orbit types decorating the nodes of G requires that they all share the same
number of symbols as ⟨o⟩. Thus, all nodes in G can be substituted based on the same orbit type
⟨o⟩, with their links relabeled according to the relabeling function derived from the node decorations.
Examples are given in Fig. 5.

5 Instantiation
We now explain the instantiation process using the previously introduced relabeling functions. Unfolding
a graph scheme through relabeling functions, i.e., instantiating it, is defined separately for nodes and
arcs. In this section, we consider a graph scheme G on the orbit type ⟨o⟩ and a graph O corresponding
to an orbit typed by ⟨o⟩, i.e., O = (DO, LO, λO, αO) such that O = O⟨o⟩(d) for any dart d in DO. We
detail how to obtain the instantiation of G with the orbit graph O, written ι⟨o⟩(G,O).

5.1 Nodes
The first component is the instantiation of a node s of G, given by applying the relabeling function
⟨o⟩ ↦ ⟨os⟩ to the orbit graph O. All nodes can then be instantiated by applying their respective
relabeling functions to copies of O.

Fig. 7a shows the two nodes of the RHS of the rule scheme from Fig. 5b. We consider their
instantiation on the orbit type ⟨o⟩ = ⟨0,2⟩.

Node n0 has the orbit type ⟨_,2⟩, meaning that the corresponding relabeling function is ⟨o⟩ ↦
⟨on0⟩ = {0 ↦ _,2 ↦ 2}. Similarly, node n1 has the orbit type ⟨1,2⟩, yielding the relabeling function
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Figure 8: Instantiating an arc of a graph scheme: (a) graph scheme with an arc between two nodes, (b)
instantiation with the orbit graph of Fig. 6a, and (c) instantiation with the orbit graph of Fig. 6d.

⟨o⟩ ↦ ⟨on1⟩ = {0 ↦ 1,2 ↦ 2}. These functions, already shown in Fig. 6, allow the instantiations for a
free or sewn edge, which are given in Figs. 7b and 7c.

Definition 5.1 (Node instantiation – from [10]). If µ is a node of G, its instantiation with O is the
graph obtained by applying ⟨o⟩ ↦ ⟨oµ⟩ to O:

ι⟨o⟩(µ,O) = [⟨o⟩ ↦ ⟨oµ⟩](O).

The construction extends to the set of nodes NG of G, whose instantiation is the union of the
instantiations of each node:

ι⟨o⟩(NG ,O) = ⋃
µ∈NG

ι⟨o⟩(µ,O).

5.2 Arcs
The instantiation of an arc between two nodes adds links between darts that are images of the same
initial dart via the two relabeling functions.

The graph scheme on the orbit ⟨0,2⟩ in Fig. 8a consists of two nodes linked with a 0-arc and
corresponds to the graph in Fig. 7a with the addition of the 0-arc. The instantiation of the nodes has
already been discussed. The next step is the instantiation of the 0-arc n0 ● ● n1, which adds links
between the darts corresponding to n0 and n1. In the case of an initial free edge, node n0 generates
two darts, a0 and b0, corresponding to darts a and b in the initial orbit graph (see Fig. 6a), while node
n1 produces darts a1 and b1. The instantiation adds the links a0 ● ● a1 and b0 ● ● b1. We derive a
similar construction in the case of an initial sewn edge. The orbit graph (see Fig. 6d) contains four
darts, thus nodes n0 and n1 instantiate into four darts each. The instantiation of n0 ● ● n1 creates
four links a0 ● ● a1, b0 ● ● b1, c0 ● ● c1 and d0 ● ● d1.
Definition 5.2 (Arc instantiation – from [10]). For s a node of G and u a node of O, we write (u, s)
for the image of u in ι⟨o⟩(s,O).

If G consists of two nodes s and t and an arc s ●
i
−● t, its instantiation with O extends the instantiation

of its nodes to link copies of the same node from O:

ι⟨o⟩(G,O) = ι⟨o⟩(s,O)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

node s

∪ ι⟨o⟩(t,O)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

node t

∪ ⋃
u∈O
(u, s) ●

i
−● (u, t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
arc s ●

i
−● t

We write ι⟨o⟩(s ●
i
−● t,O) for ⋃u∈O(u, s) ●

i
−● (u, t).

If G is a generic graph scheme with node set NG and arc set AG, its instantiation with O ex-
tends ι⟨o⟩(NG ,O) to link copies according to all the arcs of AG:

ι⟨o⟩(G,O) = ι⟨o⟩(NG ,O)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nodes

∪ ⋃
(µ ●

i
−● µ′) ∈AG

ι⟨o⟩(µ ●
i
−●µ′,O)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
arcs

To summarize, the instantiation of a graph scheme intuitively corresponds to the following: (1) ap-
plying each relabeling function from the orbit types decorating the node (2) adding a link between the
darts image of a node whenever there is an arc in the graph scheme.
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5.3 Rule Scheme

The instantiation of a rule scheme L
⟨o⟩
Ð→R is defined as the instantiation of both L and R with the

same orbit O of type ⟨o⟩, resulting in the graph transformation rule:

ι⟨o⟩(L,O) → ι⟨o⟩(R,O).

We can finally explain the reconstruction of the two rules of Figs. 4a and 4b presented at the
beginning of the section. We consider the rule scheme in Fig. 5b. The LHS and RHS are instantiated
separately, using the same orbit graph. The instantiation of the RHS has already been discussed. The
LHS consists of a single node n0 with no arcs. Its instantiation is determined by the relabeling function
derived from its orbit type, i.e., the identity function ⟨0,2⟩ ↦ ⟨0,2⟩. The instantiations with the graphs
in Fig. 6a and 6d yield exactly these graphs. The right pattern corresponds to the graph scheme in
Fig. 8a.

Therefore, the complete instantiations of the rule scheme correspond to the following:

• The instantiation of the left pattern on the graph of Fig. 6a is the graph of Fig. 6a, isomorphic to
the LHS of the rule of Fig. 4a.

• The instantiation of the left pattern on the graph of Fig. 6d is the graph of Fig. 6d, isomorphic to
the LHS of the rule of Fig. 4b

• The instantiation of the right pattern on the graph of Fig. 6a is the graph of Fig. 8b, isomorphic
to the RHS of the rule of Fig. 4a.

• The instantiation of the left pattern on the graph of Fig. 6d is the graph of Fig. 8c, isomorphic to
the RHS of the rule of Fig. 4b

In practice, the orbit type ⟨o⟩ for the rule parameter is specified by an LHS node called the hook.
This node, which is required not to have the removing symbol ’_’ in its orbit type, serves as a reference
to construct all relabeling functions. Thus, the hook provides the reference for building relabeling
functions and indicates where the modeling operation occurs in the object. When applying a rule
scheme to a Gmap, the process begins with selecting dart a. From this dart, we build the orbit ⟨o⟩(a),
where the orbit type ⟨o⟩ is determined by the hook. The rule scheme is then instantiated with the orbit
⟨o⟩(a), creating a graph transformation rule that can be applied to the initial Gmap.

Gmaps correspond to arc-labeled graphs satisfying specific topological constraints, namely the
incidence and the cycle constraints. Thus, the instantiation of a graph scheme might never be a
subgraph of a Gmap. This situation can be avoided via additional constraints on the graph scheme to
ensure that its instantiations are always subgraphs of some Gmap. Having these constraints at the
level of graph schemes (and thus rule schemes) minimizes runtime checks in Jerboa when trying to
apply an operation defined by a rule scheme. These constraints are beyond the scope of this report but
are detailed in [11].

6 Conclusion
Using generalized maps represented as graphs enables graph rewriting mechanisms as a formal foundation
for modeling operations. Current approaches to algebraic graph transformation are typically described
within a finitary M-adhesive category with an M-initial object and M-effective unions (where M is a
suitable system of monomorphisms) [2], employing compositional double-pushout (DPO) semantics for
rewriting [6]. To circumvent the inherent mathematical complexity of such a framework, this report has
presented a set-theoretic explanation for the instantiation of Jerboa rule schemes, offering an alternative
perspective to the categorical approach by leveraging the intrinsic proximity between presheaf topoi and
sets. The set-theoretic formulation relies on relabeling functions and orbit types to provide a compact
yet flexible representation of generic rules. This lightweight formalism serves to bridge the gap between
the abstract description of Jerboa rule schemes and their integration with domain-specific requirements.
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