

A first step towards the inference of geological topological operations

Romain Pascual¹

Hakim Belhaouari², Agnès Arnould², Pascale Le Gall¹

1. Problematic and motivating context

Question: How to obtain this operation?

Before: 2 surfaces, 64516 faces, and 258064 vertices.

After: 48387 volumes, 290322 faces, and 2322576 vertices.

Intuition: It is a layering operation!

Before: 2 surfaces, 8 faces, and 32 vertices.

After: 12 volumes, 72 faces, and 288 vertices.

We offer to infer operations from a representative example.

Applicability: Should produce a valid operation.

Robustness: Should yield an operation usable in a broader context.

Simplicity: Should not require user knowledge of the data structure.

Time efficiency: Should infer in an acceptable amount of time.

Exploiting Jerboa's platform, we can use objects created in various software.

2. Topological structure

(a) 3D object.

(b) Representation as a G-map.

Figure 1: Generalized maps (G-maps) [DL14] as an arc-labeled graph encode the object's topological cells.

3. Modeling operations

We developed a dedicated tool with Jerboa's platform [BALGB14] supporting imports from common file formats.

Figure 2: Viewer tab.

Figure 3: Editor tab.

The viewer tab (Fig. 2) contains both instances used for the inference. The editor tab (Fig. 3) allows visualizing the inferred operations and adding missing geometric computations.

Take a picture to access the demo

[BALGB14] Belhaouari H., Arnould A., Le Gall P., Bellet T.:

Jerboa: A Graph Transformation Library for Topology-Based Geometric Modeling.

In Graph Transformation (ICGT) (2014), Giese H., König B., (Eds.).

Damiand G., Lienhardt P.:

Combinatorial Maps: Efficient Data Structures for Computer

Graphics and Image Processing.

4. Method

We reverse the instantiation process by folding a graph that encodes the elements modified by the operation.

Select the modified part and

map the preserved elements

Algorithm input

Rule inference from a

graph traversal finding

elements corresponding

to the same node or

arc in the rule

Instances

Algorithm 1: Topological folding algorithm

Input: A graph G encoding the preservation relation between two partial G-maps, an orbit type \(\oldsymbol{o} \), and a dart a of G.
Output: A graph S that encodes the Jerboa rule with \(\oldsymbol{o} \rangle \) as variable, given that the operation is

applied at the dart a.

1 $Q \leftarrow \emptyset$, $S \leftarrow \emptyset$ // empty queue and empty 'rule' graph

2 $h \leftarrow Node(G, \langle o \rangle, a)$ // build the hook node

 $add_node(\mathcal{S},h)$ // add h to the 'rule' graph enqueue(Q,h)5 while $Q \neq \emptyset$ do $m \leftarrow dequeue(Q)$ 7 foreach $d \in \llbracket 0,n \rrbracket \setminus label(m)$ do $v \leftarrow arc_expansion(G,m,d)$ // extend arcs $build_label(G,v)$ // deduce the relabeling function $add_node(\mathcal{S},v)$

12 return S

Application to other objects

enqueue(Q,v)

Add the missing geometric computations

Figure 4: How to obtain a topological operation from an example.

5. Applications for procedural modeling (geology)

Layering: (a) no inter-layer, (b) one inter-layer, (c) two inter-layers, (d) six inter-layers and their inferred operations.

Figure 6: Final rendered subsoil.

ration: (a) three-step and (b) one-step procedure by removing th

Arch generation: (a) three-step and (b) one-step procedure by removing the base of a prism, and (c) two-step procedure by hole perforation.

Figure 5: Layering inference.

Figure 7: Arch generation inference.

Figure 8: Rendered arches in water.

The operations presented here are part of a larger procedural workflow and were obtained through our inference mechanism. We can either refine the generation by inferring simpler operations (line (a)) or realize a single step generation with the threat of inferring an operation that completely fixes the topology (line (b)).

6. Results and conclusion

Inference time

Time in ms for the inference of the operations from applications of section 5.

	Figure 5				Figure 7					
Operation	a	b	С	d	a.1	a.2	a.3	b.1	c.1	c.2
Time (ms)	3	4	4	4	2	5	2	28	4	5

Limitations:

- The operation should modify a connected part of the object for the algorithm to work.
- When the algorithm does not find regularities, it produces an operation tailored to the instance given as input (e.g. operation (b) from Fig. 7).

Conclusion:

We infer any constructive or destructive topological operations from their description on a representative example (facilitated by the regularity of generalized maps and the genericity of graph-based rules).